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Abstract: The Water Framework Directive (WFD, EC, 2000) states that the “good” ecological status 
of natural water bodies must be based on their chemical, hydromorphological and biological 
features, especially under drastic conditions of floods or droughts. Phytoplankton is considered a 
good environmental bioindicator (WFD) and climate change has a strong impact on phytoplankton 
communities and water quality. The development of robust techniques to predict and control 
phytoplankton growth is still in progress. The aim of this study is to analyze the impact of the 
different stressors associated with the change in phytoplanktonic communities in small rivers in the 
center of the Iberian Peninsula (Southwestern Europe). A statistical study on the identification of 
the essential limiting variables in the phytoplankton growth and its seasonal variation by climate 
change was carried out. In this study, a new method based on the partial least-squares (PLS) 
regression technique has been used to predict the concentration of phytoplankton and cyanophytes 
from 22 variables usually monitored in rivers. The predictive models have shown a good agreement 
between training and test data sets in rivers and seasons (dry and wet). The phytoplankton in dry 
periods showed greatest similarities, these dry periods being the most important factor in the 
phytoplankton proliferation 
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1. Introduction 

The Water Framework Directive (WFD, EC, 2000) states that the “good” ecological status of 
natural water bodies must be based on their chemical, hydromorphological and biological 
characteristics, compared to the reference conditions [1]. To comply with the protection of surface 
waters established in the Water Framework Directive, it is necessary to monitor the ecological and 
chemical status of water quality, especially under drastic conditions of floods or droughts due to the 
greater epidemiological risk that occur during these periods. 

Phytoplankton is considered a good environmental bioindicator since it presents temporary 
patterns related to environmental changes and, in addition, the processes that act on this community 
operate on a reduced time scale, so phytoplankton is an important ecological tool to obtain answers 
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in the short term [2,3]. Furthermore, spatio-temporal variability in the structure of phytoplankton 
communities plays an important role in the structure and function of aquatic ecosystems [4]. Multiple 
factors affect the phytoplankton population, among these are the main nutrients (nitrogen, carbon 
and phosphorus) [5], the environmental conditions, the hydrodynamics and hydromorphology of 
rivers [6,7] and the biotic conditions (competition, predators, etc.) [8]. 

With regard to environmental and climatic conditions, phytoplankton depends on light intensity 
and temperature since they affect the speed of photosynthetic processes [9,10] on the level of the 
water surface since a low flow rate and a decrease in the level of water in rivers produces an increase 
of phytoplankton [11]. Other studies have also shown that increasing organic carbon and nutrient 
inputs from landfills can lead to changes in the competitive dynamics between bacteria and 
phytoplankton, reducing phytoplankton biomass and increasing bacterial abundance [5]. In this 
sense, climate change affects ecosystems on a planetary scale [12] and is especially important in some 
regions around the world. Thus, several predictive models have shown that the Mediterranean 
climate region is particularly sensitive to global warming due to the progressive establishment of a 
drier and warmer climate [13,14]. The effects of drought on the hydrology of the Mediterranean 
basins has been studied [15–19] since it is expected that the effects—in terms of frequency and 
intensity—of the hydrological drought will be more severe due to climate change. 

Climate change has a special effect on unregulated rivers that are temporary or intermittent. 
Temporary rivers are ecologically unique, supporting important ecosystem processes and functions 
and being highly relevant in the conservation and protection of the biodiversity. At the same time, 
they suffer a large number of anthropogenic impacts, including alterations of their flow regime, 
changes in their bends and channels, nutrients excesses and invasive species [20]. Predictions on 
climate change have indicated that the Mediterranean region will suffer severe deficits in the flow of 
its rivers, increasing the vulnerability of temporary rivers and of those that are now perennial, which 
will become temporary [21,22]. The appropriate management of the rivers, maintaining their level 
and flow in regulated rivers, can improve the quality of the water, especially when they contain 
phytoplankton species that can harm the human population such as cyanobacteria [23]. 

