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Abstract: The hatchery culture of bivalve mollusks depends on feeding with fresh microalgae
which represent up to 50% of the production costs. We investigated the growth performance of
juvenile Ostrea edulis and Ruditapes decussatus under 15% and 30% replacement of microalgae with
Saccharomyces cerevisiae. Metabolic indices were measured along with weight-specific growth rate and
condition index for 28 days. 15% substitution led to great results, whereas 30% yeast-fed treatments
displayed poor growth and a depressed metabolism.
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1. Introduction

Microalgae production is the main limiting factor impeding the industrial growth of
the bivalve aquaculture industry since it corresponds to 30–50% hatchery production’s
operating costs [1,2]. Diets aiming to substitute live microalgae have been implemented
in the early stages of shellfish culture, with varying outcomes [3–5]. Yeast cells possess
the capability for mass production, are highly stable in water, have an appropriate size for
consumption, and high levels and quality of protein. All these favorable characteristics
indicate yeast as a promising substitute for live algal feeds [1,6]. Despite their advantageous
aspects, yeast cells present low digestibility and contain limited amounts of polyunsatu-
rated fatty acids [4,7]. Therefore, yeast should be provided to bivalves accompanied by
live microalgae, which contain highly unsaturated fatty acids [7]. This study investigated
the effects of a partial microalgae replacement (15% and 30%) with baker’s yeast on the
feeds of juvenile Ostrea edulis and Ruditapes decussatus by assessing the activities of two
key metabolic enzymes (citrate synthase and hydroxyacylCoA dehydrogenase) and the
functioning of the respiratory chain through the activity of the electron transport system
(ETS). Moreover, the specific growth rate (SGR) of weight and the condition index (CI)
were measured.

2. Materials and Methods

Wild juvenile Ostrea edulis and Ruditapes decussatus, weighting approximately 2 and
4 g, respectively, were placed in rectangular aquaria (50 L) containing natural seawater.
Bivalves were fed a live microalgae diet consisting of the marine flagellates Tisochrysis lutea
(CCAP 927/14) and Tetraselmis spp. (Mediterranean strain) as well as the diatom Chaetoceros
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calcitrans (CCAP 1085/3) at a 2:1:1 dry weight ratio. Yeast cells, Saccharomyces cerevisiae
NCPF 3191 (Sigma-Aldrich, St. Louis, MO, USA), were cultured in a YPD medium and
included in two treatments so as to represent 15% and 30% substitution of the microalgae.
Treatments were tested in triplicates. Four samplings were performed in a 28-day period
on day 1, day 4, day 12, and day 28. At each sampling, the mantle tissue from 6 animals
from each treatment was dissected for biochemical analyses. Twelve specimens at the
beginning and another twelve at the end of the experiment were used for the condition
index calculation, as described by Irisarri et al. [8]. SGR and CI were calculated as follows:

• (SGR) = 100 × ((lnW2 − lnW1)/t), where W1 and W2 are the initial and final weights
(g) of the bivalves and t is the number of feeding days;

• (CI) = (flesh dry weight/shell dry weight) × 100.

The activities of the metabolic enzymes citrate synthase (CS, EC 4.1.3.7) and hydroxya-
cylCoA dehydrogenase (HOAD, EC 1.1.1.35) were assessed spectrophotometrically based
on well-established protocols [9], while ETS activity was determined according to Haider
et al. [10]. The results of all the above indices were expressed as means ± standard devia-
tion. One-way analysis of variance (ANOVA) was applied, followed by Tukey’s HSD post
hoc comparisons to define the statistically significant differences at p < 0.05.

3. Results

The condition of Ostrea edulis was similar to all treatments after 28 days, while
Ruditapes decussatus fed on 30% yeast exhibited statistically significant lower conditions
compared to the 0% and 15% treatments (Table 1). The growth rate of both species was
significantly higher in treatments fed on 15% yeast and lower in replicates subjected to a
30% substitution of algae (Table 1).

Table 1. Condition index (CI) and specific growth rate of weight (SGR).

