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Abstract: Character recognizers have generally focused on printed text on paper with an emphasis 
on generality rather than speed. This makes the proposed algorithms not applicable in the context 
of the very high-speed industrial validation of expiration codes printed on the metal surface of a 
can. The extreme demands of speed and the adverse effects of lighting and movement, among 
other things, make it necessary to develop an original and specific strategy. The strategy presented 
in this paper first selects which of the segmented shapes of a printed can are the best candidates for 
comparison with expected characters. This is followed by a technique based on the comparison of 
templates (templates matching), which we call “morphologies”, and are represented as bitmaps to 
take advantage of the hardware capabilities of general-purpose processors. The use of templates 
has the advantage of avoiding the construction of a feature vector. In an acquisition test in a real 
industrial plant, we have been able to successfully treat 438 cans in 44 s, with only one validation 
error in one character, achieving a compromise between speed and quality that is sufficient for 
industrial validation in the conditions cited. 

Keywords: image processing; optical character recognition (OCR); pattern recognition; industrial 
inspection; high-speed computing; character segmentation; template matching 

 

1. Introduction 

This paper is a continuation of a previous work, “A Character Segmentation Proposal for 
High-Speed Visual Monitoring of Expiration Codes on Beverage Cans” [1]. In the aforementioned 
work, an industrial validator of expiration codes printed on aluminum or tin cans, called 
MONICOD, was presented in all its stages except the last one. This last stage (the character 
validation) is presented for the first time in this paper. 

MONICOD is a machine vision solution [2] for the validation of expiration codes stamped on 
the aluminum or tinplate bottom of the cans [3,4]. The critical characteristic that defines this system 
is the very high speed of execution to ensure a validation cadence according to the requirement of a 
production line. It operates at 200 frames per second in order to validate up to 35 cans per second. 
(see Figure 1). In this context, validating means verifying whether or not the expiration code is 
correct. In addition to this requirement, MONICOD has to deal, among other difficulties, with the 
reflective properties of the metal surfaces of moving cans, which cause glitter that can hide the 
printed code. 
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MONICOD carries out the work of code validation from the acquisition of frames in different 
phases: 

1. Selection of the best frame and area of interest, obtained in the transit of the can for code 
validation (see Figure 2). The area of interest is the region at the bottom of the can where the 
expiration code is printed. 

2. Enhancement and equalization [5,6] of the area of interest (see Figure 3a). 
3. Character segmentation. 

a. Separation of ink and background (see Figure 3b) and grouping into ink fragments by 
threshold selection and flooding technique [7–10]. 

b. Organization of ink fragments into text lines (see Figure 3c). 
c. Grouping of ink fragments into characters (see Figure 3d). 

The purpose of these stages is to extract the information from the image that will be effectively 
validated (see Figure 4). The objective of this work is to present the last stage of MONICOD 
processing, which is the validation of codes.  

 
(a) 

 
(b) 

Figure 1. Image acquisition devices on a conveyor belt with a capacity for 200 captures per second 
(black and white) in a (a) horizontal plane and (b) vertical plane. 

 

Figure 2. Selection of the best snapshot for a can. The best snapshot is the one where the can appears 
centered. 

2. Acquired Shapes and Expected Code 

The previous stages provide us with a set of candidate characters that we generically call 
“shapes”. These characters are arranged in bands (from top to bottom) and, within a band, from left 
to right, as shown in Figure 4. A shape may or may not be a valid character, but all valid characters 
are shapes. 
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On the other hand, the “expected” code is updated every time a code validation is carried out. 
The expected code update is mainly based on the current date and time. Based on these data and 
the type of product, the expiration date is calculated. 

The semantics of each character of the expiration code has no interest for the validation itself, 
but rather for its generation/update. Another factor to consider is the importance of each character 
to know if a failure in its validation is critical or not. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) Enhancement and equalization of the area of interest. (b) Separation of ink and 
background. (c) Organized ink fragments into text lines. (d) Grouping the ink fragments into 
characters. 

 

Figure 4. Information obtained in the previous phases. 



