A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses
Abstract
:1. Introduction
2. Literature Review on Plant Stress Detection and Quantification Using UAVs
2.1. Drought
- -
- -
- -
- -
- The water content used in Reference [67] is given as a percentage with respect to a reference value.
- -
- -
- -
- -
- The crop water stress index (CWSI),used in References [13,63,69,74,77,79,86] is based on the difference between canopy temperature and air temperature (), normalized by the vapor pressure deficit (VPD) [86]. A related variable, called Non Water Stress Baseline (NWSB), was also used in some investigations [61].
2.2. Nutrition Disorders
2.3. Diseases
- -
- Image background: Isolating plants from the background (mostly soil in the case of UAV-acquired images) can be a difficult problem itself, and depending on the spatial resolution (GSD) of the images, mixed pixels (plant + soil, plant + shadows) will inevitably be present even if the plant segmentation is accurate, decreasing accuracy [144,145,147]. Some authors use heavily nonlinear techniques, such as Convolutional Neural Networks, in order to address the problem of mixed pixels at the borders of the regions [132]. This type of approach can be very effective, but it depends on large amounts of carefully annotated images to work properly [130], otherwise the significance of the findings is limited [135]. Errors can also be minimized by doing the segmentation manually, but this can be a very labor-intensive task, and more importantly, the resulting method for disease detection will no longer be fully automatic, drastically reducing its appeal. In any case, the presence of weeds may make it very difficult to delineate the regions of interest and, consequently, to correctly detect and quantify the diseases [141].
- -
- Image capture conditions: Illumination concerns are especially important in the field, where aspects such as time of day, position of the sun with respect to the leaf, and overcast conditions can greatly affect image characteristics. In general, the recommendation is that images are either captured with overcast conditions or with the sun close to the nadir. Also, a perpendicular angle of capture is usually preferred to avoid perspective and occlusion issues. It is worth noting that some authors have elected to carry flight missions at night, with plants being illuminated by a polarized light specifically designed to highlight the effects of the targeted disease [136].
- -
- Symptom variations: Most plant diseases produce physiological alterations that can be detected in certain bands of the spectrum. The problem is that those alterations can be highly variable depending on factors other than the disease itself, such as cultivar [140,142,144,145], leaf age [145], disease severity [145], weather conditions [148], and the presence of other stresses, among others. Designing experiments that take into account all those variations may be challenging or even unfeasible, which may lead to methods with limited practical use.
- -
- Other disorders and stresses: Experiments usually consider only the disorder(s) of interest and healthy plants (control). In practice, there are many factors that can cause responses similar to the targeted disease [145], and multiple stresses can be present simultaneously. Such a large degree of variability found in the real world is very difficult to emulate in any investigation. As a result, methods that performed well in controlled experiments often fail under more realistic conditions. This fact has led some authors to consider the possibility that UAV imagery may have its potential limited to acting as an alarm for anomalous coloring that would need to be checked in field to determine its origin [144]. Additional information such as historic data about the crop [148] and digital surface models (DSM) revealing canopy height [141] may be valuable in this kind of context, as they may provide answers that can resolve potential ambiguities.
- -
- Covariate shift: Another problem that is very common arises from differences between the distributions of the data used to train the model and the data on which the model is to be applied, a situation that is commonly called covariate shift [155]. Although there are many research groups working on solutions based on domain adaptations to mitigate this problem [156], a still unavoidable consequence of this problem is that a calibration step is needed whenever different conditions and geographic areas are to be considered. This problem has been recognized by a few authors, who added that a calibration is often unfeasible in an operational context, as data collection for this task is time- and labor-intensive [144].
2.4. Others
3. General Discussion
3.1. Revisited Issues
3.2. Specific Issues
4. Conclusions
Funding
Conflicts of Interest
References
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Mirsky, S.B.; Hively, W.D. Remote Sensing with Simulated Unmanned Aircraft Imagery for Precision Agriculture Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4566–4571. [Google Scholar] [CrossRef]
- Beloev, I.H. A Review on Current and Emerging Application Possibilities for Unmanned Aerial Vehicles. Acta Technol. Agric. 2016, 19, 70–76. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V. Perspectives on The Use of Unmanned Aerial Systems to Monitor Cattle. Outlook Agric. 2018, 47, 214–222. [Google Scholar] [CrossRef]
- Hogan, S.D.; Kelly, M.; Stark, B.; Chen, Y. Unmanned Aerial Systems for Agriculture and Natural Resources. Calif. Agric. 2017, 71, 5–14. [Google Scholar] [CrossRef]
- Mulero-Pázmány, M.; Stolper, R.; Essen, L.; Negro, J.J.; Sassen, T. Remotely Piloted Aircraft Systems as A Rhinoceros Anti-Poaching tool In Africa. PLoS ONE 2014, 9, e83873. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.O.; Adkins, J.; Tully, K. Providing Aerial Images Through UAVs, 2017. Fact Sheet FS-1056. Available online: https://drum.lib.umd.edu/handle/1903/19168 (accessed on 20 April 2019).
