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Abstract: The purpose of this work is to determine internal and external factors affecting the cooling 
energy demand of a building. During the research, the impact of weather conditions and the level 
of hotel occupancy on cooling energy, which is necessary to obtain indoor comfort conditions, was 
analyzed. The subject of research is energy consumption in the Turówka hotel located in Wieliczka 
(southern Poland). In the article, the designer of neural networks was used in the Statistica statistical 
package. To design the network, a widely used multilayer perceptron model with an algorithm with 
backward error propagation was used. Based on the collected input and output data, various 
multilayer perceptron (MLP) networks were tested to determine the relationship most accurately 
reflecting actual energy consumption. Based on the results obtained, factors that significantly affect 
the consumption of thermal energy in the building were determined, and a predictive energy 
demand model for the analyzed object was presented. The result of the work is a forecast of cooling 
energy demand, which is particularly important in a hotel facility. The prepared predictive model 
will enable proper energy management in the facility, which will lead to reduced consumption and 
thus costs related to facility operation. 

Keywords: prediction cooling energy consumption; artificial neural network; energy efficiency; 
sustainable buildings 

 

1. Introduction 

The advancement of civilization and the development of society increase the amount of time 
that a person spends indoors. Currently, in developed countries, people spend up to 80–90% of their 
lives in buildings, which is why it is so important to ensure proper conditions and high indoor air 
quality. In new buildings’ heating, ventilation and air-conditioning systems play a crucial role due to 
high user comfort requirements. However, air treatment processes are very expensive, while the 
removal of heated air in winter causes the process itself to be unprofitable. The main tasks of 
designers in recent times are to reduce heating and cooling energy consumption through the use of 
devices and systems with higher efficiency, and to reduce energy losses during energy distribution, 
as well as through proper management of systems. The forecasting of energy consumption in a 
building is particularly important in terms of planning, managing, and optimizing energy systems. 
Accurate and reliable heating and cooling energy forecasts for buildings can bring significant benefits 
to energy savings. The forecasting heating energy consumption is a difficult task due to numerous 
disturbances and deviations from observed trends. In the case of facilities such as a hotel, the demand 
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for cooling and heating energy, in addition to meteorological factors, is determined by the hotel 
occupancy and user activity (the use of facilities on the premises, e.g., swimming pool, restaurant, 
conference room, etc.). 

Building energy consumption prediction is crucial to appropriate energy management and, 
subsequently, to improve the energy efficiency of systems and performance of the buildings. In 
general, methods for estimating and modeling energy consumption could be divided into two 
groups: engineering and data-driven approaches. The first type uses physical and thermodynamic 
functions to evaluate the energy consumption of the building or system. A data-driven approach 
defines the relationship between energy consumption and identified factors based on historical data 
[1]. In recent years, artificial intelligence methods have become very popular. This technique is often 
applied to the prediction of energy consumption due to good accurate prediction results. Among the 
most popular data-driven prediction models using the empirical approach are artificial neural 
networks (ANNs) and support vector machines (SSM) [2]. 

Artificial neural networks consist of three types of layers: input (this collects data and passes 
them on), hidden (connections between neurons are searched for here, i.e., the learning process takes 
place) and output (this collects conclusions and analysis results). A neural network can consist of any 
number of layers. Unprocessed data goes into the first layer. Each subsequent layer receives data 
resulting from the processing of data in the previous layer. What the last layer produces is the so-
called system output [3]. The simplified artificial neural network was proposed for the first time by 
McCulloch and Pitts in 1943 [4]. A schematic diagram of the multilayer feedforward neural network 
architecture is shown in Figure 1. 

 
Figure 1. Schematic diagram of the multilayer feed-forward neural network. 

There are many types of artificial neural networks (ANN), including the backpropagation 
network (BPNN), the general regression neural network (GRNN), and the radial basis function 
network (RBFN) [3]. The most commonly used neural network architecture today is the multilayer 
perceptron (MLP). Each neuron calculates the weighted average of the inputs to it, and calculates the 
result using the transition function f and gives it to the output. There is also a shift component in each 
layer of MLP network neurons. Choosing the right number of hidden layers and the number of 
neurons present in them is an important aspect for a perceptron. The choice of activation function 
and network learning method is also significant. 

