
proceedings

Proceedings

Design of Mutation Operators for Testing Geographic
Information Systems †

Suilen H. Alvarado

Laboratorio de Bases de Datos Campus de Elviña, Centro de investigación CITIC, Universidade da Coruña,
15071 A Coruña, Spain; s.hernandez@udc.es
† Presented at the 2nd XoveTIC Congress, A Coruña, Spain, 5–6 September 2019.

Published: 6 August 2019
����������
�������

Abstract: In this article, we propose the definition of specific mutation operators for testing
Geographic Information Systems. We describe the process for applying the operators and generating
mutants, and present a case study where these mutation operators are applied to two real-world
applications.

Keywords: mutation operators; geographic information systems; mutation testing

1. Introduction

Mutation-based testing [1] is a test technique that involves artificially introducing errors into a
System Under Test (SUT). A mutant is a copy of the system in which a change has been done that,
in most cases, will lead to a behaviour different than expected. The different mutants are generated
automatically by the application of mutation operators.

In the state of the art, we have found mutation operators, both general purpose and specific to
different technologies, languages and paradigms [2–9]. However, these operators are not adequate
when trying to test software features associated with specific domains.

In this article, we propose mutation operators specific to the domain of Geographic Information
Systems (GIS) applications. These operators reproduce programming errors that are litely to occur
during the development of this type of applications. In addition, we present the implementation of
these operators and as proof of concept we apply these operators to two real-world GIS applications
and we generate the mutants.

2. Mutation Operators for GIS

As a previous step to designing the mutation operators, we analyzed the main technologies used
specifically in the development of GIS, and we identified typical errors a programmer can introduce
during the development. These errors were formalized into mutation operators. In order to apply
these operators to a SUT, we rely on Java reflection and aspect-oriented programming. Reflection
allows us to obtain the list of classes and methods of the SUT, so the user can decide the methods to
wish the operators will be applied.

Later, we capture information about the methods of the SUT to be mutated, together with the
information of the mutation operators that were already defined. From these data, we generate the
mutation operator, in the form of on aspect, which will then be possible to interweave with the SUT
which generates a mutant of the SUT.

Next, we describe the definition of two operators and two cases of application on real-world
GIS applications.

ChangeCoordSys Operator (Listing 1): It exchanges the coordinate system of a geometry, so it
does not match the coordinate system that is being used in the user interface. It simulates the error of

Proceedings 2019, 21, 43; doi:10.3390/proceedings2019021043 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0002-4887-9216
http://www.mdpi.com/2504-3900/21/1/43?type=check_update&version=1
http://dx.doi.org/10.3390/proceedings2019021043
http://www.mdpi.com/journal/proceedings


Proceedings 2019, 21, 43 2 of 4

not checking that the coordinate system is correct. The error is introduced by directly modifying the
coordinate system of geometry when recovering the wrapping of the figure.

1
2 public String getCode(String code) {
3 code="double temp = (double) args [0];
4 args [0] = (double) args [1];
5 args [1] = temp;
6 ";
7 return code;
8 }
9

10 public String [] getOperationsNames () {
11 return new String [] { "getFromLocation" };
12 }
13 }

Listing 1: A simplified definition of the ChangeCoordSys Operator.

This operator was applied to a mobile technology GIS application. This application allows
registering places of interest for the user. These areas of interest are called Geofences. A Geofence is
determined by a geographical location expressed in terms of latitude, longitude, and a radius around
that location. By creating a Geofence with an erroneous location from its central location, the device
will receive incorrect location notifications. As a result, the user will see in the application’s map
viewer the Geofences drawn in erroneous zones (Figure 1).

Figure 1. Original and mutant application.

BooleanPolygonConstraint Operator (Listing 2): It introduces errors in the processing of
geometries, manipulating the result of the operations that carry out the verification of different
topological restrictions between geometries, such as intersects, covers or overlap.

