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Abstract: Breast cancer is a leading cause of death in women worldwide, and yet its 
pathophysiology is poorly understood. Although single-cell studies have highlighted the 
contribution of membrane depolarisation to the proliferation of breast cancer, dynamic signalling 
at a network level has not been extensively researched. It is urgent therefore to decode the 
intercellular signalling patterns linked to metastasis, particularly at a cell cohort level. This paper 
introduces a novel strategy for conducting such recordings on highly metastatic MDA-MB-231 cells, 
via an ultra-low noise biosensor based on a large electrode area which maximises the Helmholtz 
double-layer capacitance. The extracellular sensitivity of our biosensor allows the detection of  
pA-level random telegraph signal (RTS) noise superimposed with an omnipresent 1/f noise.  
The RTS noise is validated and modelled using a Markov chain. The analysis of slow cooperative 
potentials across the large area electrode suggests the involvement of cohort calcium signalling, and 
the 1/f noise analysis suggests a strong contribution of resting membrane noise. Overall, this work 
shows the potential of the new recording platform and statistical analysis for better understanding 
and predicting the underlying signalling mechanisms of metastatic breast cancer cells. In future, 
this platform could highlight the effects of compounds, or drugs, on the underlying activity of 
cancer cell cohorts in a clinical setting. 
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1. Introduction 

Breast cancer remains a major cause of death worldwide, with several challenges at various 
stages of the clinical process, ranging from the initial diagnosis to treatments and therapies. Triple 
negative breast cancer (TNBC) is particularly difficult to treat given its aggressively metastatic nature, 
and the absence of common receptors that hormone therapies could target [1,2]. Although extensive 
work has been done with regard to the recording of individual ion channels in cancer cells using 
patch-clamp approaches, there are few studies at a cell population level. Studies examining cancer 
cell populations offer the possibility to investigate membrane currents and voltages without the 
application of external stimulus. These models also better represent the in vivo reality of tumour 
proliferation, invasion, and metastasis, since these processes typically involve a cell cohort.  
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A combination of population and individual cell recordings is therefore crucial for examining 
processes associated with metastatic cancer cells. 

One approach for detecting the extracellular activity of cancer cell cohorts is using cell-based 
biosensors. These devices enable the non-invasive monitoring of cellular behaviour through the 
detection of various electrochemical signals, such as current, potential, capacitance, and impedance, 
corresponding to biological processes involving ion transfer and reduction/oxidation reactions.  
Cell-based biosensors have therefore been used for studies of cell type, concentration, viability, 
proliferation, and apoptosis [3–5]. One cell-based biosensor of interest for electrically monitoring cells 
is the micro-electrode array (MEA). MEAs are electrochemical biosensors that typically consist of 
planar electrodes embedded in an insulating substrate and in close contact with cells in culture 
medium, enabling the detection of extracellular activity. Research in this field has focused primarily 
on improving spatial resolution and coupling between cells and electrodes [6,7], leading to an 
increase in electrode density and decrease in electrode area. Some work has also focused on 
functionalising the surface of such devices with antibodies and other compounds to target specific 
extracellular analytes, rather than cells [8,9]. Commercially available MEAs, to decode cells’ 
extracellular activity, typically consist of several, small area electrodes with diameters ranging between 
10 and 100 µm [6]. This results in a very large electrode impedance, for recording high frequency events 
in the kHz range typically seen in neuronal firing, whilst filtering out low frequency content.  
To overcome this issue, we employed large area electrodes with areas in the order of mm2 to minimise 
impedance, and hence maximise the Helmholtz–Gouy–Chapman double-layer capacitance [10,11]. 

Preliminary population-level recordings from aggressively metastatic breast cancer cells, 
modelled by the MDA-MB-231 cell line, indicate two prominent patterns of electrical activity [10], 
one consisting of fast, asynchronous bursts originating from voltage-gated sodium channels (VGSCs) 
and another with a slower pulse duration, resembling random telegraph signal (RTS) noise. In the 
time domain, this sort of noise consists of step-like transitions between two or more levels, showing 
a square-like shape. This has been previously observed and investigated in the context of metal oxide 
semiconductor (MOS) devices, where they correspond to the trapping and releasing of charge carriers 
at the silicon/oxide interface or in the oxide itself [12]. It has been proposed that two-level RTS noise 
in MOS devices can be modelled as the combination of a Markovian process and background 
Gaussian noise [12]. RTS noise has also been observed in chemical reactions and individual ion 
channel recordings [13]. Ionic fluxes through cell membranes and biochemical pathways also showed 
an underlying 1/f noise pattern [14,15]. 

In this study, we built upon prior two-level RTS analyses to examine multi-level RTS signalling 
recorded from MDA-MB-231 cells using an ultra-low noise biosensor based on a large-area MEA.  
We developed a state machine-based algorithm that generates a “clean” RTS model from windows 
of recorded data and computed thresholds. This was then used to generate a Markov chain for each 
window, with the probabilities of remaining in and switching states, which illustrates how the RTS 
behaviour evolves over recordings of 1–2 h. This approach enables the extraction of pulse durations, 
as well as the separation of RTS noise and 1/f-like background noise, consistent with prior research 
on 1/f noise in ion channels. 

