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Abstract: New coumarin namely 2-(3-(7-methylcoumarin)acetamido)benzoic acid (MAB) was 
successfully synthesized by reaction of ethyl 2-(7-methylcoumarin)acetate with anthranilic acid. 
The chemical structure of MAB was confirmed by FT-IR, NMR spectroscopies and Elemental 
Analysis. The inhibition performance of MAB was investigated using the weight loss method. The 
results illustrate the strong adsorption of MAB molecules on the mild steel coupon surface and this 
adsorption follows the Langmuir adsorption isotherm. DFT calculations were performed to show 
the relationship between the MAP molecular structure and inhibition performance. 

Keywords: coumarin 1; corrosion 2; inhibitor 3; anthranilic acid 
 

1. Introduction 

As a significant alloy in the universe, mild steel is the substance of choice in oil manufactures 
for its ability to work mechanical and low coast [1,2]. In most industrial processes, acid is used in the 
treatment, cleaning and removal of rust [3]. The use of acids during treatment and cleaning 
processes will lead to corrosion of the metal surface, therefore, an appropriate corrosion inhibitor is 
urgently needed. Organic compounds containing a heteroatom, such as nitrogen, oxygen, sulfur and 
phosphorus, or containing double and triple bonds, as well as aromatic rings are considered one of 
the most important materials recognized in practice and used as anti-corrosion inhibitor. To protect 
mild steel from corrosive environment, and also to reduce the consumption of acidic solutions that 
occur during prolonged operation [4–9]. Inhibitors have the ability to control the dissolution of 
metals and alloys by twisting a layer of anti-corrosion on the surface of the metal or alloy to prevent 
corrosion thus not exposed to acidic solution [10]. The approach of adsorption inhibitor consists on 
the inhibitor chemical structure and the nature of the solution acid or base [11]. In general, the cyclic 
organic compounds containing heteroatoms reported have an excellent inhibition efficiency, but 
they are limited to use due to the following: (1) high production cost, (2) Toxicity of the secondary 
compounds which formed during their production or via side reactions resulting in ecological 
concern and (3) the specificity of work related with the utilize of individual organic corrosion 
inhibitors. Thus, inhibitors must be active, not expensive and eco-friendly [12,13]. Following up of 
the investigations for efficient corrosion inhibitor [14–37], this investigation reports the inhibitive 
effects of new corrosion inhibitor. The synthesized new corrosion inhibitor namely 
2-(3-(7-methylcoumarin)acetamido)benzoic acid (MAB), was characterized with FTIR and NMR 
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spectroscopies. The corrosion inhibition behavior on the surface of mild steel in corrosive 
environment was studied using weight loss techniques. Density functional theory (DFT) were used 
to corroborate mythological findings. 

2. Experimental Section 

2.1. Materials 

Mild steel coupons (2.5 cm × 2.0 cm × 0.025 cm) were used for weight loss techniques with 
following composition: 99.210Fe; 0.210C; 0.380 Si; 0.090P; 0.05S; 0.050Mn and 0.010Al. The coupons 
were cleaned with double distilled water, acetone, and dried before each test. The hydrochloric acid 
solution was used with concentration of 1M as corrosive environment. 

2.2. Inhibitor 

A mixture of equimolar of methyl 2-(7-methyl-2-oxo-2H-chromen-4-yl)acetate and 
2-aminobenzoic acid (2.0 mM) was heated for 24 h at 120 oC. After completion of the reaction, the 
precipitate was acidified with 2% hydrochloric acid, filtered, recrystallized from ethyl alcohol and 
dried to yield 55% of yellow solid, melting point: 252 °C. The chemical structure of MAB was 
demonstrated in Scheme 1. The MAB molecule was characterized by Fourier-transform infrared 
(FTIR) and Nuclear magnetic resonance (NMR) spectroscopical techniques in addition to a CHN 
analysis (a carbon, hydrogen and nitrogen analyzer). CHN, analytical calculation/found for the MAB 
molecule with the chemical formula C19H15NO5: C, 67.65 /67.13; H, 4.48/5.45; N, 4.15/4.07. FT-IR 
(cm-1): 3283.7 (N-H), 1736.1 (C=O lactone) and 1707.5 (C=O carboxyl). 1H NMR in DMSO-d6 (ppm): δ 
2.59 (3H, s), 3.41 (2H, s), 5.89 (1H, s), 7.29-7.41 and 7.61-7.73 (1H, aromatic), 7.88 (1H, NH). 