Ostrea edulis Ruditapes decussatus

Condition index mean SD mean SD
Initial CI 1.86 a 0.24 18.35 a 1.84

Final CI—0% yeast 2.05 a 0.21 18.46 a 1.78
Final CI—15% yeast 1.92 a 0.12 18.31 a 1.43
Final CI—30% yeast 1.94 a 0.17 16.68 b 0.98

SGR of weight mean SD mean SD
SGRw 0% yeast 0.102 a 0.011 0.07 a 0.005

SGRw 15% yeast 0.12 b 0.008 0.108 b 0.013
SGRw 30% yeast 0.085 c 0.007 0.05 c 0.006

a, b, c Depict statistically different means by ANOVA (p < 0.05).

CS and HOAD in Ruditapes decussatus displayed generally similar activities among
all treatments until day 4. On days 12 and 28, the activities of both enzymes significantly
increased in both yeast-fed replicates, where the activity of these enzymes was similar
(Figure 1A,B). Ostrea edulis demonstrated minor differences in the activity of CS at days 1
and 4, regardless of the feed composition. At day 12, both yeast-fed treatments presented a
statistically significant increase in activity. At day 28, the 15% treatment had significantly
greater activity, and the 30% treatment exhibited decreased activity compared to the control
(Figure 2A). Concerning the HOAD in Ostrea edulis, 15% replacement of microalgae
resulted in similar or greater control activities, while the 30% replacement led to a generally
significantly reduced activity (Figure 2B).

The ETS activity displayed a clear pattern in both bivalves. When fed on 15% yeast, the
two species exhibited similar to the control treatment activity of the electron transport sys-
tem, but when fed on 30% yeast, the activity was significantly reduced (Figures 1C and 2C).
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ase is involved in fatty acid metabolic processes. Feeding regulates ETS activity, which 
can be used as an instantaneous index of oyster metabolism [12]. An increased ETS activity 
is also indicative of a higher rate of ATP production. On the other hand, ETS activity may 
decrease to conserve cellular resources, which might have happened in the case of 30% 
algae substitution in both species. 

The highest growth rate of weight was detected at 15% yeast-fed replicates at both 
bivalves. Moreover, the same condition index as well as the similar or increased metabolic 
intensity in comparison to 100% algae-fed treatment indicate that a 15% substitution of 
algae enhances the growth of Ruditapes decussatus and Ostrea edulis juveniles. 30% replace-
ment resulted in depressed ETS activity in both species, decreased activities of CS and 
HOAD in Ostrea edulis, and a lower condition index in Ruditapes decussatus. Encouraging 
results have been reported by many authors when using manipulated yeasts as an algal 
substitute [3,6] or by using efficiently digested mutant yeast cells [13], reaching substitu-
tion percentages of 50–80%. 

5. Conclusions 
A 15% percentage of fresh microalgae substitution with baker’s yeast could be ap-
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4. Discussion

Citrate synthase is a key metabolic enzyme that is associated with an organism’s ca-
pacity for energy production (ATP generation) [11], while hydroxyacylCoA dehydrogenase
is involved in fatty acid metabolic processes. Feeding regulates ETS activity, which can
be used as an instantaneous index of oyster metabolism [12]. An increased ETS activity is
also indicative of a higher rate of ATP production. On the other hand, ETS activity may
decrease to conserve cellular resources, which might have happened in the case of 30%
algae substitution in both species.

The highest growth rate of weight was detected at 15% yeast-fed replicates at both
bivalves. Moreover, the same condition index as well as the similar or increased metabolic
intensity in comparison to 100% algae-fed treatment indicate that a 15% substitution of algae
enhances the growth of Ruditapes decussatus and Ostrea edulis juveniles. 30% replacement
resulted in depressed ETS activity in both species, decreased activities of CS and HOAD in
Ostrea edulis, and a lower condition index in Ruditapes decussatus. Encouraging results have
been reported by many authors when using manipulated yeasts as an algal substitute [3,6]
or by using efficiently digested mutant yeast cells [13], reaching substitution percentages of
50–80%.

5. Conclusions

A 15% percentage of fresh microalgae substitution with baker’s yeast could be applied
in the nursery stages of Ruditapes decussatus and Ostrea edulis to enhance their growth and
eliminate production costs. Longer experiments, which will also include intermediate
percentages of algae replacement (e.g., 20% and 25%) and/or different microalgae species,
are necessary to assess the highest level of fresh microalgae substitution that can be achieved
with Saccharomyces cerevisiae for these bivalve mollusks.
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