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Abstract: Sugarcane products contribute significantly to the Brazilian economy, generating U.S.
$12.2 billion in revenue in 2018. Identifying and monitoring factors that induce yield reduction,
such as weed occurrence, is thus imperative. The detection of Bermudagrass in sugarcane crops
using remote sensing data, however, is a challenge considering their spectral similarity. To overcome
this limitation, this paper aims to explore the potential of texture features derived from images
acquired by an optical sensor onboard anunmanned aerial vehicle (UAV) to detect Bermudagrass
in sugarcane. Aerial images with a spatial resolution of 2 cm were acquired from a sugarcane field
in Brazil. The Green-Red Vegetation Index and several texture metrics derived from the gray-level
co-occurrence matrix were calculated to perform an automatic classification using arandom forest
algorithm. Adding texture metrics to the classification process improved the overall accuracy from
83.00% to 92.54%, and this improvement was greater considering larger window sizes, since they
representeda texture transition between two targets. Production losses induced by Bermudagrass
presence reached 12.1 tons × ha−1 in the study site. This study not only demonstrated the capacity of
UAV images to overcome the well-known limitation of detecting Bermudagrass in sugarcane crops,
but also highlighted the importance of texture for high-accuracy quantification of weed invasion in
sugarcane crops.
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1. Introduction

Sugarcane is mainly cultivated in tropical and subtropical regions around the world, and is one
of the most important sources of sugar and raw material for ethanol production [1]. Brazil is the
world’s leading producer of sugarcane, with an estimated raw production of 641 million tons in
2018 [2]. This production supports the manufacturing of 38.6 million tons of sugar-related products and
27.8 billion liters of ethanol [2]. These numbers can be translated into annual exportation revenue of
12.2 billion dollars for the Brazilian economy [2]. Over the last 20 years, the planted area of sugarcane
in Brazil has increased from 4.8 to 10.2 million hectares. Plantations in São Paulo state account for
55% of the entire Brazilian production [3]. To be able to maintain a high productivity of this crop, it is
critical to constantly monitor climatic (e.g., rainfall and temperature), environmental (e.g., soil quality),
and biological (e.g., weeds) factors that may reduce production.
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Weed detection and control is especially important for achieving high crop yields. Weeds compete
with sugarcane plants for water, nutrients, and sunlight, negatively impacting sugarcane growth.
Abnormal weed growth can also interfere with some agricultural practices, including soil management
and the use of herbicides, which can add extra labor and increase the overall cost of production [4].
Weeds are also pointed to as a host for sugarcane diseases and can contribute to pest infestations,
such as the ground rat (Rattus sordidus), the cane beetle (Dermolepida albohirtum), and several nematode
species [4–8].

There are a huge variety of weeds capable of infesting sugarcane crops. Some are dicotyledonous
(usually called broadleaf weeds), but most are monocotyledonous and belong to the Poaceae family
(commonly known as grasses) [4]. Weeds such as Cynodon dactylon (bermudagrass), Sorghum halepense
(johnsongrass), Eleusine indica (goosegrass), Panicum maximum (guineagrass), and Brachiaria reptans
(creeping panic grass) are highlighted as the most common species affecting sugarcane crops around the
world [4,9–11]. In an experimental analysis of sugarcane crops without weed control, weeds affected
up to 60% of the planted area, representing yield losses up to 45 tons × ha−1 [4]. Bermudagrass is
responsible for yield losses that range from 6% to 14% of production (depending on the chemical control
used), and is more critical in the early growth stages of a culture, as it shades emerging sugarcane
shoots [9].

One way to effectively monitor weeds is using remote sensing data, especially those obtained by
unmanned aerial vehicles (UAVs). These images are suitable for mapping areas where weeds have
escaped control due to management errors or herbicide resistance [12]. UAV images capture the spectral
reflectance of vegetation and other objects from above, reducing the time required for and the number
of field campaigns necessary to investigate weed occurrence. Each object spotted by an airborne
sensor has specific reflectance characteristics for each wavelength of the electromagnetic spectrum,
which allows distinguishing them with image processing techniques. The spectral reflectance detected
by each sensor’s channel (or band) is the baseline for applications involving weed mapping and
airborne sensors [12,13].

Besides the spectral reflectance, image processing techniques provide other reliable products
to improve weed detection, such asvegetation indices (VIs), for example [14]. VIs were developed
to decrease data dimensionality and highlight objects with green vegetation. For airborne sensors,
which usually have only red, green and blue (RGB) bands, VIs can be calculated based on the green
(500–570nm) and red (620–700nm) regions of the electromagnetic spectrum [14]. It is known that
the overall accuracy of weed mapping can be improved by using VIs derived from remote sensing
data [15–18]. These VIs are capable of distinguishing vegetation parameters such as color, dry matter
(%), nitrogen (%), chlorophyll (A and B), and carotenoid content among several varieties of grasses,
such as Lolium perenne (perennial ryegrass) and Poa pratensis (kentucky bluegrass) [12]. However,
for Bermudagrass, just spectral reflectance and VIs have not been enough to estimate these parameters
precisely [12,13].