- Freeman, P.K.; Freeland, R.S. Agricultural UAVs In The U.S.: Potential, Policy, and Hype. Remote Sens. Appl. Soc. Environ. 2015, 2, 35–43. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Zarco-Tejada, P.J.; López-Herrera, P.J.; Pérez-Martín, E.; Alonso-Ayuso, M.; Quemada, M. Airborne and Ground Level Sensors for Monitoring Nitrogen Status in A Maize Crop. Biosyst. Eng. 2017, 160, 124–133. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Annual Conference on Neural Information Processing Systems, Lake Tahoe, ND, USA, 3–6 December 2012; pp. 1106–1114. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Matese, A.; Di Gennaro, S.F. Practical Applications of A Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture. Agriculture 2018, 8, 116. [Google Scholar] [CrossRef]
- Sandino, J.; Pegg, G.; Gonzalez, F.; Smith, G. Aerial Mapping of forests Affected By Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence. Sensors 2018, 18, 944. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, W.; Jiang, J.; Liu, Y.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; Zhang, Y.; Yao, X. A Comparative assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 2026. [Google Scholar] [CrossRef]
- Otsu, K.; Pla, M.; Vayreda, J.; Brotons, L. Calibrating The Severity of forest Defoliation By Pine Processionary Moth with Landsat and UAV Imagery. Sensors 2018, 18, 3278. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.S.; Neely, H.L.; et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781. [Google Scholar] [CrossRef] [PubMed]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P.; et al. Unmanned Aerial Platform-Based Multi-Spectral Imaging for Field Phenotyping of Maize. Plant Methods 2015, 11, 35. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of Methods to Improve Soybean Yield Estimation and Predict Plant Maturity with An Unmanned Aerial Vehicle Based Platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping In Plant Breeding. Front. Plant Sci. 2016, 7, 1131. [Google Scholar] [CrossRef] [PubMed]
- Machovina, B.L.; Feeley, K.J.; Machovina, B.J. UAV Remote Sensing of Spatial Variation In Banana Production. Crop Pasture Sci. 2016, 67, 1281–1287. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting Grain Yield In Rice Using Multi-temporal Vegetation Indices From UAV-based Multispectral and Digital Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of Vegetation Indices Derived By UAV Imagery for Durum Wheat Phenotyping Under A Water Limited and Heat Stressed Mediterranean Environment. Front. Plant Sci. 2017, 8, 1114. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Vicente, R.; Vergara-Díaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.E.; Serret Molins, M.D.; Araus, J.L. Comparative UAV and Field Phenotyping to assess Yield and Nitrogen Use Efficiency In Hybrid and Conventional Barley. Front. Plant Sci. 2017, 8, 1733. [Google Scholar] [CrossRef] [PubMed]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-Temporal Crop Surface Models Combined with The RGB Vegetation Index From UAV-Based Images for forage Monitoring In Grassland. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 991–998. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned Aerial System (UAS)-based Phenotyping of Soybean Using Multi-sensor Data Fusion and Extreme Learning Machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Onion Biomass Monitoring Using UAV-based RGB Imaging. Precis. Agric. 2018, 19, 840–857. [Google Scholar] [CrossRef]
- Cruzan, M.B.; Weinstein, B.G.; Grasty, M.R.; Kohrn, B.F.; Hendrickson, E.C.; Arredondo, T.M.; Thompson, P.G. Small Unmanned Aerial Vehicles (Micro-Uavs, Drones) In Plant Ecology. Appl. Plant Sci. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Baena, S.; Boyd, D.S.; Moat, J. UAVs In Pursuit of Plant Conservation—Real World Experiences. Ecol. Inform. 2018, 47, 2–9. [Google Scholar] [CrossRef]
- Ishida, T.; Kurihara, J.; Viray, F.A.; Namuco, S.B.; Paringit, E.C.; Perez, G.J.; Takahashi, Y.; Marciano, J.J. A Novel Approach for Vegetation Classification Using UAV-based Hyperspectral Imaging. Comput. Electron. Agric. 2018, 144, 80–85. [Google Scholar] [CrossRef]
- Sankey, T.; McVay, J.; Swetnam, T.; McClaran, M.; Heilman, P.; Nichols, M. UAV Hyperspectral and Lidar Data and Their Fusion for Arid and Semi-arid Land Vegetation Monitoring. Remote Sens. Ecol. Conserv. 2018, 4, 20–33. [Google Scholar] [CrossRef]
- Chianucci, F.; Disperati, L.; Guzzi, D.; Bianchini, D.; Nardino, V.; Lastri, C.; Rindinella, A.; Corona, P. Estimation of Canopy Attributes In Beech forests Using True Colour Digital Images From A Small Fixed-wing UAV. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 60–68. [Google Scholar] [CrossRef]
- Duan, T.; Zheng, B.; Guo, W.; Ninomiya, S.; Guo, Y.; Chapman, S.C. Comparison of Ground Cover Estimates From Experiment Plots in Cotton, Sorghum and Sugarcane Based on Images and Ortho-mosaics Captured by UAV. Funct. Plant Biol. 2016, 44, 169–183. [Google Scholar] [CrossRef]
- Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV Lidar and Hyperspectral Fusion for forest Monitoring in the Southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [Google Scholar] [CrossRef]
