The Four Principal Megabiases in the Known Fossil Record: Taphonomy, Rock Preservation, Fossil Discovery and Fossil Study †
Abstract
:1. Introduction
2. Taphonomic Megabiases
3. Rock Preservation
4. Fossil Discovery
5. Fossil Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benton, M.J.; Dunhill, A.M.; Lloyd, G.T.; Marx, F.G. Assessing the quality of the fossil record: Insights from vertebrates. Geol. Soc. Lond. Spec. Publ. 2011, 358, 63–94. [Google Scholar] [CrossRef]
- Behrensmeyer, A.K.; Kidwell, S.M.; Gastaldo, R.A. Taphonomy and paleobiology. Paleobiology 2000, 26, 103–147. [Google Scholar] [CrossRef]
- Schumm, S.A. Paleohydrology: Applications of modern hydrologic data to problems of the ancient past. In Proceedings of the International Hydrology Symposium, Fort Collins, CO, USA, 6–7 September 1967; Volume 1, pp. 185–193. [Google Scholar]
- Schumm, S.A. Speculations concerning paleohydrologic controls of terrestrial sedimentation. Geol. Soc. Am. Bull. 1968, 79, 1573–1588. [Google Scholar] [CrossRef]
- Cotter, E. The evolution of fluvial style, with special reference to the central Appalachian Paleozoic. Can. Soc. Pet. Geol. Mem. 1978, 5, 361–383. [Google Scholar]
- Davies, N.S.; Gibling, M.R. Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants. Earth Sci. Rev. 2010, 98, 171–200. [Google Scholar] [CrossRef]
- Davies, N.S.; Gibling, M.R. The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth Sci. Rev. 2013, 120, 40–79. [Google Scholar] [CrossRef]
- Gibling, M.R.; Davies, N.S. Palaeozoic landscapes shaped by plant evolution. Natl. Geogr. 2012, 5, 99–105. [Google Scholar] [CrossRef]
- Hunt, A.P. Fluvial vertebrate taphonomy: Historical perspectives. New Mex. J. Sci. 1984, 24, 26–27. [Google Scholar]
- Hunt, A.P. Phanerozoic trends in nonmarine taphonomy: Implications for Mesozoic vertebrate taphonomy and paleoecology. Geol. Soc. Am. Abstr. Programs 1987, 19, 171. [Google Scholar]
- Hunt, A.P.; Santucci, V.L.; Lucas, S.G. Vertebrate Trace Fossils from Arizona with Special Reference to Tracks Preserved in National Park Service Units and Notes on the Phanerozoic Distribution of Fossil Footprints; New Mexico Museum of Natural History and Science Bulletin: Albuquerque, NM, USA, 2005; Volume 29, pp. 159–167. [Google Scholar]
- Farlow, J.O. A consideration of the trophic dynamics of a Late Cretaceous large-dinosaur community (Oldman Formation). Ecology 1976, 57, 841–857. [Google Scholar] [CrossRef]
- Fiorillo, A.R. Prey bone utilization by predatory dinosaurs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 88, 157–166. [Google Scholar] [CrossRef]
- Drumheller, S.K.; McHugh, J.B.; Kane, M.; Riedel, A.; D’Amore, D.C. High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem. PLoS ONE 2020, 15, e0233115. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.P.; Lucas, S.G. The Ichnology of Vertebrate Consumption: Dentalites, Gastroliths and Bromalites; New Mexico Museum of Natural History and Science Bulletin: Albuquerque, NM, USA, 2021; Volume 87, pp. 1–215. [Google Scholar]
- Hunt, A.P.; Lucas, S.G. The Upper Cretaceous fossil record of the Western Interior Basin of North America is a Megalagerstätte. Geol. Soc. Am. Abstr. Programs 2022, 54. [Google Scholar] [CrossRef]
- Raup, D.M. Taxonomic diversity during the Phanerozoic. Science 1972, 177, 1065–1071. [Google Scholar] [CrossRef]
