Systematic Model-Based Steady State and Dynamic Optimization of Combined Cooling and Antisolvent Multistage Continuous Crystallization Processes †
Abstract
:1. Introduction
2. Materials and Methods
- All vessels are assumed to be well-mixed.
- The total volume of the solvent and antisolvent is additive.
- The secondary nucleation, breakage and agglomeration are negligible.
3. Results and Discussion
3.1. Steady State Optimization
3.2. Startup Optimization
4. Conclusions
References
- Mascia, S.; Heider, P.L.; Zhang, H.; Lakerveld, R.; Benyahia, B.; Barton, P.I.; Braatz, R.D.; Cooney, C.L.; Evans, J.M.B.; Jamison, T.F.; et al. End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation. Angew. Chem. Int. Ed. 2013, 52, 12359–12363. [Google Scholar] [CrossRef] [PubMed]
- Benyahia, B.; Lakerveld, R.; Barton, P.I. A Plant-Wide Dynamic Model of a Continuous Pharmaceutical Process. Ind. Eng. Chem. Res. 2012, 51, 15393–15412. [Google Scholar] [CrossRef]
- Fysikopoulos, D.; Benyahia, B.; Borsos, A.; Nagy, Z.K.; Rielly, C.D. A Framework for Model Reliability and Estimability Analysis of Crystallization Processes with Multi-Impurity Multi-Dimensional Population Balance Models. Comput. Chem. Eng. 2019, 122, 275–292. [Google Scholar] [CrossRef]
- Nagy, Z.K.; Fujiwara, M.; Braatz, R.D. Modelling and Control of Combined Cooling and Antisolvent Crystallization Processes. J. Process Control 2008, 18, 856–864. [Google Scholar] [CrossRef]
- Lakerveld, R.; Benyahia, B.; Heider, P.L.; Zhang, H.; Wolfe, A.; Testa, C.J.; Ogden, S.; Hersey, D.R.; Mascia, S.; Evans, J.M.B.; et al. The Application of an Automated Control Strategy for an Integrated Continuous Pharmaceutical Pilot Plant. Org. Process Res. Dev. 2015, 19, 1088–1100. [Google Scholar] [CrossRef]
- Benyahia, B. Applications of a Plant-Wide Dynamic Model of an Integrated Continuous Pharmaceutical Plant: Design of the Recycle in the Case of Multiple Impurities, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 41. [Google Scholar]
- Su, Q.; Benyahia, B.; Nagy, Z.K.; Rielly, C.D. Mathematical Modeling, Design, and Optimization of a Multisegment Multiaddition Plug-Flow Crystallizer for Antisolvent Crystallizations. Org. Process Res. Dev. 2015, 19, 1859–1870. [Google Scholar] [CrossRef]
- Yang, Y.; Nagy, Z.K. Combined Cooling and Antisolvent Crystallization in Continuous Mixed Suspension, Mixed Product Removal Cascade Crystallizers: Steady-State and Startup Optimization. Ind. Eng. Chem. Res. 2015, 54, 5673–5682. [Google Scholar] [CrossRef]
- Lindenberg, C.; Krättli, M.; Cornel, J.; Mazzotti, M.; Brozio, J. Design and Optimization of a Combined Cooling/Antisolvent Crystallization Process. Cryst. Growth Des. 2008, 9, 1124–1136. [Google Scholar] [CrossRef]
- Barik, K.; Prusti, P.; Mohapatra, S.S. Single- and Multi-Objective Optimisation for a Combined Cooling and Antisolvent Semi-Batch Crystallisation Process with an ACADO Toolkit. Indian Chem. Eng. 2020, 62, 287–300. [Google Scholar] [CrossRef]
- Parekh, R.; Benyahia, B.; Rielly, C.D. A Global State Feedback Linearization and Decoupling MPC of a MIMO Continuous MSMPR Cooling Crystallization Process; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43. [Google Scholar]
- Benyahia, B.; Latifi, M.A.; Fonteix, C.; Pla, F. Multicriteria dynamic optimization of an emulsion copolymerization reactor. Comput. Chem. Eng. 2012, 35, 2886–2895. [Google Scholar] [CrossRef]
kG | kB | |
---|---|---|
1 | ||
2 | ||
3 |
Pij | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | 39.9 | 4.851 | −0.1704 | 0.007273 | −0.0001213 | |
2 | 3.714 | 0.2022 | −0.01658 | |||
3 | 0.1693 | −0.003634 | 0.0003186 |
Stage 1 | Stage 2 | Stage 3 | |
---|---|---|---|
Temperature (°C) | 25.11 | 25.09 | 25.00 |
Antisolvent flow rate (g/min) | 2.05 | 7.59 | 8.61 |
Residence time (min) | 3.77 | 10.20 | 16.03 |
0–10 min | 0.03 | 1.52 | 16.47 |
10–20 min | 0.20 | 9.48 | 13.06 |
20–30 min | 0.39 | 5.62 | 19.80 |
30–40 min | 0.14 | 9.85 | 19.88 |
40–50 min | 0.25 | 9.62 | 19.32 |
50–end (steady state setting) | 2.05 | 7.59 | 8.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Benyahia, B. Systematic Model-Based Steady State and Dynamic Optimization of Combined Cooling and Antisolvent Multistage Continuous Crystallization Processes. Proceedings 2020, 62, 7. https://doi.org/10.3390/proceedings2020062007
Liu J, Benyahia B. Systematic Model-Based Steady State and Dynamic Optimization of Combined Cooling and Antisolvent Multistage Continuous Crystallization Processes. Proceedings. 2020; 62(1):7. https://doi.org/10.3390/proceedings2020062007
Chicago/Turabian StyleLiu, Jiaxu, and Brahim Benyahia. 2020. "Systematic Model-Based Steady State and Dynamic Optimization of Combined Cooling and Antisolvent Multistage Continuous Crystallization Processes" Proceedings 62, no. 1: 7. https://doi.org/10.3390/proceedings2020062007
APA StyleLiu, J., & Benyahia, B. (2020). Systematic Model-Based Steady State and Dynamic Optimization of Combined Cooling and Antisolvent Multistage Continuous Crystallization Processes. Proceedings, 62(1), 7. https://doi.org/10.3390/proceedings2020062007