Numerous interesting methods of prediction of building energy consumption have been 
described in the literature [5–7]. Nowadays, widely used solutions are data-driven models applied to 
estimate electricity consumption in buildings and to analyze energy consumption patterns [8–14]. As 
many studies [15–17] show, artificial neural networks could be useful also in the prediction of heating 
and cooling energy consumption. Zhao et al. [18] investigated the energy consumption of a variable 
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refrigerant volume system in the office building. The authors compared three types of prediction 
models: ANN, SVM, and ARIMA (autoregressive integrated moving average). The results showed 
that the ANN model is better than the other two types. In their paper, Biswas et al. [19] proposed a 
prediction model of residential building energy consumption. The input variables included the 
number of days, outdoor temperature, and solar radiation. The output variables are building and 
heat pump energy consumption. In a paper by Pino-Mejías et al. [20], the authors presented 
prediction models of the heating and cooling energy demands, energy consumptions, and CO2 
emissions for office buildings in Chile. The study shows that multilayer perceptron provides a 
satisfactory degree of accuracy in the determination of demand, consumption, and CO2 emissions. 
Annual energy consumption by heating, ventilation, air conditioning (HVAC) systems was also 
predicted by Nasruddin et al. [21]. The authors used ANN model with the range of decision variables 
including cooling setpoint, supply airflow rate, window area, supply air temperature, etc. A 
university building was the subject of the study. The result showed that optimization of HVAC 
improvement influenced both thermal comfort as well as annual energy consumption. 

This paper presents an integrated approach to predict energy consumption and develop a 
predictive model using an artificial neural network. The study includes an analysis of the energy 
consumption of cooling systems based on the meteorological data and historical cooling energy data 
during the summer season. The main purpose is to create an accurate ANN model for the Turówka 
hotel to estimate daily cooling energy consumption. The cooling system in the hotel is accountable 
for about 50–60% of the total building energy consumption; therefore, the study focused only on the 
cooling demand [22]. 

2. Methods and Building Description 

The building studied in this paper is the Turówka hotel, located in Wieliczka, the south-central 
part of Poland near Kraków. It is the reconstruction of a historic salt store of 1812, which is entered 
into the register of historical monuments. The building is under preservation maintenance, thus, 
during hotel refurbishment of old saltworks and hotel adaptation, the mass and dimension of the 
building should stay the same. The used building materials and window and door frames were 
selected with the aim of recreating the structure as faithfully as possible. The building includes four 
overground floors and a basement, with the hotel section possessing a useable floor area of 5525.00 
m2 and a capacity of 19,300 m3. The hotel has 50 double rooms, a restaurant for 90 people, a hotel bar 
for 30 people, a drink bar for 30 people, a conference room for 40 people and a pool. Central heating 
installation is powered by two low-temperature gas boilers with a capacity of 250 and 350 kW. 
Currently, the hotel uses a two-pipe central heating system with panel radiators and thermostatic 
valves. The domestic hot water is prepared in the gas boiler house with circulation and with heating 
circulation pump control. The building is equipped with mechanical supply and exhaust ventilation 
carried out by seven air-handling units with rotary exchangers, and air-handling units for the kitchen 
with an exchanger using glycol. The coolers in the air-handling unit (AHU) are supplied with chilled 
water at 8 °C/14 °C temperature parameters. The same cooling installation also supplies fan coil units 
located in the hotel rooms and other rooms intended for guests. The hotel building and its immediate 
surroundings are shown in Figure 2. 

 
(a) 

 
(b) 
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Figure 2. The Turówka hotel: (a) outside of the building; (b) localization of the hotel [23]. 

Cooling energy meters have been installed in main system areas, i.e., feed and return of the high 
and, depending on demand, low parameters of the refrigerant. Data are transmitted via a serial 
communications protocol—MODBUS RTU—and stored in a recording system. Measurements are 
made using MULTICAL heat meters by Kamstrup. To ensure measurement stability, flow sensors 
were submitted to a type approval according to EN 1434 [24], which includes the 2400 h measurement 
stability test of flow sensors. 

This paper includes an analysis of the cooling energy consumption of the hotel. In the summer 
season, the main building operating costs are related to the cooling system, which ensures thermal 
comfort for users. Due to the prevailing share of cooling energy demand in total energy consumption 
in the summer season, the research was focused on providing the most accurate model for the 
prediction of cooling energy consumption. The data analyzed in this study are a daily time series 
collected from 15 May to 15 September 2019. This period is a summer season in Poland when the 
hotel cooling system is in operation. The data include cooling energy consumption in the building. 
The outside temperature was measured directly at the hotel area. Other meteorological data are 
obtained from the National Research Institute—Polish Institute of Meteorology and Water 
Management. 