Potentially, the use of texture metrics derived from remote sensing images can improve weed
detection [19,20]. A methodology using not only VIs, but also texture features, was developed in order
to map weeds on maize and sunflower crops [15]. The authors used a 1.4-cm spatial resolution UAV
image obtained from an RGB camera. After orthomosaic generation, they evaluated two classification
strategies, the first one using only the RGB values and the second one considering features such as VI and
texture. They used the support vector machine (SVM) algorithm for classification, and feature selection
was performed with the “Information Gain” method on WEKA software [21,22]. When considering
weed detection in sunflower crops, the overall accuracy (OA) using only the RGB band values was
61.6%, but when the second strategy was used, the accuracy values increased to 95.5%. The accuracy
of weed detection in maize crops, on the other hand, had a lower performance, reaching a maximum
OA value of 79.0% [15].

The combinationof VIs with texture features has also improved the OA of weed detection in
eggplant plantations [16]. Using 5-cm spatial resolution images and the SVM classifier, the authors
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could not distinguish weeds from eggplants using nine different VIs (OA of 58.4%). By adding texture
features to the dataset, these authors increased the OA of their classification to 75.4%. Differently from
Reference [15], no feature selection method was applied to the dataset.

Another example was weed detection in bean and spinach crops [17]. The authors used a 0.35-cm
UAV image obtained from an RGB sensor and compared the performance of three different classifiers
(SVM, random forest [23], and convolutional neural networks (CNNs) [24]) with and without texture
features. Similarly to References [15] and [16], the combined use of spectral values, VIs, and texture
features obtained better results. For weed detection in bean crops, random forest outperformed the
SVM classifier, with an OA of 70.1% against 60.6%. However, the best classification result was achieved
by using CNNs, with an OA of 94.8%. For spinach crops, the random forest algorithm had better
results than the other classifiers, with an OA of 96.9%.

An approach using image segmentation and object-based image analysis (OBIA) to discriminate
crops and weeds was used by References [15] and [16]. Several segmentation approaches, such as
the ones used by the authors, are based on spectral information similarity (usually a region growth
algorithm) in order to develop the polygons used to separate the classes. On the other hand, weeds and
crops are hard to discriminate between using only spectral information, considering their strong
similarities [12,13,17]. Thus, applications that want to perform analyses on how texture influences
weed detection can be performed applying a pixel by pixel strategy showing how texture window size
influences classification results.

The use of texture and UAV images has the potential to improve the detection of weeds on a large
variety of crops. Nevertheless, this combination has not yet been tested for sugarcane crops. In this
sense, RGB UAV images have been used to identify Digitaria insularis (sourgrass) and Tridax procumbens
(tridax daisy) [1]. The authors used statistical descriptors for pixel groups, such as mean, standard
deviation, and variance, to classify three different classes (sourgrass, tridax daisy, and sugarcane plants).
The OA using the random forest classifier and a cross-validation method was 77.9% and 85.5% for
the sourgrass and tridax daisy, respectively. When the error matrix was analyzed, the sourgrass was
misclassified as both sugarcane and tridax daisy, resulting in a commission error of 23.7%. For the
tridax daisy, this error was 17.4%, and it was also misclassified as sugarcane.

A similar methodology has been used to identify sugarcane plants, soil patches, Lepidium
virginicum (peppergrass), Nicandra physalodes (shoo-fly plant), and Brachiaria decumbens (signalgrass) [25].
The authors, using the same statistical descriptors as Reference [1], evaluated three different classifiers,
and random forest and artificial neural networks (ANNs) obtained the best results [26]. The OA
obtained by random forest was 90.9%, and for the ANNs it was 91.6%, where the main source of
error was the misclassification between sugarcane and shoo-fly plants. However, no validation was
described by the authors, and their results had higher OA values compared to Reference [1].

Multispectral UAV images (with 13 bands) have been used to map sugarcane plants affected by
the mosaic virus (Potyviridae family), which is responsible for stunning plant growth due to mottling
the laminar region of the plants and causing the discoloration of leaves [27]. The authors also mapped
spots with Digitaria horizontalis (crabgrass) and guineagrass. An automatic classification was realized
using the spectral information divergence (SID) algorithm, which uses only spectral reflectance [28].
The OA of the study was 92.5%, and hyperspectral images could separate healthy from infected plants.
Regarding weed mapping, the authors mentioned it was difficult to identify theseweeds once the
sugarcane plants were in an advanced growth stage and usually covered the weeds. Once again,
VIs and texture features were not used for classification.

Lastly, RGB UAV images have been used to map the level of infestation of Bermudagrass
in vineyards [18]. Using spectral reflectance and VIs with a region-basedclassification algorithm,
the authors obtained an OA of 83.3%. However, they suggested that texture features may improve
the results.

The potential of UAV images to detect Bermudagrass in sugarcane plantations has not been fully
explored before, since other applications have not used both vegetation indices and texture features.
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In this context, the aim of this paper is to explore the potential of texture features and UAV images to
detect bermudagrass occurrence in sugarcane crops in Brazil.