 
Scheme 1. Chemical structure of the MAB. 

2.3.Gravimetric Measurements 

The weight loss measurements were performed using mild steel coupons in corrosive 
environment in absence and presence MAB. The mild steel coupons were cleaned and weighted. 
Mild steel coupons were immersed in 1 M HCl for 5 h at 303 K in absence and presence MAB. After 
that the loss in weight was calculated through by the variation in mild steel coupons weights. 
Corrosion rate (CR), inhibition efficiency (IE%), and mild steel surface coverage (θ) were measured 
via Equations (1)–(3). 

𝐶ோ = 𝑊𝐴𝑡  (1) 

𝐼𝐸% = 𝐶ோ − 𝐶ோ()𝐶ோ × 100  
(2) 

𝜃 = 𝐶ோ − 𝐶ோ()𝐶ோ   
(3) 

where W is the loss in weight of the mild steel coupon in milligram, A represent the area in cm2, t is 
the immersion time in hours and CR(i) is the corrosion rate in presence of MAB. 
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2.4. DFT 

Quantum chemical studies for the molecules of MAB as corrosion inhibitor were performed 
neutral mode by using of via the Density functional theory calculation with GAUSSIAN 03W 
software/B3LYP functional [38–40] with a 6–31G basis set [41]. The significant factors have been 
calculated using the electronic values of the most stable structure of the studied MAB molecules. 
HOMO and LUMO energies were used to calculate significant parameters such as ΔE, η, σ, χ, and 
ΔN [42,43] using the following Equations (4)–(7). ∆𝐸 = 𝐸ுைெை − 𝐸ெை (4) 𝜂 = −0.5 (𝐸ுைெை − 𝐸ெை) (5) 𝜎 = 1𝜂 (6) 

∆𝑁 = 𝜒ி − 𝜒2𝜂ி  2𝜂 (7) 

where χ represent the electronegativity and η represent the represent the hardness. 

3. Results and Discussion 

3.1. Weight Loss Measurements 

The gravimetric results for mild steel coupons in the hydrochloric acid environment with and 
without of MAB as corrosion inhibitor were demonstrated in Figures 1 and 2. 
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Figure 1. Inhibition efficiencies Corrosion rate for mild steel coupons with and without MAB in 1 M 
HCl at 308 K. 

The excellent inhibition efficiency of new synthesized corrosion inhibitor for mild steel coupons 
in corrosive environment was attributed to the existence of a number of heteroatoms (Nitrogen and 
oxygen), aromatic rings and the system α,β-unsaturated carbonyl compound in MAB molecule in 
addition to big molecular structure of MAB. 
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Figure 2. Effect of various concentrations of MAB on the inhibition efficiency for mild steel coupons 
in 1 M hydrochloric acid at 303 K. 

3.2. Adsorption Isotherms 

The values obtained for surface coverage (θ) were used by weight loss calculations to find the 
best and most suitable adsorption isotherm. The adsorption isotherm helps to realize the bonging 
between the MAP molecules and the coupon surface. The MAP molecules on the coupon surface are 
absorbed chemically or physically. To realize the adsorption phenomenon, isothermal adsorption 
(Temkin, Freundlich, and Langmuir isotherms) was utilized to methodological results. It was noted 
that the adsorption isotherm of Langmuir was very well constructed, with the regression coefficient 
(R2) value of MAP, indicating a good fit. The obtained slope was 0.78009 and intercept value 
obtained for the Langmuir isotherm was 2.55971. The Langmuir isotherm plot between C/θ and Ci 
demonstrate in Figure 3. 
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Figure 3. Langmuir adsorption isotherm for mild steel coupon in the presence of MAB. Adsorption equilibrium constant value was obtained through a straight line of C/θ and C (as in 

Equation (8)), to obtain free energy of adsorption ΔGads as in Equation (9). Concentration of the inhibitor (𝐶)𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 (𝜃) = 1Adsorption equilibrium (𝐾ௗ௦)  𝐶 (8) ∆𝐺ௗ௦ = −𝑅(gas constant)𝑇(absolute temperature) ln(55.5𝐾ௗ௦) (9) 
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From Equation (9), the ΔGads value was calculated. It is published recently that if ΔGads value 
in the more negative value of −40 kJ/mol implies chemisorption adsorption. On the other hand if 
ΔGads value less negative value or around −20 kJ/mol suggest physisorption [44–47]. The ΔGads 
value for MAB 36.7 kJ/mol, indicates chemisorption adsorption. 