The objective of this study is to analyze the impact of the different stressors associated with the 
change in phytoplanktonic communities in small rivers in the center of the Iberian Peninsula 
(Southwestern Europe) with the multivariate method of Partial Least Squares (PLS). PLS statistical 
regression is a recent technique that generalizes and combines features from principal component 
analysis and multiple regression [24,25] and that can be used to analyze data from environmental 
effects on biodiversity [26,27] and large-scale influence of climate [28,29]. In the present study, the 
establishment of statistical models, suitable for predicting concentration of phytoplankton and 
cyanophytes from 22 variables usually monitored in rivers, has been carried out. Furthermore, the 
influence of phytoplankton and cyanobacteria concentration with respect to other environmental and 
morphological variables in the different sampling points and seasonal periods, has been established. 
A better knowledge of the limiting factors in the growth of phytoplankton will allow watershed 
managers to improve the quality of the discharge sites and prevent risks to the population. 

2. Materials and Methods 

2.1. Study Area 

The study area for the determination of superficial water quality is located in the province of 
Salamanca (Western Spain). This province covers an area of 12,340 km2 and forms the South-Western 
part of the River Duero basin, which is the most important aquifer system of the Iberian Peninsula. 
The climate of the region is continental, with considerable seasonal fluctuations in temperature (the 
difference in mean temperature between the hottest and coldest days is almost 20 °C) and low 
humidity. Precipitation is low (mean annual rainfall 380 mm), highly irregular and usually absent in 
July and August, and, hence, during the dry season the hydric balance is clearly negative. This 
Salamanca province has 3 river basins (Figure 1), two belonging to the Duero river, (Tormes and 
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Águeda river basins) and one river basin belonging to Tajo river (Alagón river basin). The Tormes 
river basin is not contemplated because it has been previously studied in depth by the authors [18]. 

 
Figure 1. Geographic locations of the sampling sites on Águeda and Alagón rivers where data were 
collected. 

2.2. Sampling and Analysis 

The 22 parameters were measured at 33 sampling points (Figure 1: red points). They were 
selected to evaluate the evolution of the quality of water of the Águeda and Huebra rivers (Águeda 
river basin) and Alagón river (Alagón river basin) upstream and downstream of municipal 
wastewater discharges (Figure 1: black points) to consider the influence of these discharges on water 
quality. The present study has been carried out during the years 2015 and 2017. Furthermore, within 
the years studied, 2 seasonal periods have been investigated. May to September seasonal period is 
considered as summer (summer 2015 and 2017) and November to March seasonal period as winter 
(Winter 2017). On the other hand, the first study period corresponds to the 2014–15 hydrological year, 
been considered as a wet hydrological year. The second period corresponding to the year 2017 
(hydrological years 2016–17 and 2017–18) registered a rainfall much lower than normal, having been 
considered as very dry period. This covered an extreme drought occurring from mid-July 2016 until 
mid-October 2017. 

The analyses parameters were: total solids, ammonia, nitrite, nitrate, total phosphorus, sulfate, 
chloride, fluoride, calcium, magnesium, chemical oxygen demand, biochemical oxygen demand, 
total organic carbon, colour and total and fecal coliforms in the water samples. This parameters were 
determined using official or recommended methods of analysis [29,30]. The in situ measurements 
were: pH, temperature, conductivity, turbidity, and dissolved oxygen. Algal class analysis 
(Cyanophyta, Cryptophyta, Chlorophyta, Bacillariophyta and Dinophyta) was carried out with the 
fluoroprobe, a submergible spectrofluorometer (bbe FluoroProbe) [31]. 

2.3. PLS Regression Method 

The prediction models were set up using of the PLS option of SIMFIT statistical open source 
package [32]. PLS regression is particularly useful to predict a new set of dependent variables 
(response) from a large set of independent variables (predictors). Prediction models are achieved by 
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extracting from the predictors and response variables a new set of orthogonal factors called latent 
variables, which capture the best predictive power. PLS regression searches for a set of components 
performing a simultaneous decomposition of predictors and response variables with the constraint 
that these components explain as much as possible the covariance between predictors and responses. 

