Dynamic Routing in Flying Ad-Hoc Networks Using Topology-Based Routing Protocols
Abstract
:1. Introduction
2. Dynamic Routing Protocols in FANETs
2.1. Proactive Routing Protocols
2.1.1. Destination-Sequenced Distance Vector (DSDV)
2.1.2. Optimized Link State Routing (OLSR)
2.2. Reactive Routing Protocols
2.2.1. Dynamic Source Routing (DSR)
2.2.2. Ad-Hoc On-Demand Distance Vector (AODV)
2.2.3. Time-Slotted On-Demand Routing
2.3. Hybrid Routing Protocols
2.3.1. Zone Routing Protocol (ZRP)
2.3.2. Temporarily Ordered Routing Algorithm (TORA)
3. Simulation Setup and Performance Metrics
3.1. Simulation Setup
3.2. Performance Metrics
3.2.1. Throughput (bits/s)
3.2.2. Delay (s)
- Tt = Transmission time.
- Rt = Retransmission time.
- Bt = Buffer time.
- Prt =Processing time.
3.2.3. Load (bits/s)
4. Results and Analysis
4.1. Throughput (bits/s)
4.2. Delay (s)
4.3. Network Load (bits/s)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erdelj, M.; Natalizio, E.; Chowdhury, K.R.; Akyildiz, I.F. Help from the sky: Leveraging UAVs for disaster management. IEEE Pervasive Comput. 2017, 16, 24–32. [Google Scholar] [CrossRef]
- George, J.; Sujit, P.B.; Sousa, J. Search strategies for multiple UAV search and destroy missions. J. Intell. Robot. Syst. 2011, 61, 355–367. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, P.; Vuran, M.C.; Al-Rodhaan, M.; Al-Dhelaan, A.; Akyildiz, I.F. BorderSense: Border patrol through advanced wireless sensor networks. Ad Hoc Netw. 2011, 9, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Barrado, C.; Messeguer, R.; Lopez, J.; Pastor, E.; Santamaria, E.; Royo, P. Wildfire monitoring using a mixed air-ground mobile network. IEEE Pervasive Comput. 2010, 9, 24–32. [Google Scholar] [CrossRef]
- De Freitas, E.P.; Heimfarth, T.; Netto, I.F.; Lino, C.E.; Pereira, C.E.; Ferreira, A.M.; Wagner, F.R.; Larsson, T. UAV relay network to support WSN connectivity. In Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems, Moscow, Russia, 18–20 October 2010; pp. 309–314. [Google Scholar]
- Jiang, F.; Swindlehurst, A.L. Dynamic UAV relay positioning for the ground-to-air uplink. In Proceedings of the IEEE Globecom Workshops, Miami, FL, USA, 6–10 December 2010. [Google Scholar]
- Cho, A.; Kim, J.; Lee, S.; Kee, C. Wind estimation and airspeed calibration using a UAV with a single-antenna GPS receiver and pitot tube. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 109–117. [Google Scholar] [CrossRef]
- Maza, I.; Caballero, F.; Capitan, J.; Martinez-De-Dios, J.R.; Ollero, A. Experimental results in multi-UAV coordination for disaster management and civil security applications. J. Intell. Robot. Syst. 2011, 61, 563–585. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle. Biosyst. Eng. 2011, 2, 174–190. [Google Scholar] [CrossRef]
- Semsch, E.; Jakob, M.; Pavlicek, D.; Pechoucek, M. Autonomous UAV Surveillance in Complex Urban Environments. In Proceedings of the IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan, Italy, 15–18 September 2009; pp. 82–85. [Google Scholar]
- Bekmezci, I.; Ermis, M.; Kaplan, S. Connected multi UAV task planning for flying ad hoc networks. In Proceedings of the IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Odessa, Ukraine, 27–30 May 2014; pp. 28–32. [Google Scholar]
- Sharma, V.; Kumar, R. A cooperative network framework for multi-UAV guided ground ad hoc networks. J. Intell. Robot. Syst. 2015, 77, 629–652. [Google Scholar] [CrossRef]
- Bekmezci, O.; Sahingoz, K.; Temel, S. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Netw. 2013, 11, 1254–1270. [Google Scholar] [CrossRef]