- Gennaro, S.F.D.; Rizza, F.; Badeck, F.W.; Berton, A.; Delbono, S.; Gioli, B.; Toscano, P.; Zaldei, A.; Matese, A. UAV-based High-throughput Phenotyping to Discriminate Barley Vigour with Visible and Near-infrared Vegetation Indices. Int. J. Remote Sens. 2018, 39, 35–43. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Yang, H.; Xu, B.; Li, Z.; Yang, X. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using A UAV Remote-Sensing Approach. Front. Plant Sci. 2018, 9, 1638. [Google Scholar] [CrossRef]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate In Field Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Wang, X.; Singh, D.; Marla, S.; Morris, G.; Poland, J. Field-based High-throughput Phenotyping of Plant Height In Sorghum Using Different Sensing Technologies. Plant Methods 2018, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Starek, M.J.; Brewer, M.J.; Murray, S.C.; Pruter, L.S. Assessing Lodging Severity over an Experimental Maize (Zea mays L.) Field Using UAS Images. Remote Sens. 2017, 9, 923. [Google Scholar] [CrossRef]
- Liu, T.; Li, R.; Zhong, X.; Jiang, M.; Jin, X.; Zhou, P.; Liu, S.; Sun, C.; Guo, W. Estimates of Rice Lodging Using Indices Derived From UAV Visible and Thermal Infrared Images. Agric. For. Meteorol. 2018, 252, 144–154. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Guillén-Climent, M.; Hernández-Clemente, R.; Catalina, A.; González, M.; Martín, P. Estimating Leaf Carotenoid Content in Vineyards Using High Resolution Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle (UAV). Agric. For. Meteorol. 2013, 171–172, 281–294. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Chen, H.; Li, D. Characterizing Canopy Structural Complexity for The Estimation of Maize LAI Based on ALS Data and UAV Stereo Images. Int. J. Remote Sens. 2017, 38, 2106–2116. [Google Scholar] [CrossRef]
- Karydas, C.; Gewehr, S.; Iatrou, M.; Iatrou, G.; Mourelatos, S. Olive Plantation Mapping on A Sub-Tree Scale with Object-Based Image Analysis of Multispectral UAV Data; Operational Potential in Tree Stress Monitoring. J. Imaging 2017, 3, 57. [Google Scholar] [CrossRef]
- Chen, R.; Chu, T.; Landivar, J.A.; Yang, C.; Maeda, M.M. Monitoring Cotton (Gossypium hirsutum L.) Germination Using Ultrahigh-resolution UAS Images. Precis. Agric. 2018, 19, 161–177. [Google Scholar] [CrossRef]
- Johansen, K.; Raharjo, T.; McCabe, M.F. Using Multi-Spectral UAV Imagery to Extract Tree Crop Structural Properties and assess Pruning Effects. Remote Sens. 2018, 10, 854. [Google Scholar] [CrossRef]
- Maes, W.H.; Huete, A.R.; Avino, M.; Boer, M.M.; Dehaan, R.; Pendall, E.; Griebel, A.; Steppe, K. Can UAV-Based Infrared Thermography Be Used to Study Plant-Parasite Interactions Between Mistletoe and Eucalypt Trees? Remote Sens. 2018, 10, 2062. [Google Scholar] [CrossRef]
- Milas, A.S.; Romanko, M.; Reil, P.; Abeysinghe, T.; Marambe, A. The Importance of Leaf Area Index In Mapping Chlorophyll Content of Corn Under Different Agricultural Treatments Using UAV Images. Int. J. Remote Sens. 2018, 39, 5415–5431. [Google Scholar] [CrossRef]
- Padua, L.; Marques, P.; Hruska, J.; Adao, T.; Bessa, J.; Sousa, A.; Peres, E.; Morais, R.; Sousa, J.J. Vineyard Properties Extraction Combining UAS-based RGB Imagery with Elevation Data. Int. J. Remote Sens. 2018, 39, 5377–5401. [Google Scholar] [CrossRef]
- Oliveira, H.C.; Guizilini, V.C.; Nunes, I.P.; Souza, J.R. Failure Detection in Row Crops From UAV Images Using Morphological Operators. IEEE Geosci. Remote Sens. Lett. 2018, 15, 991–995. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Bartholomeus, H.M.; Apeldoorn, D.V.; Suomalainen, J.; Kooistra, L. Assessing Changes in Potato Canopy Caused By Late Blight In Organic Production Systems through UAV-based Pushroom Imaging Spectrometer. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 109. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of A UAV-LiDAR System with Application to forest Inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Johnson, R.; Smith, K.; Wescott, K. Introduction: Unmanned Aircraft System (UAS) Applications to Land and Natural Resource Management. Environ. Pract. 2015, 17, 170–177. [Google Scholar] [CrossRef]
- Mahlein, A.K. Plant Disease Detection By Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Crop Pasture Sci. 2016, 100, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Padua, L.; Vanko, J.; Hruska, J.; Adao, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, Sensors, and Data Processing in Agroforestry: A Review towards Practical Applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Adão, T.; Hruska, J.; Padua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Saari, H.; Polonen, I.; Salo, H.; Honkavaara, E.; Hakala, T.; Holmlund, C.; Mäkynen, J.; Mannila, R.; Antila, T.; Akujarvi, A. Miniaturized Hyperspectral Imager Calibration and UAV Flight Campaigns. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XVII, Dresden, Germany, 23–26 September 2013; Volume 8889. [Google Scholar] [CrossRef]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D Hyperspectral Information with Lightweight UAV Snapshot Cameras for Vegetation Monitoring: From Camera Calibration to Quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; Torres-Sanchez, J.; Labbé, S.; Jolivot, A.; Martinez, S.; Regnard, J. Water Stress assessment at Tree Scale: High-resolution Thermal UAV Imagery Acquisition and Processing. Acta Hortic. 2017, 1150, 159–166. [Google Scholar]