2. Materials and Methods

2.1. Study Site and Image Acquisition

The study site was in the Iracema Mill, located in São Paulo State, Brazil (Figure 1a). The Iracema
Mill has been manufacturing sugarcane products such as sugar and ethanol for over 70 years, processing
an average of 3 million tons of prime mater per year in an areaof 30,000 ha, spread across different
municipalities of São Paulo State. Our study site was located in the Iracemápolis municipality (Figure 1b),
which had 8,834 ha of planted crops, with sugarcane representing 95% of this area and being the most
important source of income [3].

The area mapped was a heterogeneous sugarcane field (Figure 1d), with several planting failures
and sugarcane plants in different growing stages (crown diameter ranging from 0.5 m to 2.0 m).
The majority of the soil area was covered by sugarcane straws, but some spots were left uncovered.
There were also a few flooded soil spots in small depressions, probably caused by the use of heavy
machinery, and areas infested by Bermudagrass (Figure 1c).
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Figure 1. (a) Location of the study site in São Paulo State, Brazil; (b) Iracemápolis municipality and
the location where the image was acquired; (c) zoom representing the infestation of Bermudagrass
(highlighted with red arrows) in a sugarcane field (gramineous weed between and within crop rows);
(d) red, green, and blue (RGB) unmanned aerial vehicle (UAV) image of true color composition and
2-cm spatial resolution.

Images were acquired on 16 February 2016, using a multirotor GYRO 200 OCTA 355 UAV
(octocopter) equipped with a Sony RX100M3 camera of 20.1 megapixels and a CMOS Exmor R® sensor
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(RGB) (Figure 2). A gimbal was used to guarantee the acquisition of images with a nadir configuration,
minimizing the effects related to variations in the platform altitude.

Two flights were carried out in the study site, one at 10:00 and the other at 11:50, obtaining 153 and
135 images, respectively. These flights were realized during their respective hours due to a cloud-free
sky. All images were acquired with an overlap of 80% (longitudinal) and 60% (side), with a flight height
of 80m. This configuration resulted in a pixel size of 2cm. After image acquisition, an orthomosaic
was generated using Pix4D software. Furthermore, the image was cropped in order to avoid low
overlapping areas on the borders, resulting in the image presented in Figure 1d.
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Figure 2. (a) Octocopter GYRO 200 OCTA 355 UAV; (b) Sony RX100M3 camera of 20.1 megapixels.

2.2. Feature Extraction

Using the orthomosaic, the Green-Red Vegetation Index (GRVI) was calculated [14]. A GRVI is
used to highlight vegetation pixels considering the equation described below:

GRVI =
Green−Red
Green + Red

. (1)

The GRVI ranges from −1 to +1, and the digital number (DN) values ofthe green and red bands
were used for the index calculation. This index was selected, among others, because of its capability
of detecting early phase or leaf green-up, which was suitable to the study site plant heterogeneity,
and also because it is suitable for different ecosystem types [13–16].

The texture features were calculated for each RGB band and also for the GRVI image (7 textures
per layer, i.e., 28 features). These features were computed from the gray-level co-occurrence matrix
(GLCM), which is a second-order histogram where each entry reports the joint probability of finding
a set of two gray-level pixels at a certain distance and direction from each other over a predefined
window [19,20]. This window is shifted around the image, calculating the texture for each center pixel.
It can be calculated for 4 different directions (0◦, 45◦, 90◦, and 135◦). In this study, the direction 0◦was
chosen, considering our image characteristics and class distribution [20]. This direction explores the
texture from left to right, parallel to the horizontal axis, andcaptures the heterogeneity between crop
rows, where weeds are usually located [9]. The window sizes used were 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11,
13 × 13, and 15 × 15 pixels. These features were also used in other weed detection applications [15–17].
The texture metrics were calculated using the equations described below.

Mean =
∑N−1

i, j=0
i, j

(
Pi, j

)
, (2)

Variance =
∑N−1

i, j=0
Pi, j

(
i, j− ui, j

)2
, (3)

Contrast =
∑N−1

i, j=0
Pi, j(i− j)2 , (4)
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Dissimilarity =
∑N−1

i, j=0
Pi, j

∣∣∣i− j
∣∣∣ , (5)

Homogeneity =
∑N−1

i, j=0
i, j

(
Pi, j

)
, (6)

Angular Second Moment =
∑N−1

i, j=0
Pi, j

2 , (7)

Entropy =
N−1∑
i, j=0

Pi, j
(
− ln Pi, j

)
. (8)

Pi,j is the normalized value for the cell i,j;N is the number of rows or columns; and µi,j is the GLCM mean.
Every GLCM generated is normalized to express the results into a close approximation of

a probability table, according to the following equation [19,20]:

Pi, j =
Vi, j∑N−1

i, j=0 Vi, j
. (9)

Vi,j is the value for the cell i,j of the matrix.

