

Abstract Energy Scale of the Charge Density Wave in Cuprate Superconductors ⁺

Alain Sacuto ^{1,*}, Bastien Loret ¹, Nicolas Auvray ¹, Marcello Civelli ², Paul Indranil ¹, Yann Gallais ¹, Maximilien Cazayous ¹, Marc-Henri Julien ³, Anne Forget ⁴ and Dorothée Colson ⁴

- ¹ Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université de Paris, Bat. Condorcet, 75205 Paris CEDEX 13, France
- ² Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay CEDEX, France
- ³ Laboratoire National des Champs Magnéetiques Intenses, CNRS-Université Grenoble Alpes-Université Paul Sabatier-Institut National des Sciences Appliquées, European Magnetic Field Laboratory, 38042 Grenoble, France
- ⁴ Service de Physique de l''Etat Condensé, DSM/IRAMIS/SPEC (UMR 3680 CNRS), CEA Saclay 91191 Gif sur Yvette CEDEX, France
- * Correspondence: alain.sacuto@univ-paris-diderot.fr
- + Presented at the 37th International Symposium on Dynamical Properties of Solids (DyProSo 2019), Ferrara, Italy, 8–12 September 2019.

Published: 5 September 2019

The cuprate high temperature superconductors develop spontaneous charge density wave (CDW) orderbelow a temperature T_{CDW} and over a wide range of hole doping (*p*). An outstanding challenge in the field is to understand whether this modulated phase is related to the more exhaustively studied pseudogap and superconducting phases [1]. To address this issue, it is important to extract the energy scale Δ_{CDW} associated with the CDW order, and to compare it with the pseudogap (PG) Δ_{PG} and with the superconducting gap Δ_{SC} . However, while T_{CDW} is well-characterized from earlier work, little is known about Δ_{CDW} until now. Here, we report the extraction of Δ_{CDW} for several cuprates using electronic Raman spectroscopy [2]. Crucially, we find that upon approaching the parent Mott state by lowering *p*, Δ_{CDW} increases in a manner similar to the doping dependence of Δ_{PG} and Δ_{SC} [2]. This indicates that the above three phases have a common microscopic origin [2]. In addition, we find that Δ_{CDW} and Δ_{SC} have the same magnitude over a substantial doping range, which suggests that CDW and superconducting phases are intimately related [2], as reported for example by fractionalized pair density wave [3].

References

- 1. Keimer, B.; Kivelson, S.A.; Norman, M.R.; Zaanen, S.U.J. From quantum matter to high-temperature superconductivity in copper oxide. *Nature* **2015**, *518*, 179.
- Loret, B.; Auvray, N.; Gallais, Y.; Cazayous, M.; Forget, A.; Colson, D.; Julien, M.-H.; Paul, I.; Civelli, M.; Sacuto, A. Intimate link between charge density wave, pseudogap and superconducting energy scales in cuprates. *Nature Phys.* 2019, 15, 771–775.
- 3. Chakraborty, D.; Grandadam, M.; Hamidian, M.H.; Davis, J.C.S.; Sidis, Y.; Pépin, C. Fractionalized pair density wave in the pseudo-gap phase of cuprate superconductors. *arXiv* **2019**, arXiv:1906.01633.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).