- Gankhuyag, G.; Shrestha, A.P.; Yoo, S.J. Robust and Reliable Predictive Routing Strategy for Flying Ad-Hoc Networks. IEEE Access 2017, 5, 643–654. [Google Scholar] [CrossRef]
- Frew, E.W.; Brown, T.X. Networking issues for small unmanned aircraft systems. J. Intell. Robot. Syst. 2008, 54, 21–37. [Google Scholar] [CrossRef]
- Khan, M.A.; Qureshi, I.M.; Safi, A.; Khan, I.U. Flying Ad-Hoc Networks (FANETs): A Review of Communication architectures, and Routing protocols. In Proceedings of the 2017 First International Conference on Latest Trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 15–16 November 2017; pp. 692–699. [Google Scholar]
- Zafar, W.; Khan, B.M. Flying ad-hoc networks: Technological and social implications. IEEE Technol. Soc. Mag. 2016, 35, 67–74. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, W.; Zeng, J.-Z. Preliminary Study of Routing and Date Integrity in Mobile Ad Hoc UAV Network. In Proceedings of the International Conference on Apperceiving Computing and Intelligence Analysis (ICACIA), Chengdu, China, 13–15 December 2008; pp. 347–350. [Google Scholar]
- Yang, P.L.; Tian, C.; Yu, Y. Analysis on optimizing model for proactive ad hoc routing protocol. In Proceedings of the IEEE Military Communications Conference (MILCOM), Atlantic City, NJ, USA, 17–20 October 2005; pp. 2960–2966. [Google Scholar]
- Yassein, M.A.; Damer, N.A. Flying Ad-Hoc Networks: Routing Protocols, Mobility Models, Issues. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 162–168. [Google Scholar]
- Perkins, C.E.; Bhagwat, P. Highly dynamic DestinationSequenced Distance-Vector Routing (DSDV) for mobile computers. In Proceedings of the Conference on Communications Architectures, Protocols and Applications (SIGCOMM‘94), London, UK, 31 August–2 September 1994; pp. 234–244. [Google Scholar]
- Sahingoz, O.K. Routing ptocols in flying Ad-hoc networks (FANETs): Concepts and challenges. J. Intell. Robot. Syst. 2014, 74, 513–527. [Google Scholar] [CrossRef]
- Singh, J.; Mahajan, R. Performance analysis of AODV and OLSR using OPNET. Int. J. Comput. Trends Technol. 2013, 5, 114–117. [Google Scholar]
- Jacquet, P.; Clausen, T.; Viennot, L. Optimized link state routing [OLSR] protocol for adhoc network. In Proceedings of the IEEE Multi Topic Conference lNMlC 2001, Lahore, Pakistan, 30 December 2001. [Google Scholar]
- Zaballos, A.; Vallejo, A.; Corral, G.; Abella, J. Ad-Hoc Routing Performance Study Using OPNET Modeler. In Proceedings of the OPNETWORK, Washington, DC, USA, 22 August 2006; pp. 1–6. [Google Scholar]
- Alshabtat, A.I.; Dong, L.; Li, J.; Yang, F. Low latency routing algorithm for unmanned aerial vehicles ad-hoc networks. Int. J. Electr. Comput. Eng. 2010, 6, 48–54. [Google Scholar]
- Habib, S.; Saleem, S.; Saqib, K.M. Review on MANET routing protocols and challenges. In Proceedings of the IEEE Student Conference on Research and Development (SCOReD), Putrajaya, Malaysia, 16–17 December 2013; pp. 529–533. [Google Scholar]
- Johnson, D.B.; Maltz, D.A. Dynamic source routing in ad hoc wireless networks. In Mobile Computing; Imielinski, T., Korth, H.F., Eds.; The Kluwer International Series in Engineering and Computer Science; Springer: Boston, MA, USA, 1996; Volume 353, pp. 153–181. [Google Scholar]
- Brown, T.; Doshi, S.; Jadhav, S.; Henkel, D.; Thekkekunnel, R. A full scale wireless ad hoc network test bed. In Proceedings of the International Symposium on Advanced Radio Technologies, Dallas, TX, USA, 28 September 2005; pp. 50–60. [Google Scholar]