2.3. Classification

The classification algorithm used was random forest [23], which has presented good results in
other applications using UAV images and weed detection [1,17,25]. The random forest algorithm
is also considered computationally efficient and less sensitive to noisy data, and the generation of
multiple trees with the bootstrap technique can also avoid overfitting [23,29]. The classification was
performed pixel by pixel, and the algorithm was trained on 2000 samples for each of the five classes
presented in Table 1.

Table 1. The five classes used in this study.

Class Description Image

Weed (Bermudagrass) Dark green gramineous weed that grows
between and within crop rows.
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Table 1. Cont.

Class Description Image

Bare soil
Dark brown soil with no cover and some
points not well drained. Occurrence is

between and within crop rows.
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2.3. Classification 

The classification algorithm used was random forest [23], which has presented good results in 
other applications using UAV images and weed detection [1,17,25]. The random forest algorithm is 
also considered computationally efficient and less sensitive to noisy data, and the generation of 
multiple trees with the bootstrap technique can also avoid overfitting [23,29]. The classification was 
performed pixel by pixel, and the algorithm was trained on 2000 samples for each of the five classes 
presented in Table 1. 

Table 1.The five classes used in this study. 

Class Description Image 

Weed (Bermudagrass) Dark green gramineous weed that 
grows between and within crop rows. 

 

Straw 
Soil covered with sugarcane straws 

(light beige). Occurrence between and 
within crop rows. 

 

Sugarcane 
Green sugarcane plants, crow 

diameter ranging from 0.5m to 2.0m. 

 

Bare soil 

Dark brown soil with no cover and 
some points not well drained. 

Occurrence is between and within crop 
rows. 

 

Dark objects Dark objects (shadows) generated by
overlapping sugarcane plants.
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The random forest algorithm has 3 parameters that need calibration: Tree depth, a number of
random features selected for each node, and the number of trees. The trees were generated without
pruning (tree depth is unlimited), the number of random features at each node is described by the
equation below, and the number of trees was set to 1.000 [22,23]:

Number o f f eatures on each node = log2(total_ f eatures) + 1, (10)

where total_features is the total number of features in the dataset, and Number of features on each node is
rounded to the nearest integer.

A total of 8 experiments were realized to evaluate how texture contributes to weed detection.
The first one was performed using only 4 features, the DN values for each RGB band and the GRVI.
After that, for each window size, 28 texture features were calculated. For experiment 2, for example,
the red, green, blue, GRVI, and 7 textures for each layer were used, resulting in a total of 32 features (4 +

7 × 4). The window size used for experiment 2 was 3 × 3. The same procedure was realized for further
experiments, considering greater window sizes. For example, experiment 3 used 28 textures calculated
from the 5 × 5 window and also the RGB and GRVI. This extended until experiment 8, which used
textures calculated from the 15 × 15 window. Experiments 2 to 8 used a total of 32 features each.

Model validation was performed by the random selection of 2500 ground truth points (500 of
each class). Each of these points was visually interpreted on the RGB image, and a respective ground
truth class was assigned. Subsequently, this ground truth class was compared to the class assigned
on the classified image, in order to generate error matrices for each experiment. Pixels on the roads
crossing the sugarcane field were used neither for the training nor for the validation.

For these ground truth points, a spectral analysis was performed, considering the raw digital
number (DN) values obtained for each RGB channel for each class [30,31]. Error matrices and metrics
ofoverall accuracy (OA), producer accuracy (PA), and user accuracy (UA) were employed to interpret
the results. The equations of these metrics are described below:

OA =
TP + TN

TP + FP + TN + FN
, (11)

PA =
TP

TP + FN
, (12)

UA =
TP

TP + FP
, (13)
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TP is true positive, FP is false positive, TN is true negative, and FN is false negative. All of these values
are obtained from the error matrix.

3. Results

The results obtained by the proposed method are divided intothree sections. Initially, the spectral
analysis for each class is presented (Section 3.1), followed by the results of the evaluation metrics
and the error matrices (Section 3.2). Classified images are in Section 3.3, considering the experiment
without texture and the best case scenario (highest OA) when texture was used.

3.1. Spectral Analysis

The spectral analysis is illustrated in Figure 3. The RGB band centers and widths were obtained
by the sensor user’s manual [32]. The raw DN ranged from 0 to 255, and the average values of
the 500 ground truth points for each class at each band were calculated. Error bars were generated
considering one standard deviation, and each class was plotted separately.
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Figure 3. Analysis considering the raw digital number (DN) average values obtained for 500 ground
truth points for each class: (a) Bermudagrass; (b) straw; (c) sugarcane; (d) bare soil; (e) dark objects.
The RGB band wavelengths, considering sensor specifications, are highlighted in the respective colored
squares. The error bars represent one standard deviation.

