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Abstract: Options to develop tanning industries could be hindered even in the presence of huge 
leather industry raw materials due to the requirements of high-tech contaminant removal 
technologies, especially in developing countries. This study was initiated to investigate the 
efficiency of freeze desalination for Cr(VI) removal using freezers to generate fresh water. Simulated 
water as well as deionized water to which known concentrations of Cr(VI) spiked into it were 
studied. The effects of parameters such as initial concentration, freeze duration, ice nucleation, ice 
volume, and influence of co-occurring ions were evaluated in relation to meltwater. The 
physicochemical characteristics of the produced meltwater were also evaluated. A high total water 
recovery of up to 85% V/V of initial water was achieved for the freeze separation rate of 90% in the 
experimental evaluation. Cr(VI) removal efficiency of up to 80% from simulated tap and 93 to 97% 
for deionized water spiked with Cr(VI) were found in this batch partial freezing. Freeze desalination 
was found to be relatively viable desalination technology in terms of quality of water produced, 
options on the use of cost effective refrigerants and technologies which could have a pertinent 
importance to save energy consumption of freezers. 
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1. Introduction 

Chromium is one the priority pollutants list under clean water act of United States 
Environmental Protection Agency (US EPA) which can be released into natural waters due to the 
discharge of a variety of industrial wastewaters. Wastewater generated by leather tanning, 
electroplating, textile, metal finishing industries, and wood preservatives are among the major 
contributing sources. Uncontrolled solid and liquid waste discharges into open water systems from 
domestic use and industries with minimal or no treatment are common in developing countries [1]. 
Globally, more than 90% of the leather industries used chrome tanning. Consequently, about 30–50% 
of the Cr used in the tanning process leached into the environment [2]. Various water sources in 
developing countries are highly polluted with Cr(VI) [3]. In the water bodies of Ethiopian rift valley, 
for instance, in Koka, Ziway, and Awassa lakes and their major inflows, rivers and their inflows, and 
in effluents were shown to occur up to 0.269 mg/L [4–6] which is a value exceeding 0.05 mg/L, the 
maximum permissible level for drinking water set by the World Health Organization (WHO 2011). 
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Chromium is among the naturally occurring trace elements. It occurs in different valence states. 
Cr(VI) and Cr(III) being common in the natural environment. Cr(VI) is toxic due to its powerful 
oxidizing nature; it is even evidenced as being mutagenic and carcinogenic [7]. Alternatively, Cr(III) 
is important to maintain balanced glucose metabolism in humans and animals [8]. The existence of 
Cr in different oxidation states has a significant consequence on the transport and fate of Cr species, 
varying in their treatment capabilities and costs [9]. Considerable efforts, therefore, have been made 
to treat mostly Cr(VI) containing water/ wastewater. 

Widely employed methods for Cr(VI) removal include chemical precipitation (primarily by 
reducing Cr(VI) to Cr(III)), ion exchange, membrane, and adsorption processes [10]. Moreover, it is 
often not feasible to apply high-tech membrane-based solutions in semi-urban and rural areas of 
developing countries [11–14]. Sludge production, cost unaffordability, and unpleasant tests are 
among the challenges encountered for most of the methods especially in developing countries. The 
main drawbacks for membrane separation processes, however, are membrane fouling, and cake layer 
formation on the membrane by the pollutants. Especially, the high organic content of tannery 
effluents leads to rapid scaling and biofouling of reverse osmosis membranes with a consequent 
reduction in flux rates and performance. Thermal processes which involve phase changes, such as 
membrane distillation and freezing processes, are frequently employed for the removal of soluble 
pollutants [15–17]. However, such thermal treatments are suffered from high treatment costs. 
Treating industrial wastewater by segregation of waste pools is a very important step in tannery 
pollution prevention. Application of freezing is a promising method if applied based on natural 
freezing process in cold regions. In such circumstances, energy is required only for ice melting and 
transportation. 

