
proceedings

Proceedings

Design of Mutation Operators for Testing Geographic
Information Systems †

Suilen H. Alvarado

Laboratorio de Bases de Datos Campus de Elviña, Centro de investigación CITIC, Universidade da Coruña,
15071 A Coruña, Spain; s.hernandez@udc.es
† Presented at the 2nd XoveTIC Congress, A Coruña, Spain, 5–6 September 2019.

Published: 6 August 2019
����������
�������

Abstract: In this article, we propose the definition of specific mutation operators for testing
Geographic Information Systems. We describe the process for applying the operators and generating
mutants, and present a case study where these mutation operators are applied to two real-world
applications.
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1. Introduction

Mutation-based testing [1] is a test technique that involves artificially introducing errors into a
System Under Test (SUT). A mutant is a copy of the system in which a change has been done that,
in most cases, will lead to a behaviour different than expected. The different mutants are generated
automatically by the application of mutation operators.

In the state of the art, we have found mutation operators, both general purpose and specific to
different technologies, languages and paradigms [2–9]. However, these operators are not adequate
when trying to test software features associated with specific domains.

In this article, we propose mutation operators specific to the domain of Geographic Information
Systems (GIS) applications. These operators reproduce programming errors that are litely to occur
during the development of this type of applications. In addition, we present the implementation of
these operators and as proof of concept we apply these operators to two real-world GIS applications
and we generate the mutants.

2. Mutation Operators for GIS

As a previous step to designing the mutation operators, we analyzed the main technologies used
specifically in the development of GIS, and we identified typical errors a programmer can introduce
during the development. These errors were formalized into mutation operators. In order to apply
these operators to a SUT, we rely on Java reflection and aspect-oriented programming. Reflection
allows us to obtain the list of classes and methods of the SUT, so the user can decide the methods to
wish the operators will be applied.

Later, we capture information about the methods of the SUT to be mutated, together with the
information of the mutation operators that were already defined. From these data, we generate the
mutation operator, in the form of on aspect, which will then be possible to interweave with the SUT
which generates a mutant of the SUT.

Next, we describe the definition of two operators and two cases of application on real-world
GIS applications.

ChangeCoordSys Operator (Listing 1): It exchanges the coordinate system of a geometry, so it
does not match the coordinate system that is being used in the user interface. It simulates the error of
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not checking that the coordinate system is correct. The error is introduced by directly modifying the
coordinate system of geometry when recovering the wrapping of the figure.

1
2 public String getCode(String code) {
3 code="double temp = (double) args [0];
4 args [0] = (double) args [1];
5 args [1] = temp;
6 ";
7 return code;
8 }
9

10 public String [] getOperationsNames () {
11 return new String [] { "getFromLocation" };
12 }
13 }

Listing 1: A simplified definition of the ChangeCoordSys Operator.

This operator was applied to a mobile technology GIS application. This application allows
registering places of interest for the user. These areas of interest are called Geofences. A Geofence is
determined by a geographical location expressed in terms of latitude, longitude, and a radius around
that location. By creating a Geofence with an erroneous location from its central location, the device
will receive incorrect location notifications. As a result, the user will see in the application’s map
viewer the Geofences drawn in erroneous zones (Figure 1).

Figure 1. Original and mutant application.

BooleanPolygonConstraint Operator (Listing 2): It introduces errors in the processing of
geometries, manipulating the result of the operations that carry out the verification of different
topological restrictions between geometries, such as intersects, covers or overlap.

14
15 public String getCode(String code) {
16 code = "com.vividsolutions.jts.geom.Coordinate []
17 coordinates = pGeometry1.getCoordinates ();\n" +
18 "coordinates [0] = pGeometry1.getCentroid ().getCoordinate ();\n" +
19 "coordinates[coordinates.length -1] =
20 pGeometry1.getCentroid ().getCoordinate ();\n" +
21 "pGeometry1 = new com.vividsolutions.jts.geom.GeometryFactory ()
22 .createPolygon(coordinates);\n" +
23 "args [0] = pGeometry1;";
24 return code;
25 }
26
27 protected String [] getOperationsNames () {
28 return new String [] {"contains", "coveredBy", "covers", "crosses",
29 "disjoint", "touches", "equalsTop", "intersects",
30 "overlaps", "within"};
31 }
32 }

Listing 2: A simplified definition of the BooleanPolygonConstraint Operator.

To test this operator it was applied to a land reparcelling system. The objective of the land
reparcelling is to reunify the lands of an owner to facilitate their exploitation. In this application,
the result of the operation between two polygons has been affected. This error causes the incorrect
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display of the resulting geometry that should be drawn in the user interface after the operation applied
to the two initial geometries (Figure 2).

Figure 2. Original and mutant application.

3. Conclusions

In existing proposals, we can find both generic and specific mutation operators. However, these
are not adequate to cover errors in particular domains. We have defined new operators specific to the
GIS domain and a way to apply them to a SUT. In addition, we have tested the operators defined in
two GIS applications. As future work, we intend to extend this approach to other domains, as well as
to use the developed operators for the automatic improvement of sets of test cases.
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