3.2. Error Matrix and Validation Metrics

Table 2 shows the OA for the validation dataset and the eight experiments. The OA with no
texture features on the dataset was 83.00%, while the best result, an OA of 92.54%, was achieved by
using textures with a 15 × 15 window size. The producer (PA) and user (UA) accuracies for each of the
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five classes in the eight experiments realized are shown in Figure 4. The error matrix (in a pixel count)
for the experiment without texture and for the experiment where the best OA was achieved (with
textures generated by a 15 × 15 window) are presented in Table 3. Complementary error matrices are
presented as Supplementary Materials.

Table 2. Overall accuracy (OA) (%) for the eight experiments realized.

NoTexture
With Texture (Window Size)

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

OA 83.00 84.40 88.52 88.56 90.60 91.04 91.80 92.54

No texture represents the classification with only the RGB band values and the Green-Red Vegetation Index (GRVI).
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experiments realized.

3.3. Classified Images

Figure 5 presents the classified images from experiments 1 and 8, from which theerror matricesare
presented in Table 3. Three sample regions were selected and zoomed in on for a better visualization of
the results.

Table 3. Matrices for experiment 1, without texture, and for experiment 8, which used texture with
a 15 × 15 window.

Reference: without Texture Reference: with Texture
(15 × 15 Window Size)

BG ST SC BS DO BG ST SC BS DO

Classified
as

BG 466 0 2 0 291

Classified
as

BG 462 0 3 0 106

ST 0 500 0 4 0 ST 0 500 0 4 0

SC 19 0 498 0 27 SC 27 0 497 12 8

BS 15 0 0 496 67 BS 11 0 0 484 16

DO 0 0 0 0 115 DO 0 0 0 0 370

BG: Bermudagrass; ST: Straw; SC: Sugarcane; BS: Bare soil; DO: Dark objects.
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Figure 5. Images considering (a) the experiment without texture and (b) the experiment that used
texture calculated from a 15 × 15 window. Three different regions were selected and zoomed in on for
better visualization of the original RGB composition and the classification results for images (a) and (b).

4. Discussion

The first analysis was based onthe spectral characteristics presented in Figure 3. The spectral
response of the classes of Bermudagrass and sugarcane were similar and presented characteristics of
targets that contained green vegetation [33]. These characteristics included lower digital number (DN)
values for the blue band when compared to the respective values of green and red bands. This could
be justified by the absorption of electromagnetic energy by leaf components such as chlorophyll A and
B, carotenoids, and xanthophylls [33,34]. For the green band, this absorption was reduced, resulting in
more electromagnetic energy reflected and thus higher values of DN. For the red band, the absorption
of electromagnetic energy increased once again, specially for some leaf components such as chlorophyll
A and B, resulting in higher DN values when compared to the blue band, but usually lower DN values
than the green band [33,34].

The sugarcane and Bermudagrass classes also presented higher standard deviation values when
compared to other classes. The explanation for such variance in pixel DN values is the multiple
scattering of electromagnetic energy on multilayer canopies [33]. When an electromagnetic energy
bean reaches the first level of a canopy (e.g., a sugarcane leaf on the top of the canopy), the energy
can be transmitted, absorbed, or reflected. The transmitted energy hits targets on a second level
(under the first leaf), such asa soil patch or another sugarcane leaf. On this second level, the remaining
electromagnetic energy is partially reflected back and hits the bottom of the first sugarcane leaf, and is
absorbed, reflected back, or transmitted to the atmosphere. This process repeats for targets on other
levels. Different targets on the second level caused differences in the first-level DN values and hence
a greater standard deviation for the Bermudagrass and sugarcane classes when compared to classes
that had no canopy, such as bare soil and straw [33–36].

The classes of straw and bare soil had spectral responses different from the two previous classes.
The class of straw contained parts of vegetation (mostly leaves) derived from previous sugarcane
plantations. However, the leaf components related to absorption of the electromagnetic energy,
such aschlorophyll A and B, carotenoids, and xanthophylls, were dead and led to almost no absorption
from this kind of land cover [33]. This led to the highest DN values obtained in this study. On the
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other hand, the bare soil class presented increasing DN values for greater wavelength values in the
visible region [400–700 nm], characterizing an exposed soil class [37,38]. As mentioned in Table 1,
some samples of the bare soil class were not well drained, resulting in high soil moisture, which
contributed to a reduction in the DN values when compared to samples that were dry [33,37]. This also
contributed to a higher standard deviation in the bare soil class when compared to more homogeneous
classes, such as straw or dark objects. The dark objects were shadows generated by overlapping
sugarcane plants, and they had low DN values for all bands.

After the spectral analysis, the overall accuracy (OA) values presented in Table 2 were analyzed.
Experiment 1, which used only the RGB bands and the GRVI, had an OA of 83.00%. In all experiments
with texture features, the OA value was always superior in comparison to datasets with no texture
features. For greater window sizes, higher values of OA were observed, reaching 92.54% for the best
case scenario (experiment 8 with textures from the 15 × 15 window). The explanation for this relies on
the “edge effect”, where the window size used for texture calculation overlaps the border between
distinct objects in the image (Figure 6). A window size that is partly over one natural texture and partly
over another (along with the edge between them) will, very likely, be less ordered than a window
entirely inside a patch of similar texture [20].