3. Results 

Two river basins at two different seasonal periods (dry and wet) have been studied. As an 
example, the development of the predictive model for the dry winter period in the Águeda River is 
presented. 

The PLS technique considers two types of matrices of variables, on the one hand the matrix of 
predictive variables (X) that will be composed, for each of the rivers in each of the stations studied, 
by the values of the 22 variables measured. On the other hand, the matrix of response variables (Y) 
encompasses the two variables to be predicted, which are phytoplankton, measured chlorophyll-a, 
and cyanobacteria, measured as phycocyanin pigment. Figure 2 shows the cumulative variance of 
the latent factors, for both the X and Y variables in the Águeda river (dry winter seasonal period). As 
can be seen, a plateau is reached where the gain in capturing the variability is very small. Based on 
the fact that this capture of variability is considered acceptable, can be admitted for calibration 
purposes that seven factors are sufficient for the model (97% capture of variability in X and 92.94% 
in Y for phytoplankton and 97% in X and 89% in Y capture variability for cyanobacteria). 

 
Figure 2. Cumulative variance captured against the number of Partial Least Squares PLS factors, for 
both phytoplankton (a) and cyanobacteria (b). 

To quantify the importance of each of the variables X in the prediction model, the scores of 
statistics VIP (“Variable Influence on Projection” [33]) was used. The VIP-scores for the 22 variables 
X put into play, for prediction model built with seven factors, are shown in Figure 3. Important 
predictors were identified in the modelling of phytoplankton and cyanobacteria concentration by 
considering the variables with VIP-scores higher than one. It should be highlighted as better 
predictors for both are temperature, ammonium and fecal coliforms. 
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Figure 3. VIP-scores and regression coefficients of the PLS phytoplankton and cyanobacteria 
concentration prediction model in the dry winter seasonal period of Águeda river. 

PLS, as well as its interpretation, can be expressed in the form of a multiple linear regression 
model: 𝑌 ൌ  𝛽  𝛽ଵ𝑋ଵ  𝛽ଶ𝑋ଶ  ⋯   𝛽ଶଵ𝑋ଶଵ  𝛽ଶଶ𝑋ଶଶ  

where 𝛽i (from i = 1 to 22) are the coefficients of the predictive variables in the constructed model, 
and 𝛽0 the independent term. Finally, the following equations are obtained: 

Phytoplankton = 61.3798 − 1.0141 pH + 0.1233 Colour + 0.0550 Turbidity − 1.7876 Temperature + 
0.0007 Conductivity − 0.0731 Dissolved oxygen + 0.0009 Solids − 0.3679 BOD − 0.1532 COD − 0.2751 
TOC + 4.7291 Ammonium + 0.7761 Nitrate − 74.8815 Nitrite − 13.8925 Phosphate + 0.0389 Sulfate − 
0.0226 Alkalinity + 0.1323 Chloride − 13.2087 Fluoride − 0.0312 Calcium + 0.5091 Magnesium − 0.0003 
Total Coliforms + 0.0040 Fecal Coliforms. 

Cyanobacteria = 41.6068 − 1.4866 pH + 0.1075 Colour − 0.0438 Turbidity − 1.6663 Temperature − 
0.0038 Conductivity + 0.5793 Dissolved oxygen + 0.0050 Solids − 0.1817 BOD − 0.0628 COD − 0.2621 
TOC + 19.6949 Ammonium − 0.4312 Nitrate − 46.0138 Nitrite − 11.3262 Phosphate + 0.0236 Sulfate + 
0.0124 Alkalinity + 0.0906 Chloride − 5.2369 Fluoride − 0.0910 Calcium + 0.2238 Magnesium − 0.00001 
Total Coliforms+ 0.0027 Fecal Coliforms. 