3.3. Quantum Chemical Calculations 

The DFT studies are quite significant in realizing extra knowledge on the corrosion inhibition 
phenomenon. The corrosion impedance effectiveness of a molecule as corrosion inhibitor is 
correlated with some quantum parameters (EHOMO, ELUMO, ΔE, η, σ, χ, and ΔN and Mulliken 
charges). The quantum studied factors can be observed by the optimization of the investigated 
inhibitor [48,49]. 

The quantum chemical factors give the information about the connection between mild steel 
surface and inhibitor molecules. Herein, the results of this study are demonstrated in Figure 4 and 
Table 1. The inhibition efficiency of MAB as new synthesized tested corrosion inhibitor can be 
understanding through HOMO “Highest Occupied Molecular Orbital”, and LUMO “Lowest 
Unoccupied Molecular Orbital”. The 3d structure, HOMO and LUMO of MAB are showed in Figure 
4. Generally, the value HOMO elucidates the ability of donating electrons of MAB molecule. 
EHOMO with high value imply that the MAB molecules have a good affinity to donate electrons to 
an impty orbital of the mild steel surface, whereas the value of LUMO infer to the ability of accepting 
electrons from mild steel surface. In general, the LUMO with lower value implies that the MAB 
molecules have the ability to accept electrons from the surface of mild steel coupon through 
back-donation [50,51]. 

Hardness and softness are also significant parameters deal with the stability of the inhibitor 
molecule and reactivity [52]. 

The hardness with high value and softness with low value infer to a excellent inhibition 
efficiency [53,54]. Table 1 display that the value ΔE for MAB (7.264 eV) indicate that the MAB is an 
excellent corrosion inhibitor. The values of ΔE, η, σ and ΔN (fraction of electrons transferred) for 
MAB are in support of experimental results. The values of EHOMO and ELUMO were −11.628 eV 
and −4.364 eV respectively, which is agree with the experimental results. 

The Mulliken charges were important to figured the adsorption centers of corrosion inhibitor 
molecules. The atom with high negative charge, has the ability to be adsorbed on the surface of mild 
steel. From Table 2, the MAB, molecule have the higher negative charges on O8, O9, N12 and O13, 
which implies that these atoms have the abilities to coordinate with the unoccupied d-orbital of iron 
atoms on the surface of mild steel. 

Table 1. DFT quantum parameters for MAB molecule. 

Inhibitor EHOMO (eV) ELUMO (eV) ΔE I A σ χ η ΔN 
MAB −11.62 −4.36 −7.26 11.62  4.36 3.632 7.996 0.275 2.539 

Table 2. Mulliken Charges of MAB atoms. 

Atoms Charges Atoms Charges Atoms Charges Atoms Charges Atoms Charges 
C(1) 0.3580 C(6) −0.1614 C(11) −0.1551 C(16)  0.0234 C(21) −0.1481 
C(2) −0.1526 C(7) −0.0583 O(12) −0.3394 C(17) −0.1421 C(22) 0.1103 
C(3) 0.1341 O(8) −0.3600 N(13) −0.3396 C(18) −0.0836 O(23) −0.1897 
C(4) −0.1593 O(9) −0.3417 C(14) 0.3312 C(19) −0.1575 O(24) −0.2824 
C(5) −0.0739 C(10) 0.3171 C(15) −0.2074 C(20) −0.0233 C(25) −0.1868 
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Figure 4. Optimized molecular structure (A), HOMO (B) and LUMO (C) of MAB molecule calculated 
by DFT. 

4. Conclusions 

1. New coumarin namely 2-(3-(7-methylcoumarin)acetamido)benzoic acid (MAB) was successfully 
synthesized and the chemical structure of MAB was confirmed by FT-IR, NMR spectroscopies 
and Elemental Analysis. 

2. MAB acts as excellent corrosion inhibitor for mild steel in 1M hydrochloric acid solution. 
3. Inhibition performance increased with increasing MAB concentration 
4. Evaluation of adsorption isotherm parameters implies the formation of protective layer at the 

mild steel/corrosive environment interface. 
5. Quantum chemical calculations were performed on MAB and various molecular structural 

factors were estimated and discussed. 
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