Freeze desalination which involves three steps: ice formation, ice washing, and ice melting to 
obtain fresh water with subsequent removal of contaminants is an alternative physical process which 
can be used for desalting, based on the different freezing points of fresh and salt waters. It has been 
reported as being effective to remove various organic and inorganic contaminants from 
water/wastewater [18,19]. When freeze concentration is performed to purify water or liquid waste, 
impurities are separated from the ice phase during formation of the ice crystals. Two basic freeze 
desalination methods are available: suspension and progressive freeze crystallization. In both 
processes, inclusion of most compounds in the ice crystal lattice is impossible due to the small 
dimensions of ice crystal lattice. In progressive freeze crystallization, the separation of ice crystals 
formed from the concentrated mother liquor is much easier than in the conventional suspension 
crystallization, in which many small ice crystals are formed [17,20]. In the current study, we focused 
on indirect and progressive freeze desalination to assess the potential of home-use freezers to 
generate Cr(VI) free water. 

2. Materials and Methods 

2.1. Reagents 

A 1000 mg/L Cr(VI) were prepared from potassium dichromate (Riedel-de Haen, Seelze, 
Germany) in double-distilled water. Working solutions were prepared by diluting Cr(VI) stock 
solutions. 1000 mg/L Cr(VI) standard (Merck KGaA, Darmstadt, Germany) was employed for 
calibration by appropriate dilution. Series of standard solutions were prepared by pipetting suitable 
volumes of Cr(VI) using a Thermo Scientific FJ40512 Finnpipette automatic dilutor. Fresh solutions 
were prepared prior to each experiment. Moreover, simulated tap water considering an example of 
drinking water specifications from AquaVital with major ions (Ca2+ 58.64 mg/L, Mg2+ 29.26 mg/L, Na+ 
92.67 mg/L, K+ 20 mg/L, HCO3− 470 mg/L, and SO42− 60 mg/L) spiked with 5 mg/L of Cr(VI) was 
prepared and tested. 
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2.2. Experimental Setup 

Prior to the experiment, smooth plastic containers with volume 250 mL were selected to avoid 
entrainment of contaminants into the ice crystals. The influence of surface roughness of containers 
involved was previously described [21]. Concentration variations were studied in the range of 1 to 
300 mg/L. To reject the concentrated Cr(V), a plastic tube with ca. 20 mm diameter was inserted being 
upside down in each plastic beakers (Figure 1). After each different partial freezing steps (until freeze 
removal rate of 90%), three beakers were taken from the freezer and ice crystals were separated from 
the remaining water by rejecting the concentrated liquid. The whole procedure was repeated after 
different time intervals until only a small volume of (10–15% V/V) concentrated solution remained 
unfrozen. To desorb Cr(VI) weakly adsorbed into the ice crystal, the ice surface was washed three 
times by rinsing with small cold deionized water set at 278.15 K. Subsequently, the ice crystals were 
melted letting to room temperature and analyzed for Cr content using a colorimetric method. Thus, 
250 mg chelating agent, 1,5-Diphenylcarbazide (BDH, Poole, UK), was dissolved in 50 mL acetone 
(Himedia, India) and stored in an amber bottle. The pH of samples was adjusted to 2.0 ± 0.5 using 0.5 
M sulfuric acid. Then, 2 mL of the diphenylcarbazide solution was added to each sample (100 mL) 
and the mixture was allowed to stand for 10 min. to obtain full color development. Absorbance was 
measured at 540 nm using a Janway 6051 colorimeter. Background correction was performed by 
analyzing blanks. Calcium, magnesium, potassium and sodium concentrations were measured in the 
melted ice using an inductively coupled plasma optical emission spectrometer (VISTA-MPX CCD, 
Varian, Palo Alto, CA, USA). Conductivity and pH were measured using conductivity meter (WTW 
LF 537) and pH meter ORION star A211, respectively. 

 
Figure 1. Overview of the experimental setup with ca. 20 mm diameter plastic tubes being inserted 
upside down in plastic beakers containing Cr(VI) contaminated water. 

