
����������
�������

Citation: Burgin, M.; Rajagopalan, K.

Information Processing by Selective

Machines. Proceedings 2022, 81, 122.

https://doi.org/10.3390/

proceedings2022081122

Academic Editors: Marcin

J. Schroeder, Masami Hagiya,

Yasuhiro Suzuki and

Gordana Dodig-Crnkovic

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

proceedings

Proceeding Paper

Information Processing by Selective Machines †

Mark Burgin * and Karthik Rajagopalan

Department of Computer Science, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
karthikrajagopalan.223@gmail.com
* Correspondence: markburg@cs.ucla.edu
† Presented at the 13th International Workshop on Natural Computing (IWNC), IS4SI Summit 2021, online, 12–19

September 2021.

Abstract: The goal of this paper is to develop the novel automaton model of learning processes called
a selective machine and to study the properties of these machines. The model is based on the analysis
of the process of language acquisition by people, although it correctly reflects how learning occurs in
nature when animals, birds and even fish learn. A selective machine is an abstract automaton that has
processors that can belong to different classes of conventional abstract automata. This creates various
classes of selective machines. It is proved that in a general case, a selective machine can have higher
learning abilities than any of its processors. This shows how synergy emerges in the technological
sphere and explains why computer networks are able to outperform separate computers.

Keywords: natural computing; information processing; correction; selection; processor; language;
synergy

1. Introduction

Learning is an important category of information acquisition. Machine learning
utilizes automata for learning in general and language learning, in particular. In addition,
abstract automata are used for modeling learning by people. In this work, analyzing how
people learn natural languages, we develop a new approach to modeling and performing
language learning by abstract automata. This allows treating natural language learning as
natural computing.

The conventional models of natural language acquisition assume that in the process
of learning, children, as well as adult learners, find out and memorize the correct words,
rules of generating sentences, and rules of their utilization. However, this picture misses
an important peculiarity of the learning process. Namely, people also gain knowledge of
incorrect words and sentences, and this knowledge helps them avoid incorrect linguistic
constructions in communication.

To model this process, we introduce a new type of computational automata called
selective machines. A selective machine can not only generate (compute) words and texts
but also eliminate (uncompute) words and texts. This property allows achieving higher
power and lower complexity in computations.

It is necessary to remark that this approach to learning has been previously studied in
the context of formal grammars [1–6]. Here, we explore learning as a natural information
acquisition process, modeling it with computing automata.

2. Constructing Selective Machines

A selective machine M has positive and negative processors which accept/recognize words.
The difference between positive and negative processors is their purpose of computa-

tion. Positive processors accept or recognize tentative (or possible) elements of a language.
However, it is not assumed that all of them are correct (belong to the language under
construction). The goal of negative processors is to recognize those elements that do not

Proceedings 2022, 81, 122. https://doi.org/10.3390/proceedings2022081122 https://www.mdpi.com/journal/proceedings

https://doi.org/10.3390/proceedings2022081122
https://doi.org/10.3390/proceedings2022081122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com
https://doi.org/10.3390/proceedings2022081122
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com/article/10.3390/proceedings2022081122?type=check_update&version=1


Proceedings 2022, 81, 122 2 of 4

belong to the language under construction, that is, are incorrect. This allows building a
language by the procedure where at first tentative (or possible) elements of the language
are extracted, and then the incorrect words are eliminated.

We note that a language L is accepted or recognized by a conventional automaton
(machine) M, such as a finite automaton or a Turing machine, if this automaton accepts all
words from L and only these words. It is denoted by LM or L(M) and is also called that
language of the machine M.

In the case of selective machines, we have two types of languages.
The positive language L(MP) of the selective machines M is the language accepted/

recognized by all positive processors of M.
The negative language is defined in a similar way.
The negative language L(MN) of the selective machines M is the language rejected/

eliminated/prohibited by any of the negative processors of M.
Positive and negative languages together recognize the language of selective machines

in the following way.
The language L(M) = L(MP)\L(MN) is the language of the selective machine M.