Proceedings 2019, 31, 56 4 of 12 

 

3. Validation and Recognition 

The description of the problem, requirements, constraints, and input data fit perfectly with a 
validation problem, and so, and for the sake of speed, MONICOD is a validator. This is particularly 
important in the work presented here.  

“Validate” does not necessarily imply “recognize”: by validating, we know beforehand and for 
sure what is expected to be stamped; otherwise, we would not be able to validate the imprint. This 
scenario is not the typical one faced by a recognizer, which tries to unravel the printed text without 
the knowledge of what may be there.  

Since the validator has that knowledge, it can fine-tune its procedures, and even stop in the 
middle of the procedure as soon as there is an indication that what has been obtained does not 
correspond to what was expected. This is why validation is potentially faster than recognition.  

Verification consists of comparing the acquired (segmented) code found in the image with the 
expected code generated internally by MONICOD (which is always assumed to be correct).  

If recognition was used for validation, the procedure would be: 

1. Recognize the text. 
2. Compare the recognized text with the expected text. 
3. Give a decision from the comparison. 

MONICOD does not carry out a recognition when validating the character, in the sense that it 
is not a question of determining which class it corresponds to, but whether or not it corresponds to 
a particular expected class. In the validation, the procedure would be: 

1. Compare the extracted shapes with the expected shapes. 
2. Give a decision from the comparison. 

4. Morphologies, Morphological Families, and the Morphological Family Base 

4.1. Morphologies 

MONICOD bases its validation on the shape of the characters. To that end, it makes an 
extraction of basic characteristics of the shape. It compares the discretized shape with discretized 
character shapes that are entirely stored and retrieved in the character Morphological Family Base 
(MFB). MONICOD refers to these shapes contained in the MFB of characters as ‘morphologies’. 

The morphology is the minimum unit of the MFB of characters. It is actually a binary template. 
Its structure is simple: it consists of a discrete and uncompressed representation of zeros and ones 
of dimension m x n. By convention, ‘zero’ (0) represents non-ink, and ‘one’ (1) represents ink. The 
relative positions of zeros and ones (ink and non-ink) maintain the same relationship as in the 
shape they represent. Thus, morphology is an explicit representation of binarized real-size shapes. 
It can be seen as a map of bits or cells being susceptible to their treatment with bit operations (see 
Figure 5). This accelerates the computation enormously. 

Morphologies offer the following advantages: 

1. If the shapes are legible and recognizable, the associated morphologies will retain those 
qualities. 

2. Morphologies are extracted directly from segmentation without any analysis involving new 
operations such as the creation of a vector of characteristics [11–19]. 

3. Industrial printing standardizes. It is expected that printed characters will be similar between 
cans and can be associated with the same morphology. 
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(a) 

 

(b) 

 

(c) 
Figure 5. The representation of morphology in three parts. (a) The binarized shape. (b) A matrix of 
zeros and ones corresponding to (a). (c) The matrix. (b) The matrix arranged as a vector, which is 
how MONICOD works internally. This last representation is called a template. MONICOD: a 
machine vision solution for the validation of expiration codes stamped on the aluminum or tinplate 
bottom of cans. 

4.2. Distance between Two Morphologies 

The most important action that can be done on a morphology is to compare it directly with 
another morphology and evaluate how much distance or similarity exists between them. It is the 
approximation known as template comparison or template matching.  

It is necessary for MONICOD to carry out this operation as quickly as possible. For example, 
the Euclidean distance would be computationally too expensive. MONICOD defines its own 
distance between morphologies from the simple count (counting ones (or zeros) is a bit-level 
operation, identical to the scalar product between templates) of matches and non-matches in ink 
and background between the cells of two morphologies A and B. The values of the counters allow a 
simple evaluation of similarity.  

For two morphologies to be comparable, they must have the same height and width (m and n). 
Four independent counters are used. Comparing A and B: 

a. Ink Coincidences (IC): Counts ink coincidences between A and B. 
b. No-Ink Coincidences (NIC): Count background coincidences between A and B. 
c. Absent Ink (AI): Counts non-coincidences due to absent ink in B that is present in A. 
d. Unexpected Ink (UI): Counts non-coincidences due to ink present in B that is not present in A. 