- Ribeiro-Gomes, K.; Hernandez-Lopez, D.; Ortega, J.F.; Ballesteros, R.; Poblete, T.; Moreno, M.A. Uncooled Thermal Camera Calibration and Optimization of The Photogrammetry Process for UAV Applications in Agriculture. Sensors 2017, 17, 2173. [Google Scholar] [CrossRef] [PubMed]
- Maes, W.H.; Huete, A.R.; Steppe, K. Optimizing The Processing of UAV-Based Thermal Imagery. Remote Sens. 2017, 9, 476. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Fereres, E. Applicability and Limitations of Using the Crop Water Stress Index as An Indicator of Water Deficits In Citrus Orchards. Agric. For. Meteorol. 2014, 198–199, 94–104. [Google Scholar] [CrossRef]
- Balota, M.; Oakes, J. UAV Remote Sensing for Phenotyping Drought tolerance In Peanuts. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping II; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; International Society for Optics and Photonics: Washington, DC, USA, 2017; Volume 10218, p. 102180C. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping Crop Water Stress Index In A ‘Pinot-noir’ Vineyard: Comparing Ground Measurements with Thermal Remote Sensing Imagery From An Unmanned Aerial Vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From An Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.; Lucena, C.; Zarco-Tejada, P. High-resolution Airborne Hyperspectral and Thermal Imagery for Early Detection of Verticillium Wilt of Olive Using Fluorescence, Temperature and Narrow-band Spectral Indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Ciezkowski, W.; Jozwiak, J.; Szporak-Wasilewska, S.; Dabrowski, P.; Kleniewska, M.; Goraj, M.; Chormanski, J. Water Stress Index for Bogs and Mires Based on UAV Land Surface Measuremnts and Its Dependency on Airborne Hyperespectral Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 23–27 July 2018; pp. 9257–9260. [Google Scholar]
- Delalieux, S.; Zarco-Tejada, P.J.; Tits, L.; á. J. Bello, M.; Intrigliolo, D.S.; Somers, B. Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2571–2582. [Google Scholar] [CrossRef]
- Espinoza, C.Z.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress assessment In Subsurface Irrigated Grapevines. Remote Sens. 2017, 9, 961. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E. Using High Resolution UAV Thermal Imagery to assess The Variability In The Water Status of Five Fruit Tree Species within A Commercial Orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Hoffmann, H.; Jensen, R.; Thomsen, A.; Nieto, H.; Rasmussen, J.; Friborg, T. Crop Water Stress Maps for An Entire Growing Season From Visible and Thermal UAV Imagery. Biogeosciences 2016, 13, 6545–6563. [Google Scholar] [CrossRef]
- Katsigiannis, P.; Misopolinos, L.; Liakopoulos, V.; Alexandridis, T.K.; Zalidis, G. An Autonomous Multi-sensor UAV System for Reduced-input Precision Agriculture Applications. In Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016; pp. 60–64. [Google Scholar] [CrossRef]
- Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci. 2017, 8, 1681. [Google Scholar] [CrossRef]
- Park, S.; Nolan, A.; Ryu, D.; Fuentes, S.; Hernandez, E.; Chung, H.; O’Connell, M. Estimation of Crop Water Stress in A Nectarine Orchard Using High-resolution Imagery from Unmanned Aerial Vehicle (UAV). In Proceedings of the MODSIM2015—21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 November–4 December 2015; Weber, T., McPhee, M., Anderssen, R., Eds.; Modelling and Simulation Society of Australia and New Zealand: Canberra, Australia, 2015; pp. 1413–1419. [Google Scholar]
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; Hernández-Montes, E.; O’Connell, M. Adaptive Estimation of Crop Water Stress In Nectarine and Peach Orchards Using High-Resolution Imagery From An Unmanned Aerial Vehicle (UAV). Remote Sens. 2017, 9, 828. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Sepulveda-Reyes, D.; Ortega-Farias, S.; Zuñiga, M.; Fuentes, S. Plant Water Stress Detection Based on Aerial and Terrestrial Infrared Thermography: A Study Case From Vineyard and Olive Orchard. Acta Hortic. 2016, 1112, 141–146. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farias, S.; Moreno, M.A.; Bardeen, M. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from An Unmanned Aerial Vehicle (UAV). Sensors 2017, 17, 2488. [Google Scholar] [CrossRef] [PubMed]
- Poblete, T.; Ortega-Farias, S.; Ryu, D. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve The Estimation of Crop Water Stress Index of A Drip-Irrigated Cabernet Sauvignon Vineyard. Sensors 2018, 18, 397. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard Water Status Estimation Using Multispectral Imagery from an UAV Platform and Machine Learning Algorithms for Irrigation Scheduling Management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Santesteban, L.; Gennaro, S.D.; Herrero-Langreo, A.; Miranda, C.; Royo, J.; Matese, A. High-resolution UAV-based Thermal Imaging to Estimate The Instantaneous and Seasonal Variability of Plant Water Status within A Vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Soubry, I.; Patias, P.; Tsioukas, V. Monitoring Vineyards with UAV and Multi-sensors for the assessment of Water Stress and Grape Maturity. J. Unmanned Veh. Syst. 2017, 5, 37–50. [Google Scholar] [CrossRef]