2. Materials and Methods 

MDA-MB-231 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma,  
St. Louis, MO, USA) containing 5% v/v foetal bovine serum (FBS; Gibco) and 4 mM L-Glutamine 
(Sigma), and grown according to the protocol described in [10]. The cells were harvested once a 
confluence of 70% had been reached, and a cell density of 1 × 106 cells/mL was deposited on the 
proposed MEA device for each experiment. 

The MEA device used for conducting the RTS recordings consisted of a silicon dioxide substrate 
containing four pairs of planar, circular electrodes of 2 mm2 area. The device was manufactured by 
evaporating a 10 nm layer of chromium followed by a 50 nm layer of gold through a shadow mask 
with the desired electrode pattern. At this stage, the electrodes were also connected to measurement 
pads using strip lines of negligible area. In each pair of measurement electrodes, one of the electrodes 
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acted as a measuring electrode, and the other as a counter electrode. An equivalent circuit model can 
be used to describe the interface between the electrodes and cells, as described in [11]. Given the large 
electrode area, the recorded signal corresponds to the sum of each active, adherent cell on the electrode 
surface. Uncorrelated activity therefore appears as noise and low amplitude, asynchronous spikes. 

The electrical current generated by MDA-MB-231 cell populations was recorded over time, for 
up to 72 h, with all recordings repeated in three independent experiments. Then, 1–2 h sections of 
RTS data were extracted, detrended, separated into rectangular 5 min windows, and bandpass 
filtered in preparation for the generation of RTS models. A state machine was used instead of a single 
point detector, given that the overshoots and faster pulses did not constitute RTS activity but would 
be erroneously detected using this approach. These overshoots can be seen in Figure 1 on the rising 
and falling edges of each RTS pulse and arise from low pass filtering in the recording equipment.  
The sparse, asynchronous spikes correspond to uncorrelated cell activity. Therefore, a minimum time 
duration of 0.5 s for RTS pulses was assumed, and the state machine would only switch to a different 
RTS levels if sufficient subsequent samples were seen at that level. 

 
Figure 1. Random telegraph signal (RTS) noise observed in MDA-MB-231 recordings. (a) Recording 
showing RTS activity over a period of 7 min; (b) detailed section of RTS pulses. 

Thresholding Approach 

Standard signal detection theory was used to determine the thresholds for transitioning between 
RTS states, as described in [16,17]. Following this analysis, 1/f noise is considered to have a Gaussian 
probability density function (PDF) as follows: 𝑊ଵ/௙ሺ𝐼ሻ ൌ  1√2𝜋𝜎ଶ 𝑒𝑥𝑝 ቆ 𝐼ଶ2𝜎ଶቇ (1) 

Thus, the PDF of the overall signal, containing RTS and 1/f noise, is the weighted sum of two 
Gaussian distributions with different means: 𝑊ூሺ𝐼ሻ ൌ  𝑞√2𝜋𝜎ଶ 𝑒𝑥𝑝 ቆെ ሺ𝐼 ൅ 𝑏ሻଶ2𝜎ଶ ቇ ൅ 𝑝√2𝜋𝜎ଶ 𝑒𝑥𝑝 ቆെ ሺ𝐼 െ 𝑎ሻଶ2𝜎ଶ ቇ  (2) 

where a and b correspond to two RTS levels. The probabilities q and p for two states are: 𝑝 ൌ  〈𝛼〉/〈〈𝛼〉 ൅ 〈𝛽〉〉, 𝑞 ൌ  〈𝛽〉/〈〈𝛼〉 ൅ 〈𝛽〉〉 (3) 

where α is the time duration at RTS level a, and β is the duration of RTS level b. To distinguish 
between two states, a likelihood relation can be used corresponding to the ratio between the two 
terms in Equation (2), which simplifies to the following: 𝐼଴ ൌ 𝑎 െ 𝑏2 ൅ 𝜎ଶ𝑎 ൅ 𝑏 𝑙𝑛 𝑎𝑏  (4) 

Equation (4) was used for each pair of RTS levels detected in a window in order to produce 
multiple thresholds for generating a multi-level RTS model. An example of the kind of RTS model 
obtained using this thresholding algorithm, and subsequently a state machine for determining level 
transitions, is shown in Figure 2. 
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Figure 2. Detailed RTS section highlighting the parameters used for the thresholding approach.  
The original RTS waveform (black) is shown with the resultant RTS model (magenta), as well as  
two detected thresholds (𝐼௔ and 𝐼௕ in blue), three RTS states (red), and the duration of pulses at each 
of the states (𝛼, 𝛽, and 𝛾). 

