A Review of the Prediction Methods for Landslide Runout †
Abstract
:1. Introduction
2. Landslide Runout
3. Comparisons of the Empirical–Statistical and Numerical Methods
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancarella, D.; Hungr, O. Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers. Can. Geotech. J. 2010, 47, 827–841. [Google Scholar] [CrossRef]
- Yang, L.; Wei, Y.; Wang, W.; Zhu, S. Numerical Runout Modeling Analysis of the Loess Landslide at Yining, Xinjiang, China. Water 2019, 11, 1324. [Google Scholar] [CrossRef]
- Zahra, T. Quantifying uncertainties in Landslide Runout Modelling. Master’s Thesis, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands, January 2010. [Google Scholar]
- Gutrie, R.; Befus, A. DebrisFlow Predictor: An agent-based runout program for shallow landslides. Nat. Hazards Earth Syst. Sci. 2021, 21, 1029–1049. [Google Scholar] [CrossRef]
- McDougall, S. 2014 Canadian Geotechnical Colloquium: Landslide runout analysis — current practice and challenges. Can. Geotech. J. 2017, 54, 605–620. [Google Scholar] [CrossRef]
- Peruzzetto, M.; Mangeney, A.; Grandjean, G.; Levy, C.; Thiery, Y.; Rohmer, J.; Lucas, A. Operational Estimation of Landslide Runout: Comparison of Empirical and Numerical Methods. Geosciences 2020, 10, 424. [Google Scholar] [CrossRef]
- Clark, B. Numerical Modelling of Debris Flow Hazards using Computational Fluid Dynamics. Master’s Thesis, Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway, 2018. [Google Scholar]
- Milledge, D.G.; Densmore, A.L.; Bellugi, D.; Rosser, N.J.; Watt, J.; Li, G.; Oven, K.J. Simple rules to minimise exposure to coseismic landslide hazard. Nat. Hazards Earth Syst. Sci. 2019, 19, 837–856. [Google Scholar] [CrossRef]
- Bayissa, L.F. Back calculation of debris flow run-out & entrainment using the voellmy rheology. Master’s Thesis, Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway, 2017. [Google Scholar]
- Rickenmann, D. Runout prediction methods. In Debris-flow Hazards and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer Praxis Books, Springer: Berlin, Heidelberg, Germany, 2005; pp. 305–324. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Tsangaratos, P.; Ilia, I.; Wang, X. Combining Evolutionary Algorithms and Machine Learning Models in Landslide Susceptibility Assessments. Remote. Sens. 2020, 12, 3854. [Google Scholar] [CrossRef]
- Horton, P.; Jaboyedoff, M.; Rudaz, B.; Zimmermann, M. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Nat. Hazards Earth Syst. Sci. 2013, 13, 869–885. [Google Scholar] [CrossRef]
- Christen, M.; Kowalski, J.; Bartelt, P. RAMMS. Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 2010, 63, 1–14. [Google Scholar] [CrossRef]
- Hungr, O.; McDougall, S. Two numerical models for landslide dynamic analysis. Comput. Geosci. 2009, 35, 978–992. [Google Scholar] [CrossRef]
- Mergili, M.; Fischer, J.-T.; Krenn, J.; Pudasaini, S.P.R. avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 2017, 10, 553–569. [Google Scholar] [CrossRef]
- Pitman, E.B.; Nichita, C.C.; Patra, A.; Bauer, A.; Sheridan, M.; Bursik, M. Computing granular avalanches and landslides. Phys. Fluids 2003, 15, 3638–3646. [Google Scholar] [CrossRef]
- Paudel, B.; Fall, M.; Daneshfar, B. GIS-based modeling of debris flow runout susceptibility in Kulekhani Watershed, Nepal. In Proceedings of the 4th International Conference on Civil, Structural and Transportation Engineering (ICCSTE’19), Ottawa, ON, Canada, 11–12 June 2019. Paper No. ICCSTE 140. [Google Scholar]
- Abraham, M.T.; Satyam, N.; Reddy, S.K.P.; Pradhan, B. Runout modeling and calibration of friction parameters of Kurichermala debris flow, India. Landslides 2021, 18, 737–754. [Google Scholar] [CrossRef]
- Beguería, S.; Van Asch, T.W.J.; Malet, J.-P.; Gröndahl, S. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat. Hazards Earth Syst. Sci. 2009, 9, 1897–1909. [Google Scholar] [CrossRef]
- Hsu, S.M.; Chiou, L.B.; Lin, G.F.; Chao, C.H.; Wen, H.Y.; Ku, C.Y. Applications of simulation technique on debris-flow hazard zone delineation: A case study in Hualien County, Taiwan. Nat. Hazards Earth Syst. Sci. 2010, 10, 535–545. [Google Scholar] [CrossRef]
- Melo, R.; van Asch, T.; Zêzere, J.L. Debris flow run-out simulation and analysis using a dynamic model. Nat. Hazards Earth Syst. Sci. 2018, 18, 555–570. [Google Scholar] [CrossRef]
- O’Brien, J.S.; Julien, P.Y.; Fullerton, W.T. Two-Dimensional Water Flood and Mudflow Simulation. J. Hydraul. Eng. 1993, 119, 244–261. [Google Scholar] [CrossRef]
- Scheidl, C.; Rickenmann, D.; McArdell, B.W. Runout prediction of debris flows and similar mass movements. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 221–229. [Google Scholar] [CrossRef]
- Motamedi, M. Quantitative landslide hazard assessment in regional scale using statistical modeling techniques. Ph.D. Thesis, The Graduate Faculty of The University of Akron, Akron, OH, USA, 2013. [Google Scholar]
- Khalkhali, A.B.; Koochaksaraei, M.K. Evaluation of limit equilibrium and finite element methods in slope stability analysis case study of Zaremroud landslide, Iran. Comput. Eng. Phys. Model. 2019, 2, 1–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komu, M.P.; Nefeslioglu, H.A.; Gokceoglu, C. A Review of the Prediction Methods for Landslide Runout. Proceedings 2023, 87, 3. https://doi.org/10.3390/IECG2022-14604
Komu MP, Nefeslioglu HA, Gokceoglu C. A Review of the Prediction Methods for Landslide Runout. Proceedings. 2023; 87(1):3. https://doi.org/10.3390/IECG2022-14604
Chicago/Turabian StyleKomu, Muge Pinar, Hakan Ahmet Nefeslioglu, and Candan Gokceoglu. 2023. "A Review of the Prediction Methods for Landslide Runout" Proceedings 87, no. 1: 3. https://doi.org/10.3390/IECG2022-14604
APA StyleKomu, M. P., Nefeslioglu, H. A., & Gokceoglu, C. (2023). A Review of the Prediction Methods for Landslide Runout. Proceedings, 87(1), 3. https://doi.org/10.3390/IECG2022-14604