- Stagakis, S.; Gonzalez-Dugo, V.; Cid, P.; Guillen-Climent, M.; Zarco-Tejada, P. Monitoring Water Stress and Fruit Quality In An Orange Orchard Under Regulated Deficit Irrigation Using Narrow-band Structural and Physiological Remote Sensing Indices. ISPRS J. Photogramm. Remote Sens. 2012, 71, 47–61. [Google Scholar] [CrossRef]
- Suarez, L.; Zarco-Tejada, P.; Gonzalez-Dugo, V.; Berni, J.; Sagardoy, R.; Morales, F.; Fereres, E. Detecting Water Stress Effects on Fruit Quality In Orchards with Time-series PRI Airborne Imagery. Remote Sens. Environ. 2010, 114, 286–298. [Google Scholar] [CrossRef]
- Sullivan, D.G.; Fulton, J.P.; Shaw, J.N.; Bland, G. Evaluating The Sensitivity of An Unmanned Thermal Infrared Aerial System to Detect Water Stress In A Cotton Canopy. Proc. ASABE 2007, 50, 1955–1962. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Berni, J.; Suarez, L.; Sepulcre-Canto, G.; Morales, F.; Miller, J. Imaging Chlorophyll Fluorescence with An Airborne Narrow-band Multispectral Camera for Vegetation Stress Detection. Remote Sens. Environ. 2009, 113, 1262–1275. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Gonzalez-Dugo, V.; Berni, J. Fluorescence, Temperature and Narrow-band Indices Acquired From A UAV Platform for Water Stress Detection Using A Micro-hyperspectral Imager and A Thermal Camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; González-Dugo, V.; Williams, L.; Suárez, L.; Berni, J.; Goldhamer, D.; Fereres, E. A PRI-based Water Stress Index Combining Structural and Chlorophyll Effects: Assessment Using Diurnal Narrow-band Airborne Imagery and The CWSI Thermal Index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Zhao, T.; Stark, B.; Chen, Y.; Ray, A.L.; Doll, D. A Detailed Field Study of Direct Correlations Between Ground Truth Crop Water Stress and Normalized Difference Vegetation Index (NDVI) From Small Unmanned Aerial System (sUAS). In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 520–525. [Google Scholar] [CrossRef]
- Zhao, T.; Stark, B.; Chen, Y.; Ray, A.L.; Doll, D. Challenges In Water Stress Quantification Using Small Unmanned Aerial System (sUAS): Lessons From A Growing Season of Almond. J. Intell. Robot. Syst. 2017, 88, 721–735. [Google Scholar] [CrossRef]
- Zhao, T.; Doll, D.; Wang, D.; Chen, Y. A New Framework for UAV-based Remote Sensing Data Processing and Its Application in Almond Water Stress Quantification. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 1794–1799. [Google Scholar] [CrossRef]
- Graeff, S.; Pfenning, J.; Claupein, W.; Liebig, H.P. Evaluation of Image Analysis to Determine The N-Fertilizer Demand of Broccoli Plants (Brassica Oleracea Convar. Botrytis Var. Italica). Adv. Opt. Technol. 2008, 2008, 359760. [Google Scholar]
- Dezordi, L.R.; Aquino, L.A.; Aquino, R.F.B.A.; Clemente, J.M.; Assunção, N. Diagnostic Methods to assess the Nutritional Status of The Carrot Crop. Rev. Bras. De Ciência Do Solo 2016, 40, e0140813. [Google Scholar] [CrossRef]
- Balasubramaniam, P.; Ananthi, V.P. Segmentation of Nutrient Deficiency In Incomplete Crop Images Using Intuitionistic Fuzzy C-means Clustering Algorithm. Nonlinear Dyn. 2016, 83, 849–866. [Google Scholar] [CrossRef]
- Jia, L.; Chen, X.; Zhang, F.; Buerkert, A.; Römheld, V. Use of Digital Camera to assess Nitrogen Status of Winter Wheat In The Northern China Plain. J. Plant Nutr. 2004, 27, 441–450. [Google Scholar] [CrossRef]
- Nauš, J.; Prokopová, J.; Řebíček, J.; Špundová, M. SPAD Chlorophyll Meter Reading Can Be Pronouncedly Affected By Chloroplast Movement. Photosynth. Res. 2010, 105, 265–271. [Google Scholar] [CrossRef]
- Ali, M.M.; Al-Ani, A.; Eamus, D.; Tan, D.K.Y. Leaf Nitrogen Determination Using Non-Destructive Techniques—A Review. J. Plant Nutr. 2017, 40, 928–953. [Google Scholar] [CrossRef]
- Meggio, F.; Zarco-Tejada, P.; Núñez, L.; Sepulcre-Cantó, G.; González, M.; Martín, P. Grape Quality assessment In Vineyards Affected By Iron Deficiency Chlorosis Using Narrow-band Physiological Remote Sensing Indices. Remote Sens. Environ. 2010, 114, 1968–1986. [Google Scholar] [CrossRef]
- Sims, N.C.; Culvenor, D.; Newnham, G.; Coops, N.C.; Hopmans, P. Towards The Operational Use of Satellite Hyperspectral Image Data for Mapping Nutrient Status and Fertilizer Requirements In Australian Plantation forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 320–328. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.; Rascher, U.; et al. Satellite Remote Sensing-based In-season Diagnosis of Rice Nitrogen Status In Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef]
- Agüera, F.; Carvajal, F.; Pérez, M. Measuring Sunflower Nitrogen Status From An Unmanned Aerial Vehicle-Based System and An on The Ground Device. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 3822, 33–37. [Google Scholar] [CrossRef]
- Ballester, C.; Hornbuckle, J.; Brinkhoff, J.; Smith, J.; Quayle, W. Assessment of In-Season Cotton Nitrogen Status and Lint Yield Prediction From Unmanned Aerial System Imagery. Remote Sens. 2017, 9, 1149. [Google Scholar] [CrossRef]