3. Classes of Selective Machines

Taking two classes K and H of automata (algorithms), we denote by K/H the class
of all selective machines, in which the positive processors are automata from K and the
negative processors are automata from H.

In what follows, we consider selective machines that have one positive processor and
one negative processor, each of which belongs to one of the following classes:

• FA is the class all finite automata working with words in a given alphabet
• PA is the class all pushdown automata working with words in a given alphabet
• TM is the class all Turing machines working with words in a given alphabet

This gives us the following classes of selective machines:

1. FA/FA is the class of all finite selective machines, or FF-selective machines, in which
both positive and negative processors are finite automata.

2. FA/PA is the class of all FP-selective machines, in which the positive processor is a
finite automaton, and the negative processor is a pushdown automaton.

3. FA/TM is the class of all FT-selective machines, in which the positive processor is a
finite automaton, and the negative processor is a Turing machine.

4. PA/PA is the class of all pushdown selective machines, in which both the positive and
negative processors are pushdown automata.

5. PA/FA is the class of all PF-selective machines, in which the positive processor is a
pushdown automaton, and the negative processor is a finite automaton.

6. PA/TM is the class of all PT-selective machines, in which the positive processor is a
pushdown automaton, and the negative processor is a Turing machine.

7. TM/TM is the class of all Turing selective machines, or TM-selective machines, in which
both positive and negative processors are Turing machines.

8. TM/FA is the class of all PF-selective machines, in which the positive processor is a
Turing machine, and the negative processor is a finite automaton.

9. TM/PA is the class of all TP-selective machines, in which the positive processor is a
Turing machine, and the negative processor is a pushdown automaton.

4. Properties of Selective Machines

We note that the recognizing linguistic power RL(A) (RL(Q)) of an automaton A (a
class Q of automata) is the class of all formal languages recognized by the automaton A (by
the automata from the class Q).

Taking two classes K and H of automata (algorithms), we can compare their recogniz-
ing power. The recognizing power of K is larger than or equal to the recognizing power of
H if L(H) ⊆ L(K). It is denoted by H ≤ L K. The recognizing power of K is larger than the
recognizing power of H if L(H) ⊂ L(K). It is denoted by H < L K.



Proceedings 2022, 81, 122 3 of 4

Lemma 1. (a) If D ≤ LK, then D/H ≤ L K/H.
(b) If D ≤ L H, then K/D ≤ L K/H.

Theorem 1. The selective (recognizing) power of the class FA/FA of finite selective machines is the
same as the selective (recognizing) power of the class FA of all finite automata.

Proof. To achieve better understanding of selective machines, we give two proofs of this
theorem—one direct and another by reduction to formal grammars. �

(1) Direct proof. Let us consider the empty class ∧FA of finite automata, i.e., By Lemma
1, FA ≤ L FA/FA because FA = FA/∧FA and we need only to prove FA/FA ≤ L FA.
Finite automata recognize regular languages. The difference of two regular languages
is a regular language, which is accepted by a finite automaton. Consequently, any
language from the class LA(FA/FA) belongs to the class LA(FA), and thus, FA/FA ≤L
FA, which implies the equality FA/FA = L FA.

(2) Indirect proof. Finite automata are linguistically equivalent to regular grammars, i.e.,
FA = L G3 where G3 is the class of all regular grammars. Thus, the class FA/FA of
finite selective machines is linguistically equivalent to the class G33 of grammars with
prohibition [1]. Then by Theorem 2 from [2], we have FA/FA = L FA.

Theorem is proved.

Theorem 2. The selective (recognizing) power of the class PA/FA of selective machines is the same
as the selective (recognizing) power of the class PA of all pushdown automata.

Proof is similar to the proof of Theorem 1.

Theorem 3. The selective (recognizing) power of the class TM/FA of selective machines is the same
as the selective (recognizing) power of the class TM of all Turing machines.

Proof is similar to the proof of Theorem 1.