The efficiency of freeze separation (η) and removal rate were evaluated through Equations (1) & (2), 
respectively. η = ൬1 − CୗVୗC	V൰ × 100 (1) 

%R = C − CୗC ൨ × 100 (2) 

where, CO and CS (mg/L) are the Cr concentrations in the initial feed solution and in the melted ice, 
respectively, and Vo initial volume of Cr(VI)-containing solution/simulated water, Vs volume of the 
solid phase (ice) after melting (mL). 
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3. Results and Discussion 

3.1. Deionized Water Spiked with Cr(VI) 

It was presented in Figure 2 that, the removal of Cr(VI) from aqueous solutions of 5 mg/L Cr(VI) 
as function of freeze duration and fraction of water transformed into ice was illustrated. It could be 
concluded that initially the removal rate increased up to nearly 97% as the freezing time and volume 
of ice increased. About 40% meltwater recovery afterwards, the entrapment of Cr(VI) in the ice phase 
increased and the removal percentage started decreasing, making the separation of ice more difficult 
than before. Such trend has been observed for the removal of other soluble pollutants as well [22,23]. 
It was shown in literature that, as the residual liquid volume got too small, the removal efficiency 
decreased, due to the impossibility to maintain regular contact between the liquid and solid phases 
[24]. Long freeze duration results an entrained of impurities into ice crystals relative to the volume of 
the solution remained unfrozen [25]. That is, as the volume of liquid water remains relatively small, 
the solid-liquid interface became more labile and ice crystal forms dendrites with more advanced ice 
branches gradually [23]. 

 
Figure 2. Relation between the fraction of water transformed into ice (V/V), percent Cr(VI) removed 
and freeze duration (conditions: deionized water with spiked Cr(VI) at initial concentration of 5 mg/L 
& freeze temperature of 249.15 K, initial volume 250 mL) [26]. 

Experimental data and literature search results have shown that the surface roughness plays a 
very crucial role in the rate of ice nucleation. A preliminary experiment illustrated that the use of 
rough surface plastics resulted an enhanced inclusion of Cr(VI) into the ice crystals. The impact of 
surface roughness on the freeze duration was previously described [27]. The effective partition 
constant (K) in between the ice and liquid phases can be defined according to literature [28]. 

K = Cs/CL (3) 

where Cs (mass %) and CL (mass %) are chromium concentrations in ice and solution phases, 
respectively. The value of K is situated between 0 and 1, revealing meanings of no salts in solid phase 
and no freeze concentration, respectively. In observation of the mass balance, a small volume increase 
in the ice phase results in a small decrement of the volume of the solution phase (−dVL), whereas the 
concentration of the solute increases in the solution phase by dCL. Assuming complete mixing in  
the solution phase and no mixing in the ice phase, the mass balance of solutes can be presented as 
follows [28]: 
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CLVL= −Cs dVL+ (CL + dCL)(VL + dVL) (4) 

By substituting Equation (3) in Equation (4):  

(dCL + CL/CL)/(dVL/VL) = K − 1 (5) 

Integrating Equation (5): 

(1 − K) log(VL/Vo) = Log(Co/CL) (6) 

where Co (mass %) is the initial concentration of chromium (VI) before freezing, CL (mass %) is the 
concentration of the concentrated residue, and Vo is the initial volume used. Figure 3 shows a linear 
plot of experimental data used to calculate the effective partition constant, K, for the progressive 
freeze desalination of aqueous solution spiked with 5 mg/L Cr(VI). Using Equation (6), K-value of 
0.064 was obtained from the slope of the linear plot, which indicates the effectiveness of the 
progressive freeze concentration process.  

 
Figure 3. Relationship between Co/CL and VL/Vo when subjecting 5 mg/L Cr(VI) in deionized water 
to freeze desalination at a temperature of 249.15 K. 

3.2. Validating Cr(VI) Removal from Simulated Tap Water  

Drinking water contains several substances that can affect particular ion removal/water 
purification process. The removal of Cr(VI) from simulated water and aqueous solutions has been 
illustrated in Table 1. The influence of presence of dissolved ions for Cr(VI) removal by freeze 
desalination was also investigated. In the simulated tap water, the Cr(VI) removal efficiency was 
lower as compared to the removal efficiency in deionized water spiked with Cr(VI). In case of tap 
water, TDS played an inverse role in the Cr(V) removal efficiency. The effect of common ions existing 
in drinking water and inverse relation of TDS with ion removal was also observed for other soluble 
pollutants using freezing [23,29]. 