- Raup, D.M. Species diversity in the Phanerozoic: A tabulation. Paleobiology 1976, 2, 279–288. [Google Scholar] [CrossRef]
- Sheehan, P.M. Species diversity in the Phanerozoic. A reflection of labor by systematists? Paleobiology 1977, 2, 325–328. [Google Scholar] [CrossRef]
- Signor, P.W., III. Species richness in the Phanerozoic: Compensating for sampling bias. Geology 1982, 10, 625–628. [Google Scholar] [CrossRef]
- Signor, P.W., III. Real and apparent trends in species richness through time. In Phanerozoic Diversity Patterns: Profiles in Macroevolution; Valentine, J.W., Ed.; Princeton University Press: Princeton, NJ, USA, 1985; pp. 129–150. [Google Scholar]
- Smith, A.B.; McGowan, A.J. The shape of the Phanerozoic marine palaeodiversity curve: How much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 2007, 50, 765–774. [Google Scholar] [CrossRef]
- Lucas, S.G. Carboniferous tetrapod biostratigraphy, biochronology and evolutionary events. Geol. Soc. Lond. Spec. Publ. 2022, 512, 965–1001. [Google Scholar] [CrossRef]
- Lucas, S.G. Middle to Late Pennsylvanian tetrapod evolution: The Kasimovian bottleneck. Geol. Soc. Lond. Spec. Publ. 2023, 535. [Google Scholar] [CrossRef]
- Milner, A.R. The Westphalian tetrapod fauna; some aspects of its geography and ecology. J. Geol. Soc. 1987, 144, 495–506. [Google Scholar] [CrossRef]
- Clack, J.A.; Milner, A.R. Basal Tetrapoda. In Handbook of Paleoherpetology 3A1; Verlag Dr. Friedrich Pfeil: München, Germany, 2015; pp. 1–90. [Google Scholar]
- Schutter, S.R.; Heckel, P.H. Missourian (early late Pennsylvanian) climate in midcontinent North America. Int. J. Coal Geol. 1985, 5, 111–140. [Google Scholar] [CrossRef]
- Cleal, C.J.; Oplustil, S.; Thomas, B.A.; Tenchov, V. Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica. Neth. J. Geosci. 2009, 88, 181–278. [Google Scholar] [CrossRef]
- Boucot, A.J.; Xu, C.; Scotese, C.R.; Morley, R.J. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 2013; Volume 11. [Google Scholar]
- Hunt, A.P.; Lucas, S.G.; Klein, H. Late Triassic nonmarine vertebrate and invertebrate trace fossils and the pattern of the Phanerozoic record of vertebrate trace fossils. In The Late Triassic World, Topics in Geobiology 46; Tanner, L.H., Ed.; Springer: New York, NY, USA, 2018; pp. 447–543. [Google Scholar]
- Raup, D.M. Systematists follow the fossils. Paleobiology 1977, 3, 328–329. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunt, A.P.; Lucas, S.G. The Four Principal Megabiases in the Known Fossil Record: Taphonomy, Rock Preservation, Fossil Discovery and Fossil Study. Proceedings 2023, 87, 13. https://doi.org/10.3390/IECG2022-13956
Hunt AP, Lucas SG. The Four Principal Megabiases in the Known Fossil Record: Taphonomy, Rock Preservation, Fossil Discovery and Fossil Study. Proceedings. 2023; 87(1):13. https://doi.org/10.3390/IECG2022-13956
Chicago/Turabian StyleHunt, Adrian P., and Spencer G. Lucas. 2023. "The Four Principal Megabiases in the Known Fossil Record: Taphonomy, Rock Preservation, Fossil Discovery and Fossil Study" Proceedings 87, no. 1: 13. https://doi.org/10.3390/IECG2022-13956
APA StyleHunt, A. P., & Lucas, S. G. (2023). The Four Principal Megabiases in the Known Fossil Record: Taphonomy, Rock Preservation, Fossil Discovery and Fossil Study. Proceedings, 87(1), 13. https://doi.org/10.3390/IECG2022-13956