- Benincasa, P.; Antognelli, S.; Brunetti, L.; Fabbri, C.A.; Natale, A.; Sartoretti, V.; Modeo, G.; Guiducci, M.; Tei, F.; Vizzari, M. Reliability of NDVI Derived By High Resolution Satellite and UAV Compared to In-field Methods for The Evaluation of Early Crop N Status and Grain Yield In Wheat. Exp. Agric. 2018, 54, 604–622. [Google Scholar] [CrossRef]
- Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating Plant Traits of Grasslands From UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches. ISPRS Int. J. Geo-Inf. 2015, 4, 2792–2820. [Google Scholar] [CrossRef]
- Caturegli, L.; Corniglia, M.; Gaetani, M.; Grossi, N.; Magni, S.; Migliazzi, M.; Angelini, L.; Mazzoncini, M.; Silvestri, N.; Fontanelli, M.; Raffaelli, M.; Peruzzi, A.; Volterrani, M. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses. PLoS ONE 2016, 11, 1–13. [Google Scholar] [CrossRef]
- Corti, M.; Cavalli, D.; Cabassi, G.; Vigoni, A.; Degano, L.; Marino Gallina, P. Application of A Low-cost Camera on A UAV to Estimate Maize Nitrogen-related Variables. Precis. Agric. 2018. [Google Scholar] [CrossRef]
- Felderhof, L.; Gillieson, D. Near-infrared Imagery From Unmanned Aerial Systems and Satellites Can Be Used to Specify Fertilizer Application Rates In Tree Crops. Can. J. Remote Sens. 2011, 37, 376–386. [Google Scholar] [CrossRef]
- Geipel, J.; Link, J.; Wirwahn, J.A.; Claupein, W. A Programmable Aerial Multispectral Camera System for In-Season Crop Biomass and Nitrogen Content Estimation. Agriculture 2016, 6, 4. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of Digital Photography From Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Rondon, S.I.; Hamm, P.B.; Turner, R.W.; Bruce, A.E.; Brungardt, J.J. Insect Detection and Nitrogen Management for Irrigated Potatoes Using Remote Sensing From Small Unmanned Aircraft Systems. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping; International Society for Optics and Photonics: Washington, DC, USA, 2016; Volume 9866. [Google Scholar] [CrossRef]
- Hunt, E.R.; Horneck, D.A.; Spinelli, C.B.; Turner, R.W.; Bruce, A.E.; Gadler, D.J.; Brungardt, J.J.; Hamm, P.B. Monitoring Nitrogen Status of Potatoes Using Small Unmanned Aerial Vehicles. Precis. Agric. 2018, 19, 314–333. [Google Scholar] [CrossRef]
- Jay, S.; Baret, F.; Dutartre, D.; Malatesta, G.; Héno, S.; Comar, A.; Weiss, M.; Maupas, F. Exploiting The Centimeter Resolution of UAV Multispectral Imagery to Improve Remote-sensing Estimates of Canopy Structure and Biochemistry In Sugar Beet Crops. Remote Sens. Environ. 2018. [Google Scholar] [CrossRef]
- Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Baret, S.L.F. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop In Small Plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F.; Qian, X.; Zhu, Y.; Shen, G. Quantification of Rice Canopy Nitrogen Balance Index with Digital Imagery From Unmanned Aerial Vehicle. Remote Sens. Lett. 2015, 6, 183–189. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H.; Wang, P. Quantitative Modelling for Leaf Nitrogen Content of Winter Wheat Using UAV-based Hyperspectral Data. Int. J. Remote Sens. 2017, 38, 2117–2134. [Google Scholar] [CrossRef]
- Liu, S.; Li, L.; Gao, W.; Zhang, Y.; Liu, Y.; Wang, S.; Lu, J. Diagnosis of Nitrogen Status In Winter Oilseed Rape (Brassica napus L.) Using In-situ Hyperspectral Data and Unmanned Aerial Vehicle (UAV) Multispectral Images. Comput. Electron. Agric. 2018, 151, 185–195. [Google Scholar] [CrossRef]
- Van Der Meij, B.; Kooistra, L.; Suomalainen, J.; Barel, J.M.; De Deyn, G.B. Remote Sensing of Plant Trait Responses to Field-based Plant–soil Feedback Using UAV-based Optical Sensors. Biogeosciences 2017, 14, 733–749. [Google Scholar] [CrossRef]
- Saberioon, M.M.; Gholizadeh, A. Novel Approach for Estimating Nitrogen Contant In Paddy Fialds Using Low Altitude Remote Sensing System. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 1011–1015. [Google Scholar] [CrossRef]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.H. Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost UAV Imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef]
- Severtson, D.; Callow, N.; Flower, K.; Neuhaus, A.; Olejnik, M.; Nansen, C. Unmanned Aerial Vehicle Canopy Reflectance Data Detects Potassium Deficiency and Green Peach Aphid Susceptibility In Canola. Precis. Agric. 2016, 17, 659–677. [Google Scholar] [CrossRef]
- Swain, K.C.; Jayasuriya, H.P.W.; Salokhe, V.M. Suitability of Low-altitude Remote Sensing Images for Estimating Nitrogen Treatment Variations in Rice Cropping for Precision Agriculture Adoption. J. Appl. Remote Sens. 2007, 1, 1–11. [Google Scholar] [CrossRef]
- Vega, F.A.; Ramírez, F.C.; Saiz, M.P.; Rosúa, F.O. Multi-temporal Imaging Using An Unmanned Aerial Vehicle for Monitoring A Sunflower Crop. Biosyst. Eng. 2015, 132, 19–27. [Google Scholar] [CrossRef]
- Du, W.; Xu, T.; Yu, F.; Chen, C. Measurement of Nitrogen Content in Rice by Inversion of Hyperspectral Reflectance Data from an Unmanned Aerial Vehicle. Ciência Rural. 2018, 48. [Google Scholar]
- Yakushev, V.P.; Kanash, E.V. Evaluation of Wheat Nitrogen Status By Colorimetric Characteristics of Crop Canopy Presented In Digital Images. J. Agric. Inform. 2016, 7, 65–74. [Google Scholar]
