System for Automatic Assessment of Alzheimer’s Disease Diagnosis Based on Deep Learning Techniques †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proposed Model
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
MRI | Magnetic Resonance Imaging |
AUC | Area Under Curve ROC |
ROC | Receiver Operating Characteristic |
References
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalencia e incidencia de la enfermedad de Alzheimer en Europa: Metaanálisis. Neurología 2017, 32, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, S.; Tofighi, G. DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI. BioRxiv 2016. p. 070441. [Google Scholar]
- ADNI|Alzheimer’s Disease Neuroimaging Initiative. Available online: http://adni.loni.usc.edu (accessed on 27 June 2019).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 1998; pp. 137–142. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.; Aboian, M.S.; Mari Aparici, C.; et al. A Deep learning model to predict a diagnosis of alzheimer disease by using 18F-FDG PET of the brain. Radiology 2018, 290, 456–464. [Google Scholar] [CrossRef] [PubMed]
Model | Image | Accuracy | Precision | Recall | Specificity | f1-Score | AUC |
---|---|---|---|---|---|---|---|
Inception [7] | PET hor. | - | 63.66% | 64.67% | 79.00% | 64.00% | 76.00% |
ResNet | MRI sag. | 81.46%±1.9% | 82.48%±2.2% | 93.09%±1.9% | 55.19%±4.1% | 87.44%±1.5% | 74.14%±2.2% |
MobileNet | MRI sag. | 51.08%±19.1% | 37.56%±34.7% | 52.4%±49.7% | 47.73%±40.7% | 43.16%±40.7% | 50.01%±0.1% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puente-Castro, A.; Munteanu, C.R.; Fernandez-Blanco, E. System for Automatic Assessment of Alzheimer’s Disease Diagnosis Based on Deep Learning Techniques. Proceedings 2019, 21, 28. https://doi.org/10.3390/proceedings2019021028
Puente-Castro A, Munteanu CR, Fernandez-Blanco E. System for Automatic Assessment of Alzheimer’s Disease Diagnosis Based on Deep Learning Techniques. Proceedings. 2019; 21(1):28. https://doi.org/10.3390/proceedings2019021028
Chicago/Turabian StylePuente-Castro, Alejandro, Cristian Robert Munteanu, and Enrique Fernandez-Blanco. 2019. "System for Automatic Assessment of Alzheimer’s Disease Diagnosis Based on Deep Learning Techniques" Proceedings 21, no. 1: 28. https://doi.org/10.3390/proceedings2019021028
APA StylePuente-Castro, A., Munteanu, C. R., & Fernandez-Blanco, E. (2019). System for Automatic Assessment of Alzheimer’s Disease Diagnosis Based on Deep Learning Techniques. Proceedings, 21(1), 28. https://doi.org/10.3390/proceedings2019021028