3. Results and Discussion 

Our low impedance biosensor shows an electrochemical background noise level of 1 pA  
(peak-to-peak) [11] which allowed us to detect minute current oscillations across large populations 
of MDA-MB-231 cell cohorts [10]. The RTS behaviour was examined and extracted. Following  
two-level RTS theory, this type of noise can be characterised in terms of its “on” and “off” times, 
which correspond to the duration at which the signal is above the baseline amplitude level and 
returned to this baseline, respectively. This applies to two-level RTS signals given that there are only 
two amplitude levels; however, in multi-level RTS, the signal does not return to a baseline value,  
but rather any other number of amplitude levels. Given the multi-level nature of the RTS activity seen 
in these experiments, our analysis therefore focuses on time “on” for positive and negative pulses. 
RTS activity is also defined by a Lorentzian spectrum in the frequency domain, indicating the 
frequency above which the spectrum rolls off as 1/f2, conditioning the harmonic mean of “on” and 
“off” times. Alternatively, a theoretical current power spectral density (PSD) can also be derived for 
a two-level signal as follows [18]: 1𝜏௘௙௙ ൌ  1𝜏ைே ൅ 1𝜏ைிி (5) 

𝑆ூሺ𝜔ሻ ൌ 4ሺ𝛿𝐼ଶሻ ቆ 𝜏௘௙௙𝜏ைே ൅ 𝜏ைிி ∙ 𝜏௘௙௙1 ൅ 𝜔ଶ𝜏௘௙௙ଶ ቇ (6) 

where 𝜔 ൌ 2𝜋𝑓 is the angular frequency and 𝛿𝐼 is the amplitude of the current pulses. Figure 3a 
shows the distribution of time “on” for positive pulses, and Figure 3b shows this for negative pulses. 
The theoretical model based on Equation (6) is shown in Figure 4a, using a time “on” of 1.9 s,  
which is in good agreement with the results seen in Figure 3a. 

The generated RTS model is not only useful for determining time “on” more accurately but can 
also be leveraged to uncover the nature of underlying background noise from uncorrelated signalling 
events. This was achieved by subtracting the RTS model represented in Figure 4a, from a 
corresponding unfiltered window of data, showing background noise with a 1/f trend, as plotted in 
Figure 4b. 

From the generated RTS model, it is also possible to create discrete Markov chain models for 
identifying the probabilities of moving between RTS states. Figure 5 shows exemplar stochastic 
matrices (SMs) seen across the RTS data. Given that RTS pulses can last up to 10 s, high probabilities 
are seen across the diagonals of each SM, corresponding to the likelihood of remaining in the same 
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state. Another insight this analysis offers is that when there is a state change, this is likely to be an 
adjacent state rather than one several levels away. For instance, in Figure 5a, it is not possible to 
transition from the −120 pA to the 50 pA state, and vice versa. 

  
(a) (b) 

Figure 3. Characterisation of pulse durations and amplitudes. (a) Distribution of pulse durations for 
positive RTS pulses; (b) distribution of pulse durations for negative RTS pulses. 

  
(a) (b) 

Figure 4. Current power spectral densities (PSDs) from extracted components in the recordings.  
(a) Generated RTS model PSD showing a Lorentzian shape; (b) residual noise after generated RTS 
model is subtracted from the original signal, showing a 1/f trend. 

  
(a) (b) 

Figure 5. Example state transition matrices seen across RTS recordings generated by examining each 
data sample in generated RTS models. (a,b) correspond to two state transition matrices extracted from 
two separate recordings. The main diagonal shows the likelihood of remaining in each RTS level, 
whereas the other positions represent the likelihoods of switching from the state in each row to the 
ones in each column. 
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The state machine approach worked well for identifying RTS behaviour whilst also mitigating 
the effects of overshoots and abrupt spikes. The fact that the observed RTS behaviour can be modelled 
using this approach suggests that the process is Markovian. Previous two-level RTS processes have 
also been described using Markov processes, but to the best of our knowledge, this is the first time 
that multi-level RTS has been recorded from biological cell cohorts and subsequently modelled.  
This approach could be useful for rapidly examining the nature of RTS-like behaviour in biological 
or other processes, ranging from the pulse durations to common patterns seen in windowed sections 
of data. This probabilistic analysis could also provide some insights into the biological processes 
underlying each state and transitions between different states. 

4. Conclusions 

This work describes a low noise biosensor employed to detect multi-level RTS noise from highly 
metastatic MDA-MB-231 cell cohorts. The biosensor leverages large electrode areas of 2 mm2 to 
increase the concomitant detection sensitivity, and hence record low-amplitude RTS noise from 
cancer cell cohorts. The RTS noise was modelled and investigated using a state machine approach. 
The state machine approach allowed us to calculate the time “on” of positive and negative RTS 
pulses, as well as the state transition matrices for investigating the likelihood of transitioning between 
the different RTS states, and how these vary across 5 min windows of RTS data from each recording. 
It was found that there is a high probability of remaining in the current RTS state, given the durations 
in the order of s, and if a state transition occurs, this will likely be to an adjacent state. This work 
highlights the potential of both the biosensing platform and statistical analysis for better 
understanding the underlying mechanisms behind cancer cell cohorts. 
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