Total, Dissolved and Particulate N:P Stoichiometry in Canadian Prairie Streams in Relation to Land Cover and Hydrologic Variability †
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Hydrology and Chemistry
2.3. Statistical Analyses
3. Results and Discussion
3.1. Nutrient Concentrations Ratios
3.2. Nutrient Load Ratios
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Carpenter, S.R.; Caraco, N.F.; Correll, R.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Non point pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Dodds, W.K.; Gido, K.; Whiles, M.R.; Fritz, K.M.; Matthews, W.J. Life on the edge: The ecology of great plains: Prairie streams. Bioscience 2004, 54, 205–216. [Google Scholar] [CrossRef]
- Corriveau, J.; Chambers, P.A.; Yates, A.G.; Culp, J.M. Snowmelt and its role in the hydrologic and nutrient budgets of prairie streams. Water Sci. Technol. 2011, 64, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Rattan, K.J.; Corriveau, J.C.; Brua, R.B.; Culp, J.M.; Yates, A.G.; Chambers, P.A. Quantifying seasonal variation in total phosphorus and nitrogen from prairie streams in the Red River Basin, Manitoba Canada. Sci. Total Environ. 2017, 575, 649–659. [Google Scholar] [CrossRef]
- Rankinen, K.; Gao, G.; Granland, K.; Gronroos, J.; Vesikko, L. Comparison of impacts of human activities and climate change on water quantity and quality in Finnish agricultural catchments. Landsc. Ecol. 2015, 30, 415–428. [Google Scholar] [CrossRef]
- Fang, X.; Pomeroy, J.W.; Westbrook, X.; Guo, A.; Minke, G.; Brown, T. Prediction of snowmelt derived streamflow in a wetland dominated prairie basin. Hydrol. Earth Syst. Sci. 2010, 14, 991–1006. [Google Scholar] [CrossRef]
- Cade-Menun, B.J.; Bell, G.; Baker-Ismail, S.; Fouli, Y.; Hodder, K.; McMartin, D.W.; Perez-Valdivia, C.; Wu, K. Nutrient loss from Saskatchewan cropland and pasture in spring snowmelt runoff. Can. J. Soil Sci. 2013, 93, 445–458. [Google Scholar] [CrossRef]
- Bergstrom, L.; Kirchmann, H.; Djodjic, F.; Kyllmar, K.; Ulén, B.; Liu, J.; Andersson, H.; Aronsson, H.; Börjesson, G.; Kynkäänniemi, P.; et al. Turnover and losses of phosphorus in Swedish agricultural soils: Long term changes, leaching trends, and mitigation measures. J. Environ. Qual. 2015, 44, 512–523. [Google Scholar] [CrossRef]
- Vanni, M.J.; Renwick, W.H.; Bowling, A.M.; Horgan, M.J.; Christian, A.D. Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use. Freshw. Biol. 2011, 56, 791–811. [Google Scholar] [CrossRef]
- Prater, C.; Frost, P.C.; Howell, T.E.; Watson, S.B.; Zastepa, A.; King, S.S.E.; Vogt, R.J.; Xenopoulos, M.A. Variation in particulate C:N:P stoichiometry across the Lake Erie watershed from tributaries to its outflow. Limnol. Oceanogr. 2017. [Google Scholar] [CrossRef]
- Collins, S.M.; Oliver, S.K.; LaPierre, J.-F.; Stanley, E.H.; Jones, J.R.; Wagner, T.; Soranno, P.A. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales. Ecol. Appl. 2017, 27, 1529–1540. [Google Scholar] [CrossRef]
- Powers, S.M.; Tank, J.L.; Robertson, D.M. Control of nitrogen and phosphorus transport by reservoirs in agricultural landscapes. Biogeochemistry 2015, 124, 417–439. [Google Scholar] [CrossRef]
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu, I.; et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. PNAS 2013, 100, 6448–6452. [Google Scholar] [CrossRef] [PubMed]
- Saaltink, R.; der Velde, Y.; Dekker, S.C.; Lyon, S.W.; Dahlke, H.E. Societal, land cover, and climatic controls on river nutrient flows into the Baltic Sea. J. Hydrol. Reg. Stud. 2014, 1, 44–56. [Google Scholar] [CrossRef]