The study has been divided into four parts. Firstly, the data, including meteorological data and 
data from the analyzed building, were collected. Another step was to examine the relationship 
between cooling energy demand and the identified variables in the analyzed period. On this basis, 
the factors that may affect energy consumption were selected. Due to the minimal impact of some 
factors as well as the practical approach to the application of prediction algorithms, only the most 
significant ones are most often used. Among ten variables, namely, day, month, occupancy level, 
average outside temperature, minimum temperature, maximum temperature, relative humidity, 
cloud cover, precipitation, and wind speed, the last two parameters were rejected. In the paper, a 
simplified data-driven model for the prediction the energy consumption is presented. An ANN-
based model was used to predict the cooling energy used in a building in the summer season. Figure 
3 illustrates the research process. 

In this study, three evaluation indices are used to measure the performance of the proposed 
approach, including the mean absolute error (MAE), root mean squared error (RMSE), and coefficient 
of variance (CV) [16,18,25]. Additionally, the weighted absolute percentage error (WAPE), proposed 
by other authors, was used [26]. The mathematical representation of indicates are represented in 
Equations (1)–(4): 

= ܧܣܯ 1݊ ෍|ܧ஺ − ௉|௡ܧ
௜ୀଵ  (1) 

= ܧܵܯܴ ඩ1݊ ෍ሺܧ஺ − ௉ሻଶ௡ܧ
௜ୀଵ  (2) 

ܸܥ = ට1݊ ∑ ሺܧ஺ − ஺തതതܧ௉ሻଶ௡௜ୀଵܧ  
(3) 

= ܧܲܣܹ ∑ ஺ܧ| − ∑௉|௡௜ୀଵܧ ஺௡௜ୀଵܧ  (4) 

where ݊ denotes the entire number of observations, ܧ஺ is the actual value, ܧ஺തതത denotes the mean of 
actual values, and ܧ௉ represents the predicted value. 
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Figure 3. Diagram of the energy prediction process. 

3. Results 

3.1. Preliminary Statistical Analysis 

To increase the accuracy of the prediction, the pre-selected meteorological values and data 
related to the use of the building were subjected to basic statistical analysis. During the initial 
analysis, ten parameters were identified that may affect the cooling load, including the day of the 
week, month, the minimal and maximum outside temperature during the day, average daily 
temperature, occupancy level, average daily cloud cover, wind speed, relative humidity, and 
precipitation. Statistical analysis was performed for the data presented in Table 1. 

Table 1. Identified variables. 

Variable Unit 
Day (Monday—1; Tuesday—2; Wednesday—3; Thursday—4; Friday—5; Saturday—6; 
Sunday—7) - 

Month (May—5; June—6; July-7; August—8; September—9) - 
Minimum temperature Tmin °C 
Maximum temperature Tmax °C 
Average temperature Tavr °C 
Occupancy level % 
Daily average cloud cover (0 oktas—completely clear sky, 8 oktas—completely overcast) okta 
Daily average wind speed m/s 



Proceedings 2020, 58, 21 6 of 11 

 

Daily average relative humidity % 
Daily average precipitation mm 

Table 2 presents descriptive statistics for each analyzed variable. Day and month are listed, but 
statistics are not provided for them because these parameters represent categorical variables in the 
model. 

Table 2. Descriptive statistics for input and output variables. 

Variable Unit Minimum Maximum Mean Median 1st Quartile 3rd Quartile 
Day - 1.00 7.00 - - - - 
Month - 5.00 9.00 - - - - 
Tmin °C 6.24 21.09 14.44 14.68 12.13 16.71 
Tmax °C 9.92 36.16 26.11 26.39 23.12 29.91 
Tavr °C 8.41 29.24 20.23 20.68 17.46 23.05 
Occupancy level % 18.90 100.00 77.64 94.90 65.10 94.30 
Cloud cover octa 0.00 8.00 4.34 4.45 2.95 5.90 
Wind speed m/s 0.90 5.50 2.69 2.50 2.00 3.20 
Relative humidity % 49.00 96.10 72.77 72.10 65.95 79.35 
Precipitation mm 0.00 39.80 2.75 0.00 0.00 1.65 
Cooling Energy kWh/day 0.00 2501.53 1227.32 1170.11 667.91 1704.64 

The analysis was based on the Pearson correlation coefficients between the studied variables 
and the predicted output. The results are summarized in Table 3. 

Table 3. Correlation coefficients for numeric variables. 