PLS methodology consists of two differentiated parts; calibration with a training-set data and 
validation with a test-set data. The experimental data for the Ageda river example were divided ¾ 
for a training (calibration) set data and ¼ for the test (validation) set data. The process of calibration 
(Figure 4) and validation (Table 1) of the model is exposed. 

 
Figure 4. Correlations of the values predicted by the PLS model with the calibration values. 
Continuous lines are correlations y(x) and dashed lines are correlations x(y), as far as both fit lines 
have similar slopes in both cases this suggests strong linear correlation. 
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In training procedure seven PLS factors were selected as optimum and the agreement between 
the measured and the predicting values for the model are shown in Figure 4, where a good correlation 
with the training data can be seen. Nevertheless, the above good agreement with the training-set data 
is not the better approach for the goodness of the model. Therefore, a test-set with a new experimental 
data was used to validate the model. The prediction rates for the sampling points in the Águeda river 
example are presented in Table 1. 

Table 1. Validation of PLS phytoplankton and cyanobacteria concentrations models. 

 Phytoplankton Cyanobacteria 
Sampling 

Points 
Y Real 
(g/L) 

Y Predicted 
(g/L) 

Relative 
Error (%) 

Y Real 
(g/L) 

Y Predicted 
(g/L) 

Relative 
Error (%) 

Irueña 13.57 13.47 0.69 1.73 2.36 36.84 
Sanjuanejo 18.03 15.90 11.81 6.73 6.10 9.38 
C. Rodrigo 16.31 12.03 26.27 5.79 2.95 48.99 

Ivanrey 11.48 10.40 9.40 2.31 2.73 18.19 
Siega Verde 14.83 12.78 13.80 2.14 3.39 58.08 
Fregeneda 15.5 11.49 25.86 3.76 1.11 70.41 

Average 14.64   40.31 

As shown on Table 1, the prediction error percentages have been better for phytoplankton (15%) 
than for cyanobacteria (40%), which indicates a good fit of the PLS prediction model for 
phytoplankton. 

4. Discussion 

Following the same methodology, in order to carry out some comparisons between the rivers, 
all the studies were carried out using the same PLS statistical procedure with seven factors for the 
different rivers in the different seasonal periods analyzed. The results of the comparison are shown 
in the conclusions. 

5. Conclusions 

A new methodology, based on the multivariate regression technique PLS, has been proposed in 
this work, which allows, based on 22 variables usually monitored in rivers, the concentration of 
phytoplankton and cyanophytes to be predicted. The predictive models generated have presented a 
goodness of fit tested successfully using training data series. In turn, these models have performed 
well for the prediction of phytoplankton and cyanobacterial concentrations from new validation data 
series, although prediction error rates have been better for phytoplankton (10–25%) than for 
cyanobacteria (40–60%). 

Predictive models are formulated by equations of the linear multiple regression type where the 
coefficients indicate the participation of each of the variables in the model. In this sense, the 
determined coefficients have varied from one river to another and between seasons, what was 
expected. However, a certain similarity of the coefficients for dry summer periods (droughts) has 
been observed. In these transition periods, their features are most important in the prediction, since 
they exhibit favourable conditions for the proliferation of the phytoplankton community. 

References 

1. Feio, M.J.; Aguiar, F.C.; Almeida, S.; Ferreira, J.; Ferreira, M.; Elias, C.; Serra, S.; Buffagni, A.S.; Cambra, J.; 
Chauvin, C.; et al. Least Disturbed Condition for European Mediterranean rivers. Sci. Total Environ. 2014, 
476, 745–756, doi:10.1016/j.scitotenv.2013.05.056. 

2. Reynolds, C. Ecological pattern and ecosystem theory. Ecol. Model. 2002, 158, 181–200, doi:10.1016/s0304-
3800(02)00230-2. 

3. Wetzel, R.G. Limnology. In Lake and River Ecosystems, 3rd ed.; Academic Press: Cambridge, MA, USA, 2001; 
p. 1006. 



Proceedings 2020, 48, 16 7 of 8 

 

4. Brett, M.T.; Goldman, C.R. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA 
1996, 93, 7723–7726, doi:10.1073/pnas.93.15.7723. 