- Yates, A.G.; Culp, J.M.; Chambers, P.A. Estimating nutrient production from human activities in sub catchments of the Red River, Manitoba. J. Great Lakes Res. 2012, 38, 106–114. [Google Scholar] [CrossRef]
- Yates, C.A.; Johnes, P.J. Nitrogen speciation and phosphorus fractionation dynamics in a lowland Chalk catchment. Sci. Total Environ. 2013, 444, 466–479. [Google Scholar] [CrossRef]
- Derksen, C.; Brown, R. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- DeBeer, C.M.; Wheater, H.S.; Carey, S.K.; Chun, K.P. Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: A review and synthesis. Hydrol. Earth Syst. Sci. 2016, 20, 1573–1598. [Google Scholar] [CrossRef]
- Dumanski, S.; Pomeroy, J.W.; Westbrook, C.J. Hydrological regime changes in a Canadian Prairie basin. Hydrol. Proc. 2015, 29, 3893–3904. [Google Scholar] [CrossRef]
- Vincent, L.A.; Zhang, X.; Brown, R.; Feng, Y.; Mekis, E.J.; Milewska, E.; Wan, H.; Wang, X.L. Observed trends in Canada’s climate and influence of low-frequency variability modes. J. Clim. 2015, 28, 4545–4560. [Google Scholar] [CrossRef]
- McDowell, R.W.; Elkin, K.R.; Kleinman, J.A. Temperature and nitrogen effects on phosphorus uptake by agricultural stream-bed sediments. J. Environ. Qual. 2017, 46, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Green, M.B.; Nieber, J.B.; Johnson, G.; Magner, J.; Schaefer, B. Flow path influence on a N:P ratio in two headwater streams: A paired watershed study. J. Geophys. Res. 2007, 112, G03015. [Google Scholar] [CrossRef]
- Howarth, R.W.; Swaney, D.P.; Boyer, E.W.; Marino, R.; Jaworski, N.; Goodale, C. The influence of climate on average nitrogen export from large watersheds in the North-eastern United States. Biogeochemistry 2006, 79, 163–186. [Google Scholar] [CrossRef]
- Arbuckle, K.E.; Downing, J.A. The influence of watershed land use on lake N:P in a predominantly agricultural landscape. Limnol. Oceanogr. 2001, 46, 970–975. [Google Scholar] [CrossRef]
- Bunting, L.; Leavitt, P.R.; Simpson, G.L.; Wissel, B.; Laird, K.R.; Cumming, B.F.; Amand, A.; Engstrom, D.R. Increased variability and sudden ecosystem state change in Lake Winnipeg, Canada, caused by 20th century agriculture. Limnol. Oceaongr. 2016, 61, 2090–2107. [Google Scholar] [CrossRef]
- Paerl, H.A.; Scott, J.T.; McCarthy, M.J.; Newell, S.E.; Gardner, W.S.; Havens, K.E.; Hoffman, D.K.; Wilhelm, S.W.; Wurtsbaugh, W.A. It takes two to tango: When and where duel nutrient (N and P) reductions are needed to protect lakes and downstream ecosystems. Environ. Sci. Technol. 2016, 50, 10805–10813. [Google Scholar] [CrossRef] [PubMed]
Site Number | Sub-Watershed Name | WSC | Area (km2) | Fertilizer P (kg/ha/year) | Fertilizer N (kg/ha/year) | Crop Cover (%) | Livestock (NU/km2) |
---|---|---|---|---|---|---|---|
1 | West Branch La Salle | 05OG008 | 65 | 26.9 | 65.7 | 87 | 25.1 |
2 | Elm | 05OG005 | 602 | 10.8 | 28.0 | 70 | 15.9 |
3 | Tobacco | 05OF024 | 350 | 18.0 | 61.3 | 71 | 22.1 |
4 | Buffalo | 05OC019 | 626 | 17.7 | 42.4 | 59 | 18.8 |
8 | Hespeler | 05OC016 | 180 | 17.3 | 52.0 | 69 | 23.3 |
9 | Shannon | 05OF014 | 279 | 17.8 | 36.9 | 65 | 21.9 |
11 | Big Coulee | 05OG008 | 84 | 25.2 | 70.2 | 92 | 24.3 |
Variable | Year | Annual | Snowmelt | Spring | Summer | Fall | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
Discharge | 2013 | 2.30 | 0.411 | 15.3 a | 2.41 | 3.50 b | 0.650 | 0.709 c | 0.582 | 0.050 d | 0.00 |
2014 | 0.901 | 0.119 | 6.80 a | 0.760 | 0.705 b | 0.080 | 0.400 c | 0.120 | 0.040 d | 0.00 | |
Concentration Ratios | |||||||||||