Variable Day Month Tmin Tmax Tavr Occupancy 
Level 

Cloud 
Cover 

Wind 
Speed 

Relative 
Humidity 

Precipitation 

Day 1.00          
Month 0.01 1.00         

Tmin −0.11 0.02 1.00        
Tmax 0.01 0.14 0.76 1.00       
Tavr −0.03 0.05 0.85 0.96 1.00      

Occupancy level 0.47 0.02 −0.06 −0.08 −0.07 1.00     
Cloud cover −0.15 −0.13 −0.20 −0.60 −0.57 −0.05 1.00    
Wind speed −0.17 −0.12 0.16 −0.06 0.05 −0.05 −0.03 1.00   

Relative humidity −0.03 0.09 −0.36 −0.60 −0.65 0.17 0.63 −0.17 1.00  
Precipitation −0.12 0.04 −0.12 −0.25 −0.28 0.00 0.38 0.07 0.46 1.00 

Cooling Energy −0.07 0.08 0.85 0.84 0.88 −0.01 −0.40 0.08 −0.42 −0.14 

Based on the results in the table, it was decided that in further analysis, the wind speed and 
precipitation parameters, which showed the smallest relationships with the searched value, would 
be rejected. Despite the low correlation coefficient between cooling energy demand and occupancy 
level, this variable was accepted for further consideration due to individual cooling control in guest 
rooms. 

A regression graph with histograms presenting the relationship between energy consumption 
and the average temperature was plotted (Figure 4a). The data were ordered and divided into groups 
in specified temperature ranges. Having removed outliers and extremes, linear relationships were 
plotted in the form of box plots (Figure 4b). 
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(a) 

 
(b) 

Figure 4. Cooling energy demand depending on the average daily air temperature: (a) regression 
graph with histograms; (b) box plot with ten temperature ranges. 

The next step was to investigate the relationship between energy consumption for cooling and 
the two variables with the highest correlation coefficients: average temperature and relative 
humidity. The diagram for the cooling system is shown in Figure 5. 

 
Figure 5. Cooling energy demand depending on the average daily air temperature and relative 
humidity. 

3.2. Neural Networks 

The Statistica Artificial Neural Network Package was used to prepare a predictive model. 
Multilayer perceptrons with backpropagation were performed. The number of hidden neurons, the 
hidden layer activation functions, and the output layer activation function are selected using the 
methodology based on statistical tests and least-squares estimation. Five different networks were 
created by combining four types of activation functions and a different number of hidden neurons. 
The BFGS (Broyden–Fletcher–Goldfarb–Shanno) training algorithm was chosen for this work. Based 
on the correlation coefficient, five models were selected, and these are described in Table 4. 
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Table 4. Network configurations tested. 

Network 
Name 

Hidden Layer Activation 
Function 

Number of Hidden 
Units 

Output Layer Activation 
Function 

MLP 1 Hyperbolic tangent 9 Logistic 
MLP 2 Logistic 33 Logistic 
MLP 3 Hyperbolic tangent 9 Logistic 
MLP 4 Linear 13 Logistic 
MLP 5 Hyperbolic tangent 6 Logistic 

3.3. Performance of the Model 

Based on the above-mentioned indicators, namely, MAE, RMSE, WAPE, CV, and correlation 
coefficient (R2), selected models were compared. The results for cooling consumption are presented 
in Table 5. 

Table 5. Performance evaluation of different forecast models for cooling energy consumption. 

Indicators MLP 1 MLP 2 MLP 3 MLP 4 MLP 5 
MAE 191.18 195.78 190.82 190.11 189.00 
RMSE 242.28 242.84 243.98 239.91 239.78 
WAPE 15.58% 16.49% 15.70% 16.02% 15.53% 

CV 19.74% 19.79% 19.88% 19.55% 19.54% 
R2 0.926 0.924 0.925 0.925 0.925 

For each of the analyzed outputs, the MLP 5 model was the most accurate in modeling energy 
consumption for the full dataset. Further analysis was therefore carried out only for this model. 
Figure 6 shows the comparison between actual consumptions and forecasts for the cooling system. 

 
(a) 

 
(b) 

Figure 6. Results of the prediction the MLP 5 model for cooling energy consumption: (a) comparison 
of the observed values and predicted values; (b) comparison of the measured and predicted energy 
consumption. 

4. Discussion 

In this paper, the ANN predictive model for hotel Turówka is presented. The CV rate for the 
proposed models varies from 19.55% to 19.88%. Similarly, the weighted absolute percentage error for 
models ranged from 15.53% to 16.49%, and the correlation coefficient in range of 0.924–0.926. Based 
on these investigated indicators for each of the analyzed systems, the MLP 5 model was selected. The 
differences between the proposed models are not large, and the choice was conditioned mainly by 
lower values of the coefficients describing the prediction error. For model 5, mean absolute error was 
189 kWh/day, and weighted absolute percentage error was 15.53%. The predicted results are found 
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to be very close to the experimental values. For maximum and minimum values of energy 
consumption, the largest differences between the actual value and predicted value are visible. 