14
15 public String getCode(String code) {
16 code = "com.vividsolutions.jts.geom.Coordinate []
17 coordinates = pGeometry1.getCoordinates ();\n" +
18 "coordinates [0] = pGeometry1.getCentroid ().getCoordinate ();\n" +
19 "coordinates[coordinates.length -1] =
20 pGeometry1.getCentroid ().getCoordinate ();\n" +
21 "pGeometry1 = new com.vividsolutions.jts.geom.GeometryFactory ()
22 .createPolygon(coordinates);\n" +
23 "args [0] = pGeometry1;";
24 return code;
25 }
26
27 protected String [] getOperationsNames () {
28 return new String [] {"contains", "coveredBy", "covers", "crosses",
29 "disjoint", "touches", "equalsTop", "intersects",
30 "overlaps", "within"};
31 }
32 }

Listing 2: A simplified definition of the BooleanPolygonConstraint Operator.

To test this operator it was applied to a land reparcelling system. The objective of the land
reparcelling is to reunify the lands of an owner to facilitate their exploitation. In this application,
the result of the operation between two polygons has been affected. This error causes the incorrect



Proceedings 2019, 21, 43 3 of 4

display of the resulting geometry that should be drawn in the user interface after the operation applied
to the two initial geometries (Figure 2).

Figure 2. Original and mutant application.

3. Conclusions

In existing proposals, we can find both generic and specific mutation operators. However, these
are not adequate to cover errors in particular domains. We have defined new operators specific to the
GIS domain and a way to apply them to a SUT. In addition, we have tested the operators defined in
two GIS applications. As future work, we intend to extend this approach to other domains, as well as
to use the developed operators for the automatic improvement of sets of test cases.

Funding: Financed by: Xunta de Galicia / FEDER-UE CSI: ED431G/01 (Centros singulares de investigación
de Galicia), Xunta de Galicia / FEDER-UE CSI: ED431C 2017/58 (Grupo de Referencia Competitiva),
MINECO-AEI/FEDER-UE: Datos 4.0 (TIN2016-78011-c4-1-R) and BIZDEVOPS-GLOBAL (RTI2018-098309-B-C32),
and EU H2020 MSCA RISE BIRDS: 690941 (S.H.A.).

References

1. Budd, T.A. Mutation Analysis of Program Test Data. Ph.D. Thesis, Yale University, New Haven, CT,
USA, 1980.

2. Derezińska, A. Advanced mutation operators applicable in C# programs. In Software Engineering Techniques:
Design for Quality; Springer: Berlin/Heidelberg, Germany, 2006; pp. 283–288.

3. Shahriar, H.; Zulkernine, M. Mutec: Mutation-based testing of cross site scripting. In Proceedings of the
2009 ICSE Workshop on Software Engineering for Secure Systems, Vancouver, BC, Canada, 19 May 2009;
IEEE Computer Society: Washington, DC, USA, 2009; pp. 47–53.

4. Derezińska, A.; Hałas, K. Analysis of mutation operators for the python language. In Proceedings of the
Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, Brunów,
Poland, 30 June–4 July 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 155–164.

5. Delgado-Pérez, P.; Medina-Bulo, I.; Domínguez-Jiménez, J.J.; García-Domínguez, A.; Palomo-Lozano, F.
Class mutation operators for C++ object-oriented systems. Ann. Telecommun.-Ann. Télécommun. 2015,
70, 137–148.

6. Ma, Y.S.; Offutt, J.; Kwon, Y.R. MuJava: An automated class mutation system. Softw. Test. Verif. Reliab. 2005,
15, 97–133.

7. Polo, M. Using aspect-oriented programming for mutation testing of third-party components. In Proceedings
of the 17th Ibero-American Conference Software Engineering (CIBSE 2014), Pucón, Chile, 23–25 April 2014;
pp. 247–260.



Proceedings 2019, 21, 43 4 of 4

8. Usaola, M.P.; Rojas, G.; Rodríguez, I.; Hernández, S. An architecture for the development of mutation
operators. In 2017 IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), Toyko, Japan, 13–17 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 143–148.

9. Rodríguez Trujillo, I.D.L.C.; Polo Usaola, M. Diseño de Operadores de Mutación para Características de
Sensibilidad al Contexto en Aplicaciones Móviles. In Proceedings of the Actas de XXIII JISBD, Jornadas de
Ingeniería de Software y Bases de Datos, Universidad de Sevilla, Sevilla, Spain, 17–19 September 2018.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mutation Operators for GIS
	Conclusions
	References