TN:TP | 2013 | 6.64 | 0.310 | 5.96 | 0.366 | 6.21 | 0.412 | 6.45 | 0.402 | 7.11 | 0.499 |
2014 | 6.70 | 0.228 | 6.40 | 0.343 | 7.11 | 0.639 | 7.23 | 0.544 | 6.06 | 0.715 | |
DIN:SRP | 2013 | 3.43 | 0.239 | 5.36 | 0.348 | 3.87 | 0.238 | 2.40 | 0.208 | 2.71 | 0.188 |
2014 | 4.03 | 0.349 | 5.15 | 0.255 | 3.64 | 0.199 | 2.24 | 0.198 | 3.09 | 0.244 | |
PN:PP | 2013 | 11.5 | 2.77 | 11.4 | 1.33 | 12.5 | 1.02 | 11.6 | 0.982 | 10.6 | 2.65 |
2014 | 10.9 | 2.50 | 12.2 | 0.668 | 10.4 | 0.715 | 10.5 | 0.788 | 11.6 | 4.32 | |
Load Ratios | |||||||||||
TN:TP | 2013 | 6.24 | 0.144 | 3.81 a | 0.024 | 3.54 a | 0.084 | 6.97 b | 0.076 | 9.50 c | 0.088 |
2014 | 5.34 | 0.185 | 4.29 a | 0.084 | 4.02 a | 0.144 | 6.86 b | 0.105 | 3.85 c | 0.112 | |
DIN:SRP | 2013 | 2.48 | 0.106 | 4.96 a | 0.088 | 2.96 b | 0.114 | 2.11 b | 0.107 | 0.474 c | 0.073 |
2014 | 2.67 | 0.184 | 5.94 a | 0.109 | 3.22 b | 0.211 | 1.66 b | 0.118 | 1.25 c | 0.154 | |
PN:PP | 2013 | 2.57 | 0.112 | 2.83 a | 0.100 | 3.95 b | 0.088 | 3.38 b | 0.076 | 0.132 c | 0.059 |
2014 | 4.64 | 0.103 | 4.65 a | 0.056 | 2.76 b | 0.023 | 7.82 c | 0.049 | 3.32 b | 0.086 |
Response | Concentrations | Loads | ||||
---|---|---|---|---|---|---|
DF | F | p | DF | F | p | |
TN | ||||||
Season | 3 | 10 | 0.00 | 3 | 12 | 0.00 |
Year | 1 | 2.00 | 0.16 | 1 | 2.6 | 0.10 |
Crop (co-variate) | 1 | 0.31 | 0.87 | 1 | 8.2 | 0.00 |
DIN | ||||||
Season | 3 | 9.4 | 0.00 | 3 | 19 | 0.00 |
Year | 1 | 8.5 | 0.00 | 1 | 1.6 | 0.20 |
Crop (co-variate) | 1 | 4.2 | 0.02 | 1 | 9.8 | 0.00 |
PN | ||||||
Season | 3 | 2.7 | 0.08 | 3 | 7.5 | 0.00 |
Year | 1 | 2.2 | 0.07 | 1 | 8.8 | 0.00 |
Crop (co-variate) | 1 | 2.4 | 0.07 | 1 | 2.0 | 0.07 |
TP | ||||||
Season | 3 | 3.4 | 0.01 | 3 | 15 | 0.00 |
Year | 1 | 0.41 | 0.65 | 1 | 2.6 | 0.08 |
Crop (co-variate) | 1 | 9.3 | 0.00 | 1 | 7.8 | 0.01 |
SRP | ||||||
Season | 3 | 10 | 0.00 | 3 | 13 | 0.00 |
Year | 1 | 3.6 | 0.01 | 1 | 0.33 | 0.57 |
Crop (co-variate) | 1 | 5.8 | 0.00 | 1 | 7.8 | 0.01 |
PP | ||||||
Season | 3 | 2.3 | 0.08 | 3 | 4.5 | 0.02 |
Year | 1 | 2.1 | 0.14 | 1 | 3.7 | 0.03 |
Crop (co-variate) | 1 | 0.04 | 0.84 | 1 | 1.9 | 0.08 |
TN: TP | ||||||
Season | 3 | 1.8 | 0.12 | 3 | 6.8 | 0.00 |
Year | 1 | 0.92 | 0.34 | 1 | 0.74 | 0.41 |
Crop (co-variate) | 1 | 1.0 | 0.18 | 1 | 6.4 | 0.02 |
DIN: SRP | ||||||
Season | 3 | 4.7 | 0.05 | 3 | 6.1 | 0.00 |
Year | 1 | 2.2 | 0.08 | 1 | 0.89 | 0.35 |
Crop (co-variate) | 1 | 1.1 | 0.22 | 1 | 5.7 | 0.02 |
PN: PP | ||||||
Season | 3 | 2.8 | 0.06 | 3 | 5.4 | 0.00 |
Year | 1 | 1.3 | 0.24 | 1 | 7.9 | 0.01 |
Crop (co-variate) | 1 | 0.01 | 0.93 | 1 | 0.0 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rattan, K.J.; Chambers, P.A. Total, Dissolved and Particulate N:P Stoichiometry in Canadian Prairie Streams in Relation to Land Cover and Hydrologic Variability. Proceedings 2018, 2, 183. https://doi.org/10.3390/ecws-2-04952
Rattan KJ, Chambers PA. Total, Dissolved and Particulate N:P Stoichiometry in Canadian Prairie Streams in Relation to Land Cover and Hydrologic Variability. Proceedings. 2018; 2(5):183. https://doi.org/10.3390/ecws-2-04952
Chicago/Turabian StyleRattan, Kim J., and Patricia A. Chambers. 2018. "Total, Dissolved and Particulate N:P Stoichiometry in Canadian Prairie Streams in Relation to Land Cover and Hydrologic Variability" Proceedings 2, no. 5: 183. https://doi.org/10.3390/ecws-2-04952
APA StyleRattan, K. J., & Chambers, P. A. (2018). Total, Dissolved and Particulate N:P Stoichiometry in Canadian Prairie Streams in Relation to Land Cover and Hydrologic Variability. Proceedings, 2(5), 183. https://doi.org/10.3390/ecws-2-04952