- Zermas, D.; Teng, D.; Stanitsas, P.; Bazakos, M.; Kaiser, D.; Morellas, V.; Mulla, D.; Papanikolopoulos, N. Automation Solutions for the Evaluation of Plant Health in Corn Fields. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 6521–6527. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, Color-Infrared and Multispectral Images Acquired From Unmanned Aerial Systems for The Estimation of Nitrogen Accumulation in Rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, K.; Deng, J.; Harmon, T. Quantifying Nitrogen Status of Rice Using Low Altitude UAV-Mounted System and Object-Oriented Segmentation Methodology. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA, USA, 30 August–2 September 2009; pp. 1–7. [Google Scholar]
- Zhu, H.; Liu, H.; Xu, Y.; Guijun, Y. UAV-based Hyperspectral Analysis and Spectral Indices Constructing for Quantitatively Monitoring Leaf Nitrogen Content of Winter Wheat. Appl. Opt. 2018, 57, 7722–7732. [Google Scholar] [CrossRef]
- Chang, S.X.; Robison, D.J. Nondestructive and Rapid Estimation of Hardwood Foliar Nitrogen Status Using the SPAD-502 Chlorophyll Meter. For. Ecol. Manag. 2003, 181, 331–338. [Google Scholar] [CrossRef]
- Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and By Hyperspectral Imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Factors Influencing the Use of Deep Learning for Plant Disease Recognition. Biosyst. Eng. 2018, 172, 84–91. [Google Scholar] [CrossRef]
- Altas, Z.; Ozguven, M.M.; Yanar, Y. Determination of Sugar Beet Leaf Spot Disease Level (Cercospora Beticola Sacc.) with Image Processing Technique By Using Drone. Curr. Investig. Agric. Curr. Res. 2018, 5, 621–631. [Google Scholar] [CrossRef]
- Dang, L.M.; Hassan, S.I.; Suhyeon, I.; Sangaiah, A.K.; Mehmood, I.; Rho, S.; Seo, S.; Moon, H. UAV Based Wilt Detection System Via Convolutional Neural Networks. Sustain. Comput. Inform. Syst. 2018. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing Very High Resolution UAV Imagery for Monitoring forest Health During A Simulated Disease Outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Dash, J.P.; Pearse, G.D.; Watt, M.S. UAV Multispectral Imagery Can Complement Satellite Data for Monitoring forest Health. Remote Sens. 2018, 10, 1216. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep Leaning Approach with Colorimetric Spaces and Vegetation Indices for Vine Diseases Detection In UAV Images. Comput. Electron. Agric. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Das, J.; Ehsani, R.; Kumar, V. Towards Autonomous Phytopathology: Outcomes and Challenges of Citrus Greening Disease Detection Through Close-range Remote Sensing. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2016; pp. 5143–5148. [Google Scholar] [CrossRef]
- Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, X.; Li, Q.; Guo, L.; Chen, W.H. Wheat Yellow Rust Monitoring by Learning from Multispectral UAV Aerial Imagery. Comput. Electron. Agric. 2018, 155, 157–166. [Google Scholar] [CrossRef]
- Sugiura, R.; Tsuda, S.; Tsuji, H.; Murakami, N. Virus-Infected Plant Detection in Potato Seed Production Field By UAV Imagery. In Proceedings of the 2018 asABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018; p. 1800594. [Google Scholar] [CrossRef]
- Tetila, E.C.; Machado, B.B.; Belete, N.A.S.; Guimarães, D.A.; Pistori, H. Identification of Soybean Foliar Diseases Using Unmanned Aerial Vehicle Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2190–2194. [Google Scholar] [CrossRef]
- Balota, M.; Oakes, J. Exploratory Use of A UAV Platform for Variety Selection In Peanut. Proc. SPIE 2016, 9866. [Google Scholar] [CrossRef]
- Gibson-Poole, S.; Humphris, S.; Toth, I.; Hamilton, A. Identification of the onset of Disease within a Potato Crop Using a UAV Equipped with Un-modified and Modified Commercial off-the-shelf Digital Cameras. Adv. Anim. Biosci. 2017, 8, 812–816. [Google Scholar] [CrossRef]
- Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field Phenotyping System for the assessment of Potato Late Blight Resistance Using RGB Imagery from an Unmanned Aerial Vehicle. Biosyst. Eng. 2016, 148, 1–10. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, X.; Zhang, J.; Huang, L.; Zhao, J. Developing A Small UAV Platform to Detect Sheath Blight of Rice. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3190–3193. [Google Scholar] [CrossRef]
- Albetis, J.; Duthoit, S.; Guttler, F.; Jacquin, A.; Goulard, M.; Poilvé, H.; Féret, J.B.; Dedieu, G. Detection of Flavescence Dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2017, 9, 308. [Google Scholar] [CrossRef]
- Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the Potentiality of UAV Multispectral Imagery to Detect Flavescence Dorée and Grapevine Trunk Diseases. Remote Sens. 2018, 11, 23. [Google Scholar] [CrossRef]
- Al-Saddik, H.; Simon, J.C.; Brousse, O.; Cointault, F. DAMAV Project for Vineyard Disease Detection by UAV Imagery. In Proceedings of the International Conference on Agricultural Engineering, Automation, Environment and Food Safety, Aarhus, Denmark, 26–29 June 2016; pp. 1–7. [Google Scholar]
- Calderón, R.; Montes-Borrego, M.; Landa, B.B.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Detection of Downy Mildew of Opium Poppy Using High-resolution Multi-spectral and Thermal Imagery Acquired with an Unmanned Aerial Vehicle. Precis. Agric. 2014, 15, 639–661. [Google Scholar] [CrossRef]