When evaluating the impact of Cr concentration on its removal from simulated tap water, a 
slight decrement was observed for a wide range of concentrations, up to 100 mg/L Cr(VI). However, 
at concentrations above 100 mg/L Cr(VI) in the system, an abrupt decrement on percent separation 
efficiency (Table 1) was observed. When the initial Cr(VI) concentration increased 100 mg/L Cr(VI) 
onwards, the solute concentration could remain even more concentrated near the ice-water interface, 
resulting more labile and ice crystal dendrites with more ice branches. The fact that the freezing 
process is relatively insensitive to a wide range of contaminants’ concentrations were also observed 
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in literatures as an advantage of freeze desalination [20,22,29]. The removal of the ions involved in 
the experiment for simulated water decreased in the order: K+ > Na+ > Mg2+ ≈ Ca2+. Previously, Kang 
et al. (2014) [29] found similar results except that the removal of Na+ being nearly the same as the 
removal of divalent ions. It seems that the removal efficiency is related to the hydration free energy 
and the hydrated radius of the ions. Ions in water are found in hydrated forms which can be described 
as M+(H2O)n, with n water molecules coordinated with the cation in a geometrically defined hydration 
shell. The size of hydrated ions (e.g., Ca2+ 0.82 nm, Mg2+ 0.86 nm) was reported in literature [30]. The 
hydrated radius of ions varies depending on the coordination number of the ion acting as central ion. 
For instance, the hydrated radius of Mg2+ was shown to increase by about 25% if its coordination 
number increased from four to six. Besides the size exclusion properties of the ice crystals for larger 
sized ions, these ions with higher ionic radius bind with adjacent water molecules more weakly as 
compared to smaller size ones [31,32]. Hydration free energy shows the stability of the hydrated ions 
in reference to their unhydrated counterpart. The magnitude of hydration free energy for the studied 
ions is provided in the order: Mg2+ > Ca2+ > Na+ > K+. Ions having a strong interaction with water 
molecules are more easily incorporated in the ice phase during freezing. Thus, ions with smaller 
energy of hydration have less association with water and hence high removal percentage [29,31,33]. 
As the surface charge density of the ions decreased from Na+ to K+ , ions with strongly hydrated ones 
(e.g., Na+, Mg2+, Ca2+) contributed to the stability of nearest water-oxygen binding [29] hence more 
accommodation of these ions into the ice phase relative to the weakly hydrated K+ , hence rejection 
of K+ found greater. 

Table 1. Physicochemical properties of water tested (initial conditions) and melted ice [27]. 

Parameters Melted Ice Melted Ice Simulated Deionized 
 obtained from obtained from tap water Water 
 Simulated frozen deionized  Spiked 
 tap water water spiked  with Cr 
  with Cr   

Conductivity (μS/cm) 46.8 2.6 99.6 2.5 
pH 7.4 6.5 7.9 6.4 

DO (mg/L) 6.8 6.83 6.81 6.9 
Ca2+ (mg/L) 28.5  58.6  
Mg2+ (mg/L) 14.4  29.3  
Na+ (mg/L) 32.4  92.67  
K+ (mg/L) 5.59  19.98  

Cr+6 (mg/L) 

1.75 0.16 5 5 
3.54 0.41 10 10 
14.1 1.28 40 40 
31.2 6.4 80 80 
41 9 100 100 
100 30.3 200 200 

HCO3− (mg/) NM  470  
SO42− (mg/L) NM  60  

Temperature 295.65 K during measurement of pH, conductivity and DO. NM = Not measured. 