Some textures, such as contrast, dissimilarity, entropy, and homogeneity, are highly affected by
the “edge effect” and can be more useful in discriminating between patches that have two different
textures. On the other hand, textures such as mean and variance are more useful in describing the
interior of objects, where edges do not occur. Considering that our dataset had more features that
could describe the occurrence of two different textures in a window, which translated into two different
classes for this application, a better OA was expected for greater window sizes.

Drones 2019, 3, x FOR PEER REVIEW 11 of 15 

in the visible region [400–700nm], characterizing an exposed soil class [37,38]. As mentioned in Table 
1, some samples of the bare soil class were not well drained, resulting in high soil moisture, which 
contributed to a reduction in the DN values when compared to samples that were dry [33,37]. This 
also contributed to a higher standard deviation in the bare soil class when compared to more 
homogeneous classes, such as straw or dark objects. The dark objects were shadows generated by 
overlapping sugarcane plants, and they had low DN values for all bands. 

After the spectral analysis, the overall accuracy (OA) values presented in Table 2 were 
analyzed. Experiment 1, which used only the RGB bands and the GRVI, had an OA of 83.00%. In all 
experiments with texture features, the OA value was always superior in comparison to datasets with 
no texture features. For greater window sizes, higher values of OA were observed, reaching 92.54% 
for the best case scenario (experiment 8 with textures from the 15 × 15 window). The explanation for 
this relies on the “edge effect”, where the window size used for texture calculation overlaps the 
border between distinct objects in the image (Figure 6). A window size that is partly over one natural 
texture and partly over another (along with the edge between them) will, very likely, be less ordered 
than a window entirely inside a patch of similar texture [20]. 

Some textures, such as contrast, dissimilarity, entropy, and homogeneity, are highly affected by 
the “edge effect” and can be more useful in discriminating between patches that have two different 
textures. On the other hand, textures such as mean and variance are more useful in describing the 
interior of objects, where edges do not occur. Considering that our dataset had more features that 
could describe the occurrence of two different textures in a window, which translated into two 
different classes for this application, a better OA was expected for greater window sizes. 

 
Figure 6. Explanation of the“edge effect”: (a) A sample pixel on an RGB composition and a 
hypothetical class transition between bare soil (brown pixels) and straw (light beige pixels) in the 
study site; (b) a 3 × 3 window used for texture calculation provides an example where the “edge 
effect” does not occur, since the window is entirely located in one class; (c)a 15 × 15 window used for 
texture calculation capturing the texture transition between these two classes and representing the 
“edge effect”. 

Neither of the previously revised works stated how texture window size affected OA, and a 
comparison of these applications wasrealizedby analyzing the best OA obtained. Considering weed 
detection applications in other crops, the OA obtained for Bermudagrass detection in sugarcane 
crops was better than those obtained foreggplants (75.4%), maize (79.0%), and vineyards (83.3%) 
[15,16,18]. Furthermore, an OA of 92.5% was close to the best performances found in the literature: 
Weed detection in spinach (96.9%), sunflowers (95.5%), and beans (94.8%) [15,17]. A review of these 
studies is listed in Table 4. 

The high OA values obtained by applications in spinach and beans may have been related to the 
classifier (convolutional neural networks (CNNs)) used [17,24]. CNNs are adeep learning area 
approach and have been successfully applied in several remote sensing applications [39,40]. 
Classifications using CNNs in aerial images is usually performed pixel by pixel, and the algorithm is 

Figure 6. Explanation of the “edge effect”: (a) A sample pixel on an RGB composition and a hypothetical
class transition between bare soil (brown pixels) and straw (light beige pixels) in the study site;
(b) a 3 × 3 window used for texture calculation provides an example where the “edge effect” does
not occur, since the window is entirely located in one class; (c) a 15× 15 window used for texture calculation
capturing the texture transition between these two classes and representing the “edge effect”.

Neither of the previously revised works stated how texture window size affected OA,
and a comparison of these applications wasrealizedby analyzing the best OA obtained. Considering weed
detection applications in other crops, the OA obtained for Bermudagrass detection in sugarcane crops
was better than those obtained foreggplants (75.4%), maize (79.0%), and vineyards (83.3%) [15,16,18].
Furthermore, an OA of 92.5% was close to the best performances found in the literature: Weed detection
in spinach (96.9%), sunflowers (95.5%), and beans (94.8%) [15,17]. A review of these studies is listed in
Table 4.

The high OA values obtained by applications in spinach and beans may have been related to the
classifier (convolutional neural networks (CNNs)) used [17,24]. CNNs are adeep learning area approach
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and have been successfully applied in several remote sensing applications [39,40]. Classifications using
CNNs in aerial images is usually performed pixel by pixel, and the algorithm is capable of learning
representations of the data on multiple levels of abstraction [24,41]. These representations start as
simple image features, such as borders, edges, or colors, but evolve into image patterns and pattern
associations [24], providing a powerful tool for applications involving weed detection [17].

Table 4. Several weed detection applications considering factors such as overall accuracy (OA) and the
respective classifier and types of features used.

