3D Technologies to Acquire and Visualize the Human Body for Improving Dietetic Treatment †
Abstract
:1. Introduction
- Obtaining the 3D/4D model: 3D acquisition of the human body from low cost RGB-D camera network, obtaining the 3D geometric model and the texture representation of sequences of bodies over time (4D).
- Visualization of the 3D body: From the 3D models captured over time, realistic visualizations of the body evolution are generated using virtual reality.
2. 3D Reconstruction of Human Body from Multiple RGB-D Views
2.1. Calibration
2.2. Acquisition
2.3. Preprocessing
2.4. Registration
2.5. Mesh Generation
2.6. Texture Projection
3. 4D Visualization of the Human Body Using Virtual Reality for Obesity Treatment Improvement
3.1. Specialist 4D Image Visualization System for Obesity Treatment
3.2. Virtual Reality System
4. Conclusions
Author Contributions
Funding
References
- Boraxbekk, C.-J.; Stomby, A.; Ryberg, M.; Lindahl, B.; Larsson, C.; Nyberg, L.; Olsson, T. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task. Obes. Facts 2015, 8, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Drigny, J.; Gremeaux, V.; Dupuy, O.; Gayda, M.; Bherer, L.; Juneau, M.; Nigam, A. Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients: A pilot study. J. Rehabil. Med. 2014, 46, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, T.; Sonntag, D.; Konnopka, A.; Riedel-Heller, S.; König, H.-H. Economic costs of overweight and obesity. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Withrow, D.; Alter, D.A. The economic burden of obesity worldwide: A systematic review of the direct costs of obesity. Obes. Rev. 2011, 12, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Sicras-Mainar, A.; Gil, J.; Mora, T.; Ayma, J. Prevalencia e impacto económico de la obesidad en adultos durante el periodo 2003–2010. Med. Clin. 2012, 139, 599–600. [Google Scholar] [CrossRef] [PubMed]
- De Geest, S.; Sabaté, E. Adherence to long-term therapies: Evidence for action. Eur. J. Cardiovasc. Nurs. 2003, 2, 323. [Google Scholar] [CrossRef] [PubMed]
- Boeka, A.; Lokken, K. Neuropsychological performance of a clinical sample of extremely obese individuals. Arch. Clin. Neuropsychol. 2008, 23, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Roseman, M.G.; Riddell, M.C.; Haynes, J.N. A Content Analysis of Kindergarten-12th Grade School-based Nutrition Interventions: Taking Advantage of Past Learning. J. Nutr. Educ. Behav. 2011, 43, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Ajie, W.N.; Chapman-Novakofski, K.M. Impact of computer-mediated, obesity-related nutrition education interventions for adolescents: A systematic review. J. Adolesc. Heal. 2014, 54, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Garcia, M.; Gutiérrez-Maldonado, J.; Riva, G. Virtual Reality Based Treatments in Eating Disorders and Obesity: A Review. J. Contemp. Psychother. 2013, 43, 207–221. [Google Scholar] [CrossRef]
- Kuzmar, I.; Rizo, M.; Cortés-Castell, E. Adherence to an overweight and obesity treatment: How to motivate a patient? PeerJ 2014, 2, e495. [Google Scholar] [CrossRef] [PubMed]
- Treleaven, P.; Wells, J. 3D body scanning and healthcare applications. Computer 2007, 40, 28–34. [Google Scholar] [CrossRef]
- Lin, J.-D.; Chiou, W.-K.; Weng, H.-F.; Tsai, Y.-H.; Liu, T.-H. Comparison of three-dimensional anthropometric body surface scanning to waist-hip ratio and body mass index in correlation with metabolic risk factors. J. Clin. Epidemiol. 2002, 55, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Alldieck, T.; Magnor, M.A.; Xu, W.; Theobalt, C.; Pons-Moll, G. Detailed Human Avatars from Monocular Video. In Proceedings of the 2018 International Conference on 3D Vision, Verona, Italy, 5–8 September 2018. [Google Scholar]
- Yu, T.; Zheng, Z.; Guo, K.; Zhao, J.; Dai, Q.; Li, H.; Pons-Moll, G.; Liu, Y. DoubleFusion: Real-time Capture of Human Performances with Inner Body Shapes from a Single Depth Sensor. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Fit 3D Body Scanners. Available online: https://fit3d.com/ (accessed on 14 July 2019).
- Naked—The World’s First Home Body Scanner. Available online: https://nakedlabs.com/ (accessed on 14 July 2019).