3.3. Effect of Sodium Chloride Application  

The impact of presence of salt ions was evaluated in this freezing experiment by adding sodium 
chloride (250 mg/L Cl−) into deionized water containing 5 mg/L Cr(VI). The change in ice crystal 
morphology obscured the feasibilities of ice washing steps when NaCl was added relative to the 
solution of Cr(VI) spiked with deionized water alone. It has been also observed that the rate of ice 
formation, and inclusion of Cr(VI) into ice is higher for solutions containing Cr(VI) in the presence of 
sodium chloride salt as compared to solutions containing Cr(VI) alone (Figure 4a,b). The inclusion of 
impurities upon progressive freezing has been described by Halde (1980), who illustrated that 
variables such as freezing rate and added chemicals strongly affect the impurity migration. The 
possible existence of the salt as crystalline hydrates of NaCl·2H2O at temperatures below 250.15 K as 
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well as the detection of solutes being more concentrated near the water-ice interface, enhancing 
depression of the freezing point temperature, could be reasons in the reduction of freeze removal of 
Cr(VI)[34,35]. 

 
Figure 4. Effect of chloride addition on Cr(VI) removal using freeze desalination at a temperature of 
249.15 K: (a) deionized water spiked with 5 mg/L Cr(VI), (b) deionized water spiked with 5 mg/L 
Cr(VI), and 250 mg/L Cl−. 

3.4. Energy Efficiency Views  

The cost of desalination technologies depends mainly on the type of physical process (thermal 
or separation processes e.g., membrane process) involved, but also on other parameters such as plant 
capacity, feed water quality, pretreatment, plant condition, plant life, and investment assets. As a 
result, several strategies were proposed and are being implemented to improve the energy efficiency 
of desalination [15]. It is reported that the basic advantage of freeze desalination is the lower energy 
requirement compared to other thermal processes. For example, freeze desalination systems require 
six times lower energy to obtain 1 kg of fresh water compared to multi stage flash evaporation. Since 
compression work is a major cost parameter in freezing, renewable resources may be used to make 
the technology cost-efficient [36,37]. Furthermore, according to Attia (2010), the cost of freeze 
desalination using an auto-reversed R-22 vapor compression heat pump is 50% lower than most 
efficient methods reviewed previously [38]. Rice and Chau also elaborated the idea of using hydraulic 
refrigerant in freeze desalination plants, stating that freeze desalination is much more attractive than 
it has been in the past and should be reconsidered and compared with other means of desalination 
with regard to energy efficiency and other operating parameters [39]. Table 2 shows the total average 
costs and energy consumption of different desalination methods. Actual energy consumption using 
freezers is affected by several factors. For example, it depends on how the appliance is used and 
where it is located, temperature and others. Recently, the use of natural freezing, and waste energy 
applications such like LNG is showing freezing as promising future technology in water purification 
[25,40,41]. 
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Table 2. Energy consumption and total average costs of large scale commercial desalination plants. 

Methods Total Energy 
kWh/m3 

Total Average 
Costs 

Remark References 

Thermal: Multistage 
flash evaporation (MSF)  

10–16 1.0 $/m3  
Second largest installed 
desalting capacity in the 
world next to RO 

[42] 

Thermal: Multiple effect 
evaporation (ME) 

5.5–9 about $1.0/m3  [43] 

Membrane processes:  
Reverse osmosis(RO) 

6.95 less than $0.5/m3 For seawater [44,45]  

Electrodialysis (ED)  
less than $1.0/m3 For seawater 

[42] 
about $0.6/m3 For brackish water  

Hybrid method:  
Coupling freezing and 
reverse osmosis (RO) 

5.17   For seawater [44] 

4. Conclusions 

Our study confirmed that freeze separation process seems to have potential for Cr(VI) removal 
from water, revealing that water rejection was small and relatively efficient, producing 85% (V/V) of 
melted ice as desalted water when the removal rate was 90%. The freezing process revealed that 
Cr(VI) removal efficiency as high as 97% and 85% for deionized and simulated tap water spiked with 
5 mg/L Cr(VI), respectively. However, technical challenges related to washing off the chromium 
adhered to the ice surface after freezing and separation of ice from water under real conditions 
outside the laboratory will need special attention when further developing the technology for 
practical use. 

Conflicts of Interest: The authors declare no conflict of interest. 
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