Influence of Black Alder Bark Extractives as Integral Building Blocks on the Susceptibility to Biodegradation of Resilient Polyether Polyurethanes †
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Evaluation of Biological Degradation of Polyurethanes. Biotechnol. Adv. 2020, 39, 107457. [Google Scholar] [CrossRef] [PubMed]
- Arshanitsa, A.; Krumina, L.; Telysheva, G.; Dizhbite, T. Exploring the Application Potential of Incompletely Soluble Organosolv Lignin as a Macromonomer for Polyurethane Synthesis. Ind. Crop. Prod. 2016, 92, 1–12. [Google Scholar] [CrossRef]
- Pischedda, A.; Tosin, M.; Degli-Innocenti, F. Biodegradation of Plastics in Soil: The Effect of Temperature. Polym. Degrad. Stab. 2019, 170, 109017. [Google Scholar] [CrossRef]
- Nabeoka, R.; Suzuki, H.; Akasaka, Y.; Ando, N.; Yoshida, T. Evaluating the Ready Biodegradability of Biodegradable Plastics. Environ. Toxicol. Chem. 2021, 40, 2443–2449. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Choi, S.H.; Park, M.G.; Park, D.H.; Son, K.-H.; Park, H.-Y. Biodegradation of Polyurethane by Japanese Carpenter Bee Gut-Associated Symbionts Xanthomonas Sp. HY-71, and Its Potential Application on Bioconversion. Environ. Technol. Innov. 2022, 28, 102822. [Google Scholar] [CrossRef]
- Gogoi, S.; Karak, N. Biobased Biodegradable Waterborne Hyperbranched Polyurethane as an Ecofriendly Sustainable Material. ACS Sustain. Chem. Eng. 2014, 2, 2730–2738. [Google Scholar] [CrossRef]
- Zuliani, A.; Rapisarda, M.; Chelazzi, D.; Baglioni, P.; Rizzarelli, P. Synthesis, Characterization, and Soil Burial Degradation of Biobased Polyurethanes. Polymers 2022, 14, 4948. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, N.R.; Tessman, M.; Zhen, D.; Johnson, L.; Evans, P.; Clements, S.M.; Pomeroy, R.S.; Burkart, M.D.; Simkovsky, R.; Mayfield, S.P. Biodegradation of Renewable Polyurethane Foams in Marine Environments Occurs through Depolymerization by Marine Microorganisms. Sci. Total Environ. 2022, 850, 158761. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomarenko, J.; Pals, M.; Bikovens, O.; Arshanitsa, A. Influence of Black Alder Bark Extractives as Integral Building Blocks on the Susceptibility to Biodegradation of Resilient Polyether Polyurethanes. Proceedings 2023, 92, 57. https://doi.org/10.3390/proceedings2023092057
Ponomarenko J, Pals M, Bikovens O, Arshanitsa A. Influence of Black Alder Bark Extractives as Integral Building Blocks on the Susceptibility to Biodegradation of Resilient Polyether Polyurethanes. Proceedings. 2023; 92(1):57. https://doi.org/10.3390/proceedings2023092057
Chicago/Turabian StylePonomarenko, Jevgenija, Matiss Pals, Oskars Bikovens, and Alexandr Arshanitsa. 2023. "Influence of Black Alder Bark Extractives as Integral Building Blocks on the Susceptibility to Biodegradation of Resilient Polyether Polyurethanes" Proceedings 92, no. 1: 57. https://doi.org/10.3390/proceedings2023092057
APA StylePonomarenko, J., Pals, M., Bikovens, O., & Arshanitsa, A. (2023). Influence of Black Alder Bark Extractives as Integral Building Blocks on the Susceptibility to Biodegradation of Resilient Polyether Polyurethanes. Proceedings, 92(1), 57. https://doi.org/10.3390/proceedings2023092057