- Villena-Martínez, V.; Fuster-Guilló, A.; Azorín-López, J.; Saval-Calvo, M.; Mora-Pascual, J.; Garcia-Rodriguez, J.; Garcia-Garcia, A. A quantitative comparison of calibration methods for RGB-D sensors using different technologies. Sensors 2017, 17, 243. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.; Nätterdal, C. The Benefits of Virtual Reality in Education—A Comparision Study; Department of Computer Science and Engineering. University of Gothenburg. 2015.
- Saval-Calvo, M.; Azorin-Lopez, J.; Fuster-Guillo, A.; Mora-Mora, H. μ-MAR: Multiplane 3D Marker based Registration for depth-sensing cameras. Expert Syst. Appl. 2015, 42, 9353–9365. [Google Scholar] [CrossRef]
- PCL Team. Point Cloud Library (PCL). pcl::MedianFilter <PointT > Class Template Reference. Available online: http://docs.pointclouds.org/1.7.1/classpcl_1_1_median_filter.html (accessed on 27 May 2019).
- PCL Team. Point Cloud Library (PCL). pcl::BilateralFilter< PointT > Class Template Reference. Available online: http://docs.pointclouds.org/trunk/classpcl_1_1_bilateral_filter.html (accessed on 27 May 2019).
- PCL Team. Point Cloud Library (PCL). pcl::StatisticalOutlierRemoval< PointT > Class Template Reference. Available online: http://docs.pointclouds.org/1.7.1/classpcl_1_1_statistical_outlier_removal.html (accessed on 27 May 2019).
- Rusu, R.B. Documentation—Point Cloud Library (PCL). Available online: http://pointclouds.org/documentation/tutorials/normal_estimation.php (accessed on 19 May 2019).
- Saval-Calvo, M.; Azorin-Lopez, J.; Fuster-Guillo, A. Model-Based Multi-view Registration for RGB-D Sensors. In Advances in Computational Intelligence; Rojas, I., Joya, G., Cabestany, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7903, pp. 496–503. ISBN 978-3-642-38681-7. [Google Scholar]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson Surface Reconstruction. In Proceedings of the Eurographics Symposium on Geometry Processing, Cagliari, Sardinia, Italy, 26–28 June 2006. [Google Scholar]
- Callieri, M.; Cignoni, P.; Corsini, M.; Scopigno, R. Masked photo blending: Mapping dense photographic data set on high-resolution sampled 3D models. Comput. Graph. 2008, 32, 464–473. [Google Scholar] [CrossRef]
- “Media – Tech4Diet” Project TIN2017-89069-R Spanish State Research Agency (AEI). 4D Modelling and Visualization of the Human Body to Improve Adherence to Dietetic-Nutritional Intervention of Obesity. 2019. Available online: http://tech4d.dtic.ua.es/media/ (accessed on 6 November 2019).
- Unity. Unity User Manual (2018.3)—Unity Manual; Unity Technologies: San Francisco, CA, USA, 2018. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuster-Guilló, A.; Azorín-López, J.; Zaragoza, J.M.C.; Pérez, L.F.P.; Saval-Calvo, M.; Fisher, R.B. 3D Technologies to Acquire and Visualize the Human Body for Improving Dietetic Treatment. Proceedings 2019, 31, 53. https://doi.org/10.3390/proceedings2019031053
Fuster-Guilló A, Azorín-López J, Zaragoza JMC, Pérez LFP, Saval-Calvo M, Fisher RB. 3D Technologies to Acquire and Visualize the Human Body for Improving Dietetic Treatment. Proceedings. 2019; 31(1):53. https://doi.org/10.3390/proceedings2019031053
Chicago/Turabian StyleFuster-Guilló, Andrés, Jorge Azorín-López, Juan Miguel Castillo Zaragoza, Luis Fernando Pérez Pérez, Marcelo Saval-Calvo, and Robert B. Fisher. 2019. "3D Technologies to Acquire and Visualize the Human Body for Improving Dietetic Treatment" Proceedings 31, no. 1: 53. https://doi.org/10.3390/proceedings2019031053
APA StyleFuster-Guilló, A., Azorín-López, J., Zaragoza, J. M. C., Pérez, L. F. P., Saval-Calvo, M., & Fisher, R. B. (2019). 3D Technologies to Acquire and Visualize the Human Body for Improving Dietetic Treatment. Proceedings, 31(1), 53. https://doi.org/10.3390/proceedings2019031053