If we exchange operands A and B to B and A, the magnitudes of the AI and UI counters are 
exchanged, while the NIC and IC counters remain the same. It is always fulfilled that: NIC +  AI +  UI +  IC =  m x n  (1) 

IC + AI corresponds to the amount of ink in A, and NIC + UI corresponds to the amount of 
no-ink or background in A.  

The comparison methodology comprises two sub-phases. The first is limited to carry out a 
count of similarities and differences, cell by cell, between the stored template and the acquired 
template. The position within the template is not considered. The second computes a function that 
is parameterized by the count values of the first phase, which gives us a measure of similarity: 1 − 𝑀ሺ𝐴, 𝐵ሻ 𝑤𝑖𝑡ℎ 𝑀ሺ𝐴, 𝐵ሻ = ଵଶ ൬|∙||| + ห∙หหห ൰, (2) 
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where A and B correspond to the expected and extracted template, respectively. |𝑋| and |𝑋ത| are the 
number of ones and zeros in vector 𝑋, respectively. Thus, |𝐴 ∙ 𝐵| is the number of ones of the scalar 
product of vectors A and B. The denominators in Equation (2) are fixed and can be pre-calculated, 
which accelerates the calculation of the distance expression. 

4.3. Morphological Families 

In an ideal situation, a unique way to identify a character would be enough because it would be 
associated with a single character in an unambiguous way. It would be sufficient to compare the 
acquired shape with an artificially generated shape decided by the automatic code generator and 
determine if there is a match or not. This approach seems to make sense if we take into account that 
we are always printing with the same machine on surfaces of the same type. However, in practice, 
it is found that the acquired shapes do not present the expected uniformity (see Figure 6). There are 
several reasons for this: the printer does not have the same effectiveness in each print, the 
acquisition has differences due to changes in lighting, etc. 

 

Figure 6. All the eights shown are legible and therefore acceptable. However, they are different from 
each other. 

The morphological family is a logical grouping of morphologies that responds to the fact that 
each character is associated with a set or collection of equal valid shapes (see Figure 7). 

The properties of a morphological family are: 

a. No repetition: There are never two identical morphologies within a morphological family. 
b. Relationship: All the morphologies have more similarity with any of the morphologies of its 

own family than with any other morphology belonging to another family (see Section 4.2). 

 
Figure 7. Morphological family for ‘A’. 

4.4. Morphological Family Base (MFB) 

The MFB contains the characters learned by MONICOD and manages recoveries, additions, 
and deletions (see Figure 8). The Morphological Family Base is maintained, consulted, and 
modified in memory: this way, we do not access the disk to rescue or update data. It can also be 
restarted to start a new learning from scratch. 

The Morphological Family Base makes it possible to learn and validate characters, and if 
necessary, also recognition; however, MONICOD, as has been said, is not a recognition system. 

The MFB operates with two key concepts: morphologies and morphological families. 



Proceedings 2019, 31, 56 7 of 12 

 

 
Figure 8. Representation of the Morphological Family Base (MFB) of characters. 

The fundamental operations on the MFB that are possible to carry out both in validation time 
and learning time are the addition of a new morphology, suppression of a morphology, and 
sequential query of morphologies contained in a given morphological family. 

5. Code Validation 

There are three stages in the validation phase. The first stage is reduced to choosing which 
expected character we will compare with what acquired character: that is to say, to select the 
comparison pair. The second stage consists of the comparison itself: deciding whether the acquired 
character and the expected character are sufficiently similar or not. The third stage makes a global 
analysis of the code comparison and judges whether, with the positively validated characters, the 
code can be considered good or not. 

5.1. Selection of Comparison Pair 

The pair selection policy requires that: 

1. The searched characters are in the can. 
2. The next expected character is not examined until the current one has been found. 
3. If the acquired character does not correspond to the expected one, it will be assumed that the 

acquired character is noise and the system will advance to the next acquired character (but the 
expected character remains fixed). 