Crop Weed/Disease OA (%) Classifier Features Used Reference
Eggplants Gramineous * 75.4 SVM VI + Texture [16]

Sugarcane Sourgrass 77.9 RF Spectral [1]

Maize Saltwort 79.0 SVM Spectral + VI + Texture [15]

Sugarcane Bermudagrass 83.0 RF Spectral + VI This paper

Vineyards Bermudagrass 83.3 RBC Spectral + VI [18]

Sugarcane Tridax daisy 85.5 RF Spectral [1]

Sugarcane Peppergrass, Shoo-fly
plant and Signalgrass 91.6 ANNs Spectral [25]

Sugarcane Mosaic Virus 92.5 SID Multispectral [27]

Sugarcane Bermudagrass 92.5 RF Spectral + VI + Texture This paper

Beans Thistles potato sprouts 94.8 CNNs Spectral + VI + Texture [17]

Sunflower Pigweed, Bindweed and
Mustard 95.5 SVM Spectral + VI + Texture [15]

Spinach Thistles 96.9 CNNs Spectral + VI + Texture [17]

SVM: Support vector machine; RF: Random forest; RBC: Region-based classifier; ANN: Artificial neural network;
SID: Spectral information divergence; CNN: Convolutional neural network; VI: Vegetation index; * several
gramineous weeds.

When comparing our results to other sugarcane applications that did not use texture features,
the detection of Bermudagrass was more effective than the detection of sourgrass (77.9%) and tridax
daisy (85.5%) [1]. The classification of peppergrass, the shoo-fly plant, and signalgrass, described by
Reference [25], obtained an OA of 91.6%. However, the authors did not perform any type of validation
and it is possible that this value was overfitted to the dataset used to train the neural network used for
classification. A similar OA (92.5%) was obtained by Reference [27] for the classification of sugarcane
plants affected by the mosaic virus. However, the UAV image used by Reference [27] had 13 bands
and a greater potential to discriminate classes using only spectral information. It is clear that the use
of texture in UAV images is capable of improving weed detection in sugarcane crops, but further
discussions may be developed to analyze the outputs of the error matrix and the user (UA) and
producer (PA) accuracies (Table 3 and Figure 4, respectively).

For the experiment that did not use texture features, the error matrix showed misclassification
errors between the classes of dark objects with both Bermudagrass and bare soil. These errors could
be translated into low values of PA for the dark objects (23.0%) and UA for Bermudagrass (61.4%)
and for bare soil (85.1%). These classes, especially Bermudagrass and dark objects, had a similar
spectral behavior, and the use of features that only represented spectral reflectance was not enough to
discriminate between them. A similar problem was found by Reference [13] when trying to discriminate
between different weed types using only spectral information. On the other hand, when texture
features were used, the PA of dark objectsimproved to 74.0% and the UA of the Bermudagrass and
bare soil to 80.9% and 94.7%, respectively. The explanation of this relies on the fact that the greater
window sizes could detect two different textures between classes, as explained by the “edge effect”.
This difference may be visually observed in region 1, highlighted in Figure 5, where the classification
without texture barely detected points of dark objects, represented in small red regions.
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Another important point is that a few pixels of Bermudagrass were incorrectly classified as
sugarcane plants. This was a minor source of error between these two classes but is important to
discuss since it represents the omission of Bermudagrass spots in the classification. These errors were
more representative for other weeds such as sourgrass and the shoo-fly plant [1,25] and may lead to
incorrect assumptions about the level of infestation and also the correct time to apply herbicides to
the plantation.

As mentioned in Section 2.1., the study site represented a very heterogeneous plantation, with
different sizes of sugarcane plants. Regions 2 and 3, from Figure 5, represented this heterogeneity
in two areas that contained sugarcane plants in different growth stages and were both affected by
Bermudagrass infestation. For both cases, the use of UAV images and texture features could detect
weeds between and within crop rows. Considering that Bermudagrass has more potential to harm
sugarcane plants in early growth stages, the combination of UAV and texture features was also suitable
for this period.

From an analysis of Figure 5b, the total mapping area, considering the removal of roads,
was 11.36 ha. Sugarcane plants represented 47.8% of the area (5.43 ha), while Bermudagrass infestation
represented 11.0% of the area (1.25 ha). The other classes (bare soil, straw, and dark objects) were
represented by the remaining 41.2% of the area (4.68 ha). The area distribution for each class reflected
the highly heterogeneous study site. Considering an average sugarcane productivity of 86.6 tons*ha−1

for the Iracemápolis municipality, the study site can produce up to 470 tons of sugarcane, 55 tons of
sugar products, or 4.700 L of ethanol [2,3].

The yield losses caused by Bermudagrass are hardly assessed with precision, since they are heavily
dependent on sugarcane variety, ground straw management, and the chemical control used [10,11].
Considering that losses caused by Bermudagrass on sugarcane plantations are estimated between
6% and 14% of yield production [4], the losses from this application ranged from 28.2 to 65.8 tons of
sugarcane, or an average loss of up to 12.1 tons*ha−1.

