Dataset for the Aesthetic Value Automatic Prediction †
Abstract
:1. Introduction
2. Limitations Found in the Datasets Available
3. A New Dataset
4. Evaluation
5. Results
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Carballal, A.; Castro, L.; Rodríguez-Fernández, N.; Santos, I.; Santos, A.; Romero, J. Approach to minimize bias on aesthetic image datasets. In Interface Support for Creativity, Productivity, and Expression in Computer Graphics; IGI Global: Hershey, PA, USA, 2019; pp. 203–219. [Google Scholar]
- Carballal, A.; Castro, L.; Perez, R.; Correia, J. Detecting bias on aesthetic image datasets. Int. J. Creat. Interfaces Comput. Graph. 2014, 5, 62–74. [Google Scholar] [CrossRef]
- Datta, R.; Joshi, D.; Li, J.; Wang, J.Z. Studying aesthetics in photographic images using a computational approach. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2006; pp. 288–301. [Google Scholar]
- Wang, W.; Cai, D.; Wang, L.; Huang, Q.; Xu, X.; Li, X. Synthesized computational aesthetic evaluation of photos. Neurocomputing 2016, 172, 244–252. [Google Scholar] [CrossRef]
- Wong, L.K.; Low, K.L. Saliency-enhanced image aesthetics class prediction. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 997–1000. [Google Scholar]
- Ke, Y.; Tang, X.; Jing, F. The design of high-level features for photo quality assessment. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 2006, New York, NY, USA, 17–22 June 2006; Volume 1, pp. 419–426. [Google Scholar]
- Tang, X.; Luo, W.; Wang, X. Content-based photo quality assessment. IEEE Trans. Multimed. 2013, 15, 1930–1943. [Google Scholar] [CrossRef]
- Cela-Conde, C.J.; Ayala, F.J.; Munar, E.; Maestú, F.; Nadal, M.; Capó, M.A.; del Río, D.; López-Ibor, J.J.; Ortiz, T.; Mirasso, C.; et al. Sex-related similarities and differences in the neural correlates of beauty. Proc. Natl. Acad. Sci. USA 2009, 106, 3847–3852. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, A.; Nadal, M.; Sheehy, N.; Cela-Conde, C.J.; Sawey, M. Predicting beauty: Fractal dimension and visual complexity in art. Br. J. Psychol. 2011, 102, 49–70. [Google Scholar] [CrossRef] [PubMed]
- Nadal, M.; Munar, E.; Marty, G.; Cela-Conde, C.J. Visual complexity and beauty appreciation: Explaining the divergence of results. Empir. Stud. Arts 2010, 28, 173–191. [Google Scholar] [CrossRef]
- Carballal, A.; Fernandez-Lozano, C.; Rodriguez-Fernandez, N.; Castro, L.; Santos, A. Avoiding the inherent limitations in datasets used for measuring aesthetics when using a machine learning approach. Complexity 2019, 2019, 4659809. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Fernandez, N.; Santos, I.; Torrente, A. Dataset for the Aesthetic Value Automatic Prediction. Proceedings 2019, 21, 31. https://doi.org/10.3390/proceedings2019021031
Rodriguez-Fernandez N, Santos I, Torrente A. Dataset for the Aesthetic Value Automatic Prediction. Proceedings. 2019; 21(1):31. https://doi.org/10.3390/proceedings2019021031
Chicago/Turabian StyleRodriguez-Fernandez, Nereida, Iria Santos, and Alvaro Torrente. 2019. "Dataset for the Aesthetic Value Automatic Prediction" Proceedings 21, no. 1: 31. https://doi.org/10.3390/proceedings2019021031
APA StyleRodriguez-Fernandez, N., Santos, I., & Torrente, A. (2019). Dataset for the Aesthetic Value Automatic Prediction. Proceedings, 21(1), 31. https://doi.org/10.3390/proceedings2019021031