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Abstract: Organ-on-chip (OoC) is emerging as a key technology for improved pre-clinical drug testing.
Monitoring tissues and the artificial microenvironment in OoC devices is critical to recapitulate
human physiology; however, sensing is often invasive, superficial, and not continuous over time.
This work aims to overcome these issues by proposing dielectric spectroscopy as a non-invasive and
time-continuous sensing technique capable of extracting information from multi-layer OoC devices,
including distinguishable tissue layers. The presented results set the foundations for this goal by
proving this technique’s feasibility, showing excellent correspondence between the experimental and
modelled data, and providing design guidelines for application-tailored optimization.

Keywords: dielectric spectroscopy; label-free; micro-physiological systems; non-invasive;
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1. Introduction

The rising costs and duration of pharmaceutical research and development (R&D)
negatively impact the time-to-market for new, affordable, and effective drugs [1]. Over the
last decade, organ-on-chip (OoC) technology has emerged to address this issue, aiming
to develop accurate in vitro models of human organs. OoC models could be applied in
pre-clinical drug testing, aid in personalised medicine, and leverage the ethical burden of
animal-based drug studies [2].

To advance time-continuous, non-invasive monitoring—one main unmet need in OoC
applications [2]—we propose dielectric spectroscopy (DS) as a sensing technology. The
dielectric spectrum depicts a material’s response to an electric field across frequencies,
which is unique for any given material [3]. Therefore, DS could hypothetically identify spe-
cific cell contents and concentrations in media and extract cell properties, such as cell size,
permeability, and cell membrane thickness. Furthermore, DS is label-free and non-invasive,
making it, in principle, ideal for sensing applications using OoCs. Identifying layer-specific
spectral information from the cumulative dielectric response of stacked multi-material
layers, as occurs in OoC devices, is central to this endeavour, and hereby, addressed.

2. Materials and Methods

Through our implementation, DS is conducted using a vector network analyser (VNA)
connected to a flanged, open-ended coaxial line (Figure 1a) calibrated to the medium’s
surface using three different reference liquids. The probe can be vertically positioned with
micron accuracy using a motorised stage and a load cell (Figure 1a). Using a lookup table-
based numerical model, the measured field reflected from the tested medium is converted
to a dielectric spectrum [4], which is a method that was verified by comparing with both
well-known liquids (independent from those used for calibration) and simulation models.
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This work investigates and characterises an expansion of this numerical model, which
can extract refined dielectric spectra of multiple stacked material layers instead of just a
bulk material spectrum, paving the way for the dielectric spectrum analysis of stratified
OoC models.
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Figure 1. (a) The DS measurement setup. Different probe types are shown in the top left inset. (b,c), re-
spectively, show the real and imaginary dielectric permittivities for different water depths over glass. 
Measured data (red surface) overlap excellently with the numerical model prediction (blue surface). 

3. Results and Discussion 
The model’s performance was benchmarked by measuring a multi-layer structure as 

a single bulk material and comparing the experimental spectrum to that computed by the 
numerical model. Figure 1b,c shows the smooth transition from the permittivity of water 
at a depth of 2 mm to that of the glass container at a depth of 0 mm. The data show an 
excellent match for the full range of heights, with a mean complex permittivity error of 
2.42% (𝜎 = 1.35%) over 118,500 datapoints of three differently sized probes. This proves 
that the numerical model can fully capture experimental data and can be used for multi-
layer dielectric permittivity extraction, for which accuracy across depths is essential. 

Additionally, we characterized probes of three different diameters (Figure 1a) to test 
how their dimensions influence sensitivity and the sensing volume (Figure 2a,b), which 
can be used as a future design guideline. 

 

Figure 2. Sensitivity in water over frequency and depth, measured in ఋௌభభఋௗ , where 𝑆11 is the electric 
field reflection coefficient, and 𝑑 the distance between the probe surface and the glass container. (a) 
and (b) show the sensitivity for probe diameters of 0.94 mm and 3.00 mm, respectively. 

In our follow-up work, the spectrum extraction of specific layers in stratified samples 
will be benchmarked. This will consist of three parallel measurements of the same analyte 

Figure 1. (a) The DS measurement setup. Different probe types are shown in the top left inset.
(b,c), respectively, show the real and imaginary dielectric permittivities for different water depths
over glass. Measured data (red surface) overlap excellently with the numerical model prediction
(blue surface).

3. Results and Discussion

The model’s performance was benchmarked by measuring a multi-layer structure as a
single bulk material and comparing the experimental spectrum to that computed by the
numerical model. Figure 1b,c shows the smooth transition from the permittivity of water
at a depth of 2 mm to that of the glass container at a depth of 0 mm. The data show an
excellent match for the full range of heights, with a mean complex permittivity error of
2.42% (σ = 1.35%) over 118,500 datapoints of three differently sized probes. This proves that
the numerical model can fully capture experimental data and can be used for multi-layer
dielectric permittivity extraction, for which accuracy across depths is essential.

Additionally, we characterized probes of three different diameters (Figure 1a) to test
how their dimensions influence sensitivity and the sensing volume (Figure 2a,b), which
can be used as a future design guideline.
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Figure 2. Sensitivity in water over frequency and depth, measured in δS11
δd , where S11 is the electric

field reflection coefficient, and d the distance between the probe surface and the glass container.
(a,b) show the sensitivity for probe diameters of 0.94 mm and 3.00 mm, respectively.

In our follow-up work, the spectrum extraction of specific layers in stratified samples
will be benchmarked. This will consist of three parallel measurements of the same analyte
(Figure 3) as follows: a reference in direct contact with the analyte, and two multi-layer
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conditions, one with an interposed elastomer (poly-dimethylsiloxane (PDMS)) and one
with PDMS and glass. The latter ones are common structural layers in OoC devices, whose
characterisation will aid in future non-invasive experiments with tissues.
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Figure 3. Envisioned measurement setup for benchmarking multi-layer spectrum extraction. (a) Un-
coated reference; (b) two-layer extraction with PDMS interposer; (c) three-layer extraction with PDMS
and glass.
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