5. Carney, R.L.; Seymour, J.; Westhorpe, D.; Mitrovic, S.M. And Lotic bacterioplankton and phytoplankton 
community changes under dissolved organic-carbon amendment: evidence for competition for nutrients. 
Mar. Freshw. Res. 2016, 67, 1362, doi:10.1071/mf15372. 

6. Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 
79–99, doi:10.2216/i0031-8884-32-2-79.1. 

7. Humborg, C.; Ittekkot, V.; Cociasu, A.; Bodungen, B.V. Effect of Danube River dam on Black Sea 
biogeochemistry and ecosystem structure. Nature 1997, 386, 385–388, doi:10.1038/386385a0. 

8. Hutchinson, G.E. The Paradox of the Plankton. Am. Nat. 1961, 95, 137–145, doi:10.1086/282171. 
9. Sand-Jensen, K.; Borum, J. Interactions among phytoplankton, periphyton, and macrophytes in temperate 

freshwaters and estuaries. Aquat. Bot. 1991, 41, 137–175, doi:10.1016/0304-3770(91)90042-4. 
10. Béchet, Q.; Shilton, A.; Guieysse, B. Modeling the effects of light and temperature on algae growth: State of 

the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 2013, 
31, 1648–1663, doi:10.1016/j.biotechadv.2013.08.014. 

11. Vis, C.; Hudon, C.; Carignan, R.; Gagnon, P. Spatial Analysis of Production by Macrophytes, 
Phytoplankton and Epiphyton in a Large River System under Different Water-Level Conditions. Ecosystems 
2007, 10, 293–310, doi:10.1007/s10021-007-9021-3. 

12. Briner, S.; Elkin, C.; Huber, R. Evaluating the relative impact of climate and economic changes on forest 
and agricultural ecosystem services in mountain regions. J. Environ. Manag. 2013, 129, 414–422, 
doi:10.1016/j.jenvman.2013.07.018. 

13. Sanchez, E.; Gallardo, C.; Gaertner, M.; Arribas, A.; Castro, M. Future climate extreme events in the 
Mediterranean simulated by a regional climate model: a first approach. Glob. Planet. Chang. 2004, 44, 163–
180, doi:10.1016/j.gloplacha.2004.06.010. 

14. Barbancho, A.C.; Morán-Tejeda, E.; Luengo-Ugidos, M. Ángel; Llorente-Pinto, J.M. Water resources and 
environmental change in a Mediterranean environment: The south-west sector of the Duero river basin 
(Spain). J. Hydrol. 2008, 351, 126–138, doi:10.1016/j.jhydrol.2007.12.004. 

15. Mimikou, M.; Baltas, E.; Varanou, E.; Pantazis, K. Regional impacts of climate change on water resources 
quantity and quality indicators. J. Hydrol. 2000, 234, 95–109, doi:10.1016/s0022-1694(00)00244-4. 

16. Cidu, R.; Biddau, R. Transport of trace elements under different seasonal conditions: Effects on the quality 
of river water in a Mediterranean area. Appl. Geochem. 2007, 22, 2777–2794, 
doi:10.1016/j.apgeochem.2007.06.017. 

17. Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 
63, 90–104, doi:10.1016/j.gloplacha.2007.09.005. 

18. Prieto, J.C.G.; Cachaza, J.M.; Pérez-Galende, P.; Roig, M.G. Impact of drought on the ecological and 
chemical status of surface water and on the content of arsenic and fluoride pollutants of groundwater in 
the province of Salamanca (Western Spain). Chem. Ecol. 2012, 28, 545–560, doi:10.1080/02757540.2012.686608. 

19. Barceló, J.; Sabater, S. Water quality and assessment under scarcity: Prospects and challenges in 
Mediterranean watersheds. J. Hydrol. 2010, 383, 1–4, doi:10.1016/j.jhydrol.2010.01.010. 