- Khare, V.R.; Wang, F.Z.; Wu, S.; Deng, Y.; Thompson, C. Ad-hoc network of unmanned aerial vehicle swarms for search & destroy tasks. In Proceedings of the 4th International IEEE Conference Intelligent Systems, Varna, Bulgaria, 6–8 September 2008. [Google Scholar]
- Shobana, M.; Karthik, S. A Performance Analysis and Comparison of various Routing Protocols in MANET. In Proceedings of the 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME), Salem, India, 21–22 February 2013. [Google Scholar]
- Forsmann, J.H.; Hiromoto, R.E.; Svoboda, J. A time-slotted on-demand routing protocol for mobile ad hoc unmanned vehicle systems. Proc. SPIE 2007. [Google Scholar] [CrossRef]
- Perkins, C.E.; Royer, E.M. Ad-hoc on-demand distance vector routing. In Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA, USA, 25–26 February 1999; p. 90. [Google Scholar]
- Haas, Z.J.; Pearlman, M.R. Zone Routing Protocol (ZRP) a hybrid framework for routing in ad hoc networks. In Ad Hoc Networking, 2nd ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2001; Volume 1, Chapter 7; pp. 221–253. [Google Scholar]
- Haas, Z.J.; Pearlman, M.R. The Zone Routing Protocol (ZRP) for Ad-Hoc Networks. IETF MANET Working Group, Internet Draft. 1999. Available online: https://tools.ietf.org/html/draft-ietf-manet-zone-zrp-02 (accessed on 23 February 2018).
- Park, V.; Corson, S. Temporarily-Ordered Routing Algorithm (TORA) Version 1. Internet Draft, IETF MANET Working Group. Available online: http://tools.ietf.org/html/draft-ietf-manet-tora-spec-04 (accessed on 23 February 2018).
- OPNET Simulator. Available online: https://www.riverbed.com/sg/products/steelcentral/opnet.html (accessed on 25 February 2018).
Routing Protocol | Protocol Type | Route Updates | Topology Size | Signaling Overhead | Communication Latency | Bandwidth Utilization |
---|---|---|---|---|---|---|
DSDV | Proactive | Periodic | Small | Large | Low | Minimum |
OLSR | Proactive | Periodic | Small | Large | Low | Minimum |
DOLSR | Proactive | Periodic | Small | Large | Low | Minimum |
DSR | Reactive | On need | Large | Small | High | Maximum |
AODV | Reactive | On need | Large | Small | High | Maximum |
TSODR | Reactive | On need | Large | Small | High | Maximum |
ZRP | Hybrid | Hybrid | Both | Average | Low | Medium |
TORA | Hybrid | Hybrid | Both | Average | Low | Medium |
Parameter | Value |
---|---|
Area Dimensions | 1 km × 1 km, 2 km × 2 km |
Altitude of UAVs | 40 m |
Number of UAVs | 30, 100 |
Directional Gain | 10 dBi |
Frequency | 2.4 GHz |
Physical Characteristics | IEEE 802.11 g |
Data Rates | 54 Mbps |
Packet Interval (s) | Exponential (1) |
Packet Size (byte) | 1024 |
Simulation Time | 200 s, 1200 s |
Node Type | Mobile |
Mobility Model | Random Way point |
Speed of UAVs | 25 m/s, 60 m/s |
Reception Power Threshold | −95 dBm |
Transmission Power | 0.005 W |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.; Khan, I.U.; Safi, A.; Quershi, I.M. Dynamic Routing in Flying Ad-Hoc Networks Using Topology-Based Routing Protocols. Drones 2018, 2, 27. https://doi.org/10.3390/drones2030027
Khan MA, Khan IU, Safi A, Quershi IM. Dynamic Routing in Flying Ad-Hoc Networks Using Topology-Based Routing Protocols. Drones. 2018; 2(3):27. https://doi.org/10.3390/drones2030027
Chicago/Turabian StyleKhan, Muhammad Asghar, Inam Ullah Khan, Alamgir Safi, and Ijaz Mansoor Quershi. 2018. "Dynamic Routing in Flying Ad-Hoc Networks Using Topology-Based Routing Protocols" Drones 2, no. 3: 27. https://doi.org/10.3390/drones2030027
APA StyleKhan, M. A., Khan, I. U., Safi, A., & Quershi, I. M. (2018). Dynamic Routing in Flying Ad-Hoc Networks Using Topology-Based Routing Protocols. Drones, 2(3), 27. https://doi.org/10.3390/drones2030027