Machine Learning Tools Can Pinpoint High-Risk Water Pollutants †
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papazian, S.; D’Agostino, L.A.; Sadiktsis, I.; Froment, J.; Bonnefille, B.; Sdougkou, K.; Xie, H.; Athanassiadis, I.; Budhavant, K.; Dasari, S.; et al. Nontarget Mass Spectrometry and in Silico Molecular Characterization of Air Pollution from the Indian Subcontinent. Commun. Earth Environ. 2022, 3, 35. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Singer, H.P.; Slobodnik, J.; Ipolyi, I.M.; Oswald, P.; Krauss, M.; Schulze, T.; Haglund, P.; Letzel, T.; Grosse, S.; et al. Non-Target Screening with High-Resolution Mass Spectrometry: Critical Review Using a Collaborative Trial on Water Analysis. Anal. Bioanal. Chem. 2015, 407, 6237–6255. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Ternes, T.A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2022, 94, 382–416. [Google Scholar] [CrossRef] [PubMed]
- McCord, J.P.; Groff, L.C.; Sobus, J.R. Quantitative Non-Targeted Analysis: Bridging the Gap between Contaminant Discovery and Risk Characterization. Environ. Int. 2022, 158, 107011. [Google Scholar] [CrossRef] [PubMed]
- Houtman, C.J.; ten Broek, R.; van Oorschot, Y.; Kloes, D.; van der Oost, R.; Rosielle, M.; Lamoree, M.H. High Resolution Effect-Directed Analysis of Steroid Hormone (Ant)Agonists in Surface and Wastewater Quality Monitoring. Environ. Toxicol. Pharmacol. 2020, 80, 103460. [Google Scholar] [CrossRef] [PubMed]
- Sepman, H.; Malm, L.; Peets, P.; MacLeod, M.; Martin, J.; Breitholtz, M.; Kruve, A. Bypassing the Identification: MS2Quant for Concentration Estimations of Chemicals Detected with Nontarget LC-HRMS from MS 2 Data. Anal. Chem. 2023, 95, 12329–12338. [Google Scholar] [CrossRef] [PubMed]
- Peets, P.; Wang, W.-C.; MacLeod, M.; Breitholtz, M.; Martin, J.W.; Kruve, A. MS2Tox Machine Learning Tool for Predicting the Ecotoxicity of Unidentified Chemicals in Water by Nontarget LC-HRMS. Environ. Sci. Technol. 2022, 56, 15508–15517. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepman, H.; Peets, P.; Jonsson, L.; Malm, L.; Posselt, M.; MacLeod, M.; Martin, J.; Breitholtz, M.; McLachlan, M.; Kruve, A. Machine Learning Tools Can Pinpoint High-Risk Water Pollutants. Proceedings 2023, 92, 68. https://doi.org/10.3390/proceedings2023092068
Sepman H, Peets P, Jonsson L, Malm L, Posselt M, MacLeod M, Martin J, Breitholtz M, McLachlan M, Kruve A. Machine Learning Tools Can Pinpoint High-Risk Water Pollutants. Proceedings. 2023; 92(1):68. https://doi.org/10.3390/proceedings2023092068
Chicago/Turabian StyleSepman, Helen, Pilleriin Peets, Lisa Jonsson, Louise Malm, Malte Posselt, Matthew MacLeod, Jonathan Martin, Magnus Breitholtz, Michael McLachlan, and Anneli Kruve. 2023. "Machine Learning Tools Can Pinpoint High-Risk Water Pollutants" Proceedings 92, no. 1: 68. https://doi.org/10.3390/proceedings2023092068
APA StyleSepman, H., Peets, P., Jonsson, L., Malm, L., Posselt, M., MacLeod, M., Martin, J., Breitholtz, M., McLachlan, M., & Kruve, A. (2023). Machine Learning Tools Can Pinpoint High-Risk Water Pollutants. Proceedings, 92(1), 68. https://doi.org/10.3390/proceedings2023092068