Table 6 presents sensitivity coefficients, which describe the change in the system’s outputs due 
to variations in the parameters that affect the system. For each of the analyzed models, the ratio of 
network error without a given variable to the error with a set of inputs was given. A quotient of less 
than 1 means that the network works even better without a given variable, which is an obvious signal 
to remove a given independent variable from the analysis. 

Table 6. Sensitivity analysis of inputs. 

Variable MLP 1 MLP 2 MLP 3 MLP 4 MLP 5 
Day 1.00 1.02 1.02 1.05 1.02 

Month 1.09 1.01 1.01 1.02 1.01 
Tmin 2.21 1.66 1.65 2.41 1.69 
Tmax 1.16 1.18 1.18 1.25 1.18 
Tavr 1.17 2.05 2.06 1.32 1.72 

Occupancy level 0.99 1.02 1.02 1.00 1.00 
Cloud cover 1.01 1.02 1.02 1.06 1.02 

Relative humidity 0.98 1.05 1.05 1.00 1.05 

As Table 6 shows, the impact of variables on predicted value varies depending on the analyzed 
model. As mentioned before, the MLP 5 model was chosen for further analysis, for which the most 
important parameters are the minimum and maximum temperatures during the day. The occupancy 
level does not affect the values obtained. During the initial analysis, attention was paid to the 
relationship between the consumption of cooling energy and relative humidity. As the analysis 
shows, humidity is included in the model, but it is not a determining factor. The sensitivity factor 
smaller than 1 in model MLP 1 suggests that this parameter is not important in analysis. This is also 
due to the significant correlation between temperature and humidity (Table 3). 

5. Conclusions 

The HVAC system consumes a large amount of energy, especially in commercial buildings. 
Energy consumption prediction is an interesting solution for energy management building, and 
hence for saving energy and reducing operational costs. The cooling load is affected by many factors, 
including weather conditions, building operation, thermal performance, and users’ behavior. In this 
paper, a simplified data driven-model for predicting energy consumption has been presented. The 
methodology is based on the use of artificial neural networks. A sensitivity analysis demonstrated 
that part of the proposed input variables initially selected offer limited contribution to the model. 
Among the ten identified parameters, eight input features were used in the proposed models. Based 
on the mentioned variables, five ANN models were created and compared using the evaluation 
coefficients discussed above. Model MLP 5, with six hidden neurons, was chosen as the most 
appropriate and effective. External minimum, average, and maximum temperature as well as relative 
humidity were considered the most important variables in this selected model. Cloud cover, day, and 
month have less impact on the predicted values. Based on the sensitivity analysis, it was found that 
the occupancy level has no significant effect on the prediction model. For each of the output 
parameters, the predictions were good, especially in terms of average values. The biggest errors were 
noticeable for extreme values that are not completely reproduced by the model. The largest observed 
difference in the analyzed period was 596 kWh/day, which was 25% of the actual value. The best 
mapping was obtained for cooling energy. This is particularly important due to the prevailing share 
of cooling energy in the total energy load of the building during the summer period. The prediction 
task performed for the whole day is difficult due to changing conditions. To increase the accuracy of 
predictive models, the analysis could be performed based on hourly energy consumption. 
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Nomenclature 

CC Cloud cover, - 
D Day of the week, - 
EA Actual value of the energy consumption, kWh/day 
EP Predicted value of the energy consumption, kWh/day 
M Month, - 
n Number of observations, - 
OL Occupancy level, % 
P Precipitation, mm 
R2 Correlation coefficient 
RH Daily average relative humidity, % 
Tmin Daily minimum temperature, °C 
Tmax Daily maximum temperature, °C 
Tavr Daily average temperature, °C 
AHU Air Handling Unit 
ANN Artificial Neural Network 
ARIMA Autoregressive, Integrated and Moving Average 
BFGS Broyden-Fletcher-Goldfarb-Shanno 
BPNN Back Propagation Neural Network 
CV Coefficient of Variance 
GRNN General Regression Neural Network 
HVAC Heating, Ventilation, Air Conditioning 
MAE Mean Absolute Error 
MLP Multilayer Perceptron 
RBFN Radial Basis Function Network 
RMSE Root Mean Squared Error 
SSM Support Vector Machine 
WAPE Weighted Absolute Percentage Error 
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