5. Conclusions

Sugarcane has an important role in the Brazilian economy, representing an annual budget of
12.2 billion dollars. Maintaining a high yield production is crucial, and thus monitoring factors such
assoil type, availability of water, and weed control in sugarcane plantations is an essential task. One
way to provide reliable results for weed occurrence is through UAV images, which can identify targets
from above and reduce time and field campaigns to obtain this information. Several weed mapping
applications have combined vegetation indices and texture features to achieve better classification
results. However, this combination had not yet been tested on sugarcane plantations.

In our study, texture features from the gray-level co-occurrence matrix improved the classification
accuracy of Bermudagrass in sugarcane crops using the random forest classifier. The overall accuracy
for the experiment using only RGB band values and a vegetation index was 83.0%. When textures
were added into this dataset, the overall accuracy increased up to 92.5%, a better result compared
to other sugarcane weed detection studies. The producer accuracy of Bermudagrass was higher
when larger window sizes were used for texture calculation, due to the capability of representing two
different textures in that window. Our results indicate that UAV images and texture features are a good
combination to provide reliable detection of Bermudagrass on sugarcane crops in Brazil.

Supplementary Materials: The following are available online at http://www.mdpi.com/2504-446X/3/2/36/s1,
Table S1: Error matrices for the experiments 1, without texture, and for experiments 2 to 8 (texture with windows
ranging from 3 × 3 to 15 × 15).
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29. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
30. Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A light-weight multispectral sensor for micro UAV—

Opportunities for very high resolution airborne remote sensing. In International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences; ISPRS: Beijing, China, 2008; Volume 37-B1, pp. 1193–1199.

31. Candiago, S.; Remondino, F.; Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and
vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047.
[CrossRef]

32. Sony STARVIS®/Exmor®—Camera Sensor Technology Overview. Available online: https://www.ptgrey.
com/exmor-r-starvis (accessed on 12 February 2019).

33. Ponzoni, F.J.; Shimabukuro, Y.E.; Kuplich, T.M. Sensoriamento Remoto No Estudo da Vegetação, 2nd ed.; Oficina
de Textos: São José dos Campos, Brazil, 2012; 176p.

34. Formaggio, A.R.; Sanches, I.D. Sensoriamento Remoto em Agricultura, 1st ed.; Oficina de Textos: São José dos
Campos, Brazil, 2017; 288p.

35. Pereira, R.M.; Casaroli, D.; Vellame, L.M.; Alves Júnior, J.; Evangelista, A.W.P. Sugarcane leaf area estimate
obtained from the corrected Normalized Difference Vegetation Index (NDVI). Pesqui. Agropecu. Trop. 2016,
46, 140–148. [CrossRef]

36. Montandon, L.M.; Small, E.E. The impact of soil reflectance on the quantification of the green vegetation
fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835–1845. [CrossRef]

37. Formaggio, A.R.; Epiphanio, J.C.N.; Valeriano, M.M.; Oliveira, J.B. Comportamento espectral (450-2.450 nm)
de solos tropicais de São Paulo. Revista Brasileira de Ciência do Solo 1996, 20, 467–474.

38. Demattê, J.A.M.; Silva, M.L.S.; Rocha, G.C.; Carvalho, L.A.; Formaggio, A.R.; Firme, L.P. Variações espectrais
em solos submetidos à aplicação de torta de filtro. Revista Brasileira de Ciência do Solo 2005, 29, 317–326.
[CrossRef]

39. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types
using remote sensing data. IEEE Geosc. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]

40. Guirado, E.; Tabik, S.; Alcaraz-Segura, D.; Cabello, J.; Herrera, F. Deep-learning versus OBIA for scattered
shrub detection with Google earth imagery: Ziziphus Lotus as case study. Remote Sens. 2017, 9, 1220.
[CrossRef]

41. Zhang, C.; Liu, J.; Yu, F.; Wan, S.; Han, Y.; Wang, J.; Wang, G. Segmentation model based on convolutional
neural networks for extracting vegetation from Gaofen-2images. J. Appl. Remote Sens. 2018, 12, 042804.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/5.364461
http://dx.doi.org/10.1109/JSTARS.2016.2635482
http://dx.doi.org/10.1117/1.1766301
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.3390/rs70404026
https://www.ptgrey.com/exmor-r-starvis
https://www.ptgrey.com/exmor-r-starvis
http://dx.doi.org/10.1590/1983-40632016v4639303
http://dx.doi.org/10.1016/j.rse.2007.09.007
http://dx.doi.org/10.1590/S0100-06832005000300001
http://dx.doi.org/10.1109/LGRS.2017.2681128
http://dx.doi.org/10.3390/rs9121220
http://dx.doi.org/10.1117/1.JRS.12.042804
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site and Image Acquisition 
	Feature Extraction 
	Classification 

	Results 
	Spectral Analysis 
	Error Matrix and Validation Metrics 
	Classified Images 

	Discussion 
	Conclusions 
	References