The comparison is carried out character by character. This comparison maintains the Western 
reading order of the characters in the code to be validated: from left to right, from top to bottom. 

Proceeding in this way offers several advantages: 

a. When reading from left to right, we have useful information to refine clusters of ink fragments, 
and we always leave complete characters behind. So, if the current grouping does not 
correspond to a character, the only alternative is to consider possible mergers with the 
grouping to the right. 
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b. In the expiration codes, it seems that the importance of the characters decreases from left to 
right and from top to bottom; that is, within a line, a character is more likely to have equal or 
greater importance than the immediate character to its right. If the code is going to be 
negatively validated, it is better to know it as soon as possible, and giving priority to the 
important characters makes us advance in that purpose. This rule is fulfilled in all the studied 
codes. 

c. It is more likely that a line has greater or equal importance than that which is immediately 
lower. In all the studied codes (two lines), this rule is met. 

The procedure follows these steps: 

1. The first line of the expected code not yet processed is selected in the order from top to bottom. 
If there are no expected lines to be processed, we go to the stage described in Section 5.3. 

2. We choose, within the bands of acquired shapes, the one that may contain the expected line 
selected in step 1. It will be done from top to bottom starting from the next band after the last 
band successfully verified. The rule to be fulfilled is that the selected band has the same or 
greater number of shapes than the number of characters of the expected code line (see Figure 
9). 

3. Within the selected expected line, we select the first expected character not yet verified from 
the expected code following the order from left to right. If all the characters have already been 
validated, then the expected line has already been completely processed, and therefore, we 
return to step 1. 

4. Within the band of acquired shapes, we select the first acquired shape not yet treated. If there 
are no acquired shapes, it is necessary to select another band, so all the expected characters 
verified in this line become unverified, and we return to step 2. 

5. Verification is made between the morphological family of the expected character and the 
acquired shape (see Section 5.2). 

a. The verification is negative: The current acquired shape is merged with the immediately 
following one and the verification between the morphological family of the expected 
character and the new shape, as the result of the described merging process, is repeated 
(see Figure 10 and Section 5.2),  

i. Verification is positive: We consider the current and the next acquired shape as 
treated. The expected character is marked as verified. Go back to step 3. 

ii. The verification is negative. We consider the current acquired shape as noise. We 
mark it as treated (see Figure 11). Go back to step 4. 

b. The verification is positive: The acquired shape is marked as treated. The expected 
character is marked as verified (see Figure 12). Go back to step 3. 

 
Figure 9. The expected line is “ABCDE”. It has five characters. We select, from top to bottom, the first 
band with enough acquired shapes to contain five characters. 
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Figure 10. Validation of the first expected character “A” with the first acquired shape of the band has 
failed. We build a new acquired shape by merging the first shape acquired with the one immediately 
following, and we repeat the validation. 

 

Figure 11. Validation has failed again, so we consider the first shape of the band as noise, and move 
onto the next one. The expected character to be validated is still “A”. 

 
Figure 12. We finally managed to successfully validate the “A” character. The acquired shape has 
been successfully treated. The expected character “A” has been verified. We move onto the next 
expected character not verified and the next acquired shape not treated for verification. 

5.2. Matching 

This stage comprises three well-differentiated phases: 

1. The morphological family corresponding to the expected character is recovered from the MFB. 
The family must exist, and there must be morphologies within that family. Otherwise, we will 
face a critical failure in the validation, which should be notified to the operator immediately. 

2. The morphologies of the morphological family are recovered one by one. Each morphology is 
compared with the acquired shape. This comparison includes two tests: 

a. Comparison of the amount of ink present. It is a previous filtering. The ink difference 
between the morphology and the acquired character is compared. A difference above a 
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permissible maximum ink difference threshold makes it unnecessary to carry out a 
template matching. If it passes the ink covered area test, the second test is applied. 
Otherwise, it is stated that they are different. The similarity value in that case is 0. 

b. Templates matching. A comparison of templates is made using the distance between 
morphologies described in Section 4.2 to evaluate the similarity between the morphology 
and the acquired character. The similarity value (distance) obtained is stored. 