20. Han, H.; Allan, J.D.; Scavia, D. Influence of Climate and Human Activities on the Relationship between 
Watershed Nitrogen Input and River Export. Environ. Sci. Technol. 2009, 43, 1916–1922, 
doi:10.1021/es801985x. 

21. Karaouzas, I.; Smeti, E.; Vourka, A.; Vardakas, L.; Mentzafou, A.; Tornés, E.; Sabater, S.; Muñoz, I.; 
Skoulikidis, N.; Kalogianni, E. Assessing the ecological effects of water stress and pollution in a temporary 
river—Implications for water management. Sci. Total Environ. 2018, 618, 1591–1604, 
doi:10.1016/j.scitotenv.2017.09.323. 

22. Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.S.; Dörflinger, G.; Zogaris, S.; Sánchez-
Montoya, M.D.M.; Bonada, N.; Kalogianni, E.; et al. Non-perennial Mediterranean rivers in Europe: Status, 
pressures, and challenges for research and management. Sci. Total Environ. 2017, 577, 1–18, 
doi:10.1016/j.scitotenv.2016.10.147. 

23. Webster, I.T.; Sherman, B.S.; Bormans, M.; Jones, G. Management strategies for cyanobacterial blooms in 
an impounded lowland river. Regul. Rivers: Res. Manag. 2000, 16, 513–525, doi:10.1002/1099-
1646(200009/10)16:53.0.co;2-b. 



Proceedings 2020, 48, 16 8 of 8 

 

24. Abdi, H.; Williams, L. Partial Least Squares Methods: Partial Least Squares Correlation and Partial Least 
Square Regression. In Advanced Structural Safety Studies; Springer Science and Business Media LLC.: 
Berlin/Heidelberg, Germany, 2012; Volume 930, pp. 549–579. 

25. Wold, H. Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) 
Approach. J. Appl. Probab. 1975, 12, 117–142, doi:10.1017/s0021900200047604. 

26. Palomino, D.; Carrascal, L.M. Habitat associations of a raptor community in a mosaic landscape of Central 
Spain under urban development. Landsc. Urban Plan. 2007, 83, 268–274, 
doi:10.1016/j.landurbplan.2007.04.011. 

27. Potapova, M.; Charles, D.; Ponader, K.C.; Winter, D.M. Quantifying species indicator values for trophic 
diatom indices: A comparison of approaches. Hydrobiol. 2004, 517, 25–41, 
doi:10.1023/b:hydr.0000027335.73651.ea. 

28. Finsinger, W.; Heiri, O.; Valsecchi, V.; Tinner, W.; Lotter, A.F. Modern pollen assemblages as climate 
indicators in southern Europe. Glob. Ecol. Biogeogr. 2007, 16, 567–582, doi:10.1111/j.1466-8238.2007.00313.x. 

29. AENOR. Calidad del Agua, Asociación Española de Normalización y Certificación, Madrid; AENOR: Madrid, 
Spain, 2005. 

30. APHA; AWWA; WPCF. Métodos Normalizados Para el Análisis de Aguas Potables y Residuales, 17th ed.; Diaz 
de Santos: Madrid, Spain, 1992. 

31. Catherine, A.; Escoffier, N.; Belhocine, A.; Nasri, A.; Hamlaoui, S.; Yéprémian, C.; Bernard, C.; Troussellier, 
M. On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence 
excitation spectra for large-scale surveys of lakes and reservoirs. Water Res. 2012, 46, 1771–1784, 
doi:10.1016/j.watres.2011.12.056. 

32. Bardsley, W.G. SIMFIT Statistical Package; Manchester University: Manchester, UK, 2017. 
33. Wold, S. PLS for Multivariate Linear Modeling QSAR: Chemometric Methods in Molecular Design. In 

Methods and Principles in Medicinal Chemistry; van de Waterbeemd, H., Ed.; Verlag-Chemie: Weinheim, 
Germany, 1994. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