Theorem 4. The selective (recognizing) power of the class TM/TM of Turing selective machines is
higher than the selective (recognizing) power of the class TM of all Turing machines.

Proof. Turing machines are linguistically equivalent to unrestricted grammars from the
Chomsky hierarchy, i.e., TM =L G0 where G0 is the class of all unrestricted grammars. Thus,
the class TM/TM of finite selective machines is linguistically equivalent to the class G00 of
grammars with prohibition [1]. Then by Theorem 7 from [2], we have TM/TM >L TM. �

Theorem is proved.
The statement of Theorem 4 means that selective machines with Turing machines as

their processors can do more than Turing machines. Consequently, TM/TM is the class of
super-recursive algorithms [7]. This, in turn, refutes the Church-Turing Thesis.

Theorems 3 and 4 display relations of selective machines to the arithmetical hierarchy [8,9].
The language (set) L is Turing selective recognizable if it is recognized by some machine

from the class TM/TM.

Theorem 5. The class STR of all Turing selective recognizable languages (sets) contains the union
Σ1 ∪ Π1.

This result brings us to the problem whether STR = Σ1 ∪ Π1. One more interesting
problem is to study selective machines with oracles.



Proceedings 2022, 81, 122 4 of 4

Theorem 6. The accepting (recognizing) complexity in the class TM/TM of selective machines can
be much smaller than the accepting (recognizing) complexity in the class TM of all Turing machines.

This shows that selective machines can be not only more powerful than Turing ma-
chines but also more efficient.

5. Conclusions

We described a novel model of abstract automata called a selective machine, demon-
strating that in some cases selective machines have the same recognizing (learning) power
as their constituents (processors), while in other important cases, such as selective machines
with Turing machines as their constituents (processors), they have higher recognizing
(learning) power than their constituents (processors).

In addition, selective machines formalize techniques used in proving some impor-
tant results for Turing machines. An example of such a result is the Friedberg–Muchnik
theorem [8,9].

It is possible to ask whether the same automaton can generate words and exclude
those that do not belong to the language under construction. The answer is yes, it is
possible, but the results proved by the authors demonstrate that in many important cases,
two automata—one positive and another negative, which belong to the same class K (for
example, both are Turing machines)—can generate, describe, and recognize many more
languages than one automaton from this class K (one Turing machine) can. This clearly
shows how synergy emerges from the interaction of constituents in a system.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Burgin, M. Grammars with Prohibition and Human-Computer Interaction. In Proceedings of the Business and Industry Simulation

Symposium; Society for Modeling and Simulation International: San Diego, CA, USA, 2005; pp. 143–147.
2. Burgin, M. Basic Classes of Grammars with Prohibition, Preprint in Computer Science. arXiv 2013, arXiv:1302.5181.
3. Burgin, M. Grammars with Exclusion. J. Comput. Technol. Appl. 2015, 6, 56–66.
4. Carlucci, L.; Case, J.; Jain, S. Learning correction grammars. J. Symb. Logic 2009, 74, 489–516. [CrossRef]
5. Case, J.; Jain, S. Rice and Rice-Shapiro theorems for transfinite correction grammars. Math. Logic Q. 2011, 57, 504–516. [CrossRef]
6. Case, J.; Royer, J. Program Size Complexity of Correction Grammars in the Ershov Hierarchy. In 12th Conference of Computability

in Europe (CiE 2016), Proceedings, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 7921,
pp. 240–250.

7. Burgin, M. Super-Recursive Algorithms; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2005.
8. Shen, A.; Vereshchagin, N.K. Computable Functions; AMS: Providence, RI, USA, 2003.
9. Rogers, H. Theory of Recursive Functions and Effective Computability; MIT Press: Cambridge, MA, USA, 1987.

http://doi.org/10.2178/jsl/1243948324
http://doi.org/10.1002/malq.201020054

	Introduction 
	Constructing Selective Machines 
	Classes of Selective Machines 
	Properties of Selective Machines 
	Conclusions 
	References