3. Finally, the maximum similarity value obtained in the previous phase is chosen when facing 
all the morphologies of the morphological family with the acquired character. If it exceeds a 
certain threshold, the verification has been positive. Otherwise, it is negative. This result feeds 
the code validation resolution. 

5.3. Validation Resolution 

In this phase, it is determined whether the can is valid (positive validation) or not (negative 
validation). To make this decision, the system will work with: 

a. Which expected characters have been verified positively (in position and line) in the acquired 
can image. The procedure described in the previous sections provides this information. 

b. Which characters are important. The user has previously provided the system with this 
information through a configuration file. 

The policy followed is: If all important characters are present in the can in the expected 
line/order, the expiration date printout is valid. Otherwise, the expiration date printout is not 
considered valid. MONICOD just updates a statistics of total, positive, and negative validated cans 
and launches a warning message in the case of a negative validation. The processing of this 
warning message goes beyond MONICOD and becomes the responsibility of the operator. If the 
validation is positive, it is expected that no action will be taken. On the other hand, if the validation 
is negative, different actions may be triggered: removing the affected can manually or mechanically, 
stopping the line to solve a chronic problem (it may be necessary, for example, to recalibrate the 
system...), ignoring the negative validation, etc. 

6. Results 

The expiration code validation algorithm described is integrated in MONICOD, which 
comprises several phases and stages. A test of the system has been carried out consisting of treating 
8884 frames containing 465 cans, all of them correctly labeled with the expiration code. The total 
duration of the test was 44.42 s. MONICOD was able to process 200 images per second without 
requiring specific hardware. 

The quality of the results obtained is detailed in Table 1, while Table 2 shows the causes of the 
failures. In the end, in the whole experiment there was only one validation failure with one 
character: It was marked as incorrect when it was actually correct. 

Table 1. Quality evaluation of the test performed. 

Total Validations Successful Validations Failures 
465 438 27 

Table 2. List of causes of test failures. 

 Number of Failures Percentage 
Failure in the selection of the best can 13 50.0% 

Band division failure 11 42.3% 
Grouping failure 1 3.8% 

Failure in character validation 1 3.8% 
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As mentioned in the Section 1 Introduction, a frame does not go through all the phases. In fact, 
the frames that reach the validation phase are only those that show a perfectly centered can. As 
shown in Figure 13, the validation algorithm consumed less time than the other MONICOD phases 
during this test. 

 

Figure 13. Pie chart that comparatively shows the total time consumed by each of the phases of 
MONICOD. The pink color represents the time dedicated to the validation algorithm (13%). The 
other phases are presented and described exhaustively in [1]. They are enhancement image (blue), 
equalization (light blue), band separation(green), ink association (red), and grouping (yellow). 

7. Conclusions and Future Works 

The final phase of the current implementation of MONICOD has been presented: A character 
validator based on a template-matching scheme. 

Considering the overall results, the algorithm broadly meets the required speed specifications. 
This has been possible due to the application of several strategies. First, there is the use of a 
template matching method. The template is a direct and immediate result of the segmentation, 
which keeps all the information of the shape, and makes it possible to omit a feature-extraction 
process. Second, there is the application of bit operations to perform template matching. Bit 
operations are supported at a low level by low-cost general-purpose processors, forming an 
inherent part of their architecture, so we guarantee great compatibility as well as great speed. Third, 
comparisons filtering is applied: It is only compared when it has been noticed that the amount of 
ink (that is achieved applying a bit-level operation consisting of counting 1 s) between the 
morphologies to be compared is approximately similar. If this is not the case, the similarity is 
estimated to be zero. 

An important weakness of the algorithm is that it does not offer a good generalization. The 
construction of a good base of morphologies is key to alleviate this problem. In future works, we 
will study the learning mechanisms that allow the aforementioned construction to be automated, as 
well as a comparison with other techniques such as k-Nearest Neighbor KNN [20], neural networks 
[21], and support vector machines [22,23]. 
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