- Gennaro, S.D.; Battiston, E.; Marco, S.D.; Facini, O.; Matese, A.; Nocentini, M.; Palliotti, A.; Mugnai, L. Unmanned Aerial Vehicle (UAV)—Based Remote Sensing to Monitor Grapevine Leaf Stripe Disease within a Vineyard Affected By Esca Complex. Phytopathol. Mediterr. 2016, 55, 262–275. [Google Scholar]
- Khot, L.R.; Sankaran, S.; Carter, A.H.; Johnson, D.A.; Cummings, T.F. UAS Imaging-based Decision tools for Arid Winter Wheat and Irrigated Potato Production Management. Int. J. Remote Sens. 2016, 37, 125–137. [Google Scholar] [CrossRef]
- Nebiker, S.; Lack, N.; Abächerli, M.; Läderach, S. Light-Weight Multispectral Uav Sensors and Their Capabilities for Predicting Grain Yield and Detecting Plant Diseases. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 963–970. [Google Scholar] [CrossRef]
- Patrick, A.; Pelham, S.; Culbreath, A.; Holbrook, C.C.; De Godoy, I.J.; Li, C. High Throughput Phenotyping of tomato Spot Wilt Disease In Peanuts Using Unmanned Aerial Systems and Multispectral Imaging. IEEE Instrum. Meas. Mag. 2017, 20, 4–12. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.; Lucena, C.; Zarco-Tejada, P. High-resolution Hyperspectral and Thermal Imagery Acquired From UAV Platforms for Early Detection of Verticillium Wilt Using Fluorescence, Temperature and Narrow-band Indices. In Proceedings of the Workshop on UAV-basaed Remote Sensing Methods for Monitoring Vegetation, Cologne, Germany, 9–10 September 2013; pp. 7–14. [Google Scholar] [CrossRef]
- Smigaj, M.; Gaulton, R.; Barr, S.L.; Suárez, J.C. Uav-Borne Thermal Imaging for forest Health Monitoring: Detection of Disease-Induced Canopy Temperature Increase. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 349–354. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. A Review on The Main Challenges In Automatic Plant Disease Identification Based on Visible Range Images. Biosyst. Eng. 2016, 144, 52–60. [Google Scholar] [CrossRef]
- Sugiyama, M.; Nakajima, S.; Kashima, H.; Buenau, P.V.; Kawanabe, M. Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation. In Advances In Neural Information Processing Systems 20; Platt, J.C., Koller, D., Singer, Y., Roweis, S.T., Eds.; Curran Associates Inc.: Vancouver, BC, Canada, 2008; pp. 1433–1440. [Google Scholar]
- Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J.W. A Theory of Learning From Different Domains. Mach. Learn. 2010, 79, 151–175. [Google Scholar] [CrossRef]
- Lehmann, J.R.K.; Nieberding, F.; Prinz, T.; Knoth, C. Analysis of Unmanned Aerial System-Based CIR Images in forestry—A New Perspective to Monitor Pest Infestation Levels. Forests 2015, 6, 594–612. [Google Scholar] [CrossRef]
- Stanton, C.; Starek, M.J.; Elliott, N.; Brewer, M.; Maeda, M.M.; Chu, T. Unmanned Aircraft System-derived Crop Height and Normalized Difference Vegetation Index Metrics for Sorghum Yield and Aphid Stress assessment. J. Appl. Remote Sens. 2017, 11, 1–20. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Yang, G.; Zhu, C.; Huo, L.; Feng, H. assessment of Defoliation During The Dendrolimus Tabulaeformis Tsai Et Liu Disaster Outbreak Using UAV-based Hyperspectral Images. Remote Sens. Environ. 2018, 217, 323–339. [Google Scholar] [CrossRef]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance In Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef]
- Vanegas, F.; Bratanov, D.; Weiss, J.; Powell, K.; Gonzalez, F. Multi and Hyperspectral UAV Remote Sensing: Grapevine Phylloxera Detection In Vineyards. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Yuan, Y.; Hu, X. Random forest and Objected-Based Classification for forest Pest Extraction From Uav Aerial Imagery. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 1093–1098. [Google Scholar] [CrossRef]
- Li, L.; Fan, Y.; Huang, X.; Tian, L. Real-time UAV Weed Scout for Selective Weed Control By Adaptive Robust Control and Machine Learning Algorithm. In Proceedings of the 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, asABE 2016, Orlando, FL, USA, 17–20 July 2016; American Society of Agricultural and Biological Engineers: St. Joseph, MO, USA, 2016. [Google Scholar] [CrossRef]
- Rasmussen, J.; Nielsen, J.; Garcia-Ruiz, F.; Christensen, S.; Streibig, J.C. Potential Uses of Small Unmanned Aircraft Systems (UAS) In Weed Research. Weed Res. 2013, 53, 242–248. [Google Scholar] [CrossRef]
- Yano, I.H.; Alves, J.R.; Santiago, W.E.; Mederos, B.J. Identification of Weeds In Sugarcane Fields Through Images Taken By UAV and Random forest Classifier. IFAC-PapersonLine 2016, 49, 415–420. [Google Scholar] [CrossRef]
- Huang, Y.; Reddy, K.N.; Fletcher, R.S.; Pennington, D. UAV Low-Altitude Remote Sensing for Precision Weed Management. Weed Technol. 2018, 32, 2–6. [Google Scholar] [CrossRef]
- Gennaro, S.F.D.; Matese, A.; Gioli, B.; Toscano, P.; Zaldei, A.; Palliotti, A.; Genesio, L. Multisensor Approach to assess Vineyard Thermal Dynamics Combining High-resolution Unmanned Aerial Vehicle (UAV) Remote Sensing and Wireless Sensor Network (WSN) Proximal Sensing. Sci. Hortic. 2017, 221, 83–87. [Google Scholar] [CrossRef]
- Malenovsky, Z.; Lucieer, A.; King, D.H.; Turnbull, J.D.; Robinson, S.A. Unmanned Aircraft System Advances Health Mapping of Fragile Polar Vegetation. Methods Ecol. Evol. 2017, 8, 1842–1857. [Google Scholar] [CrossRef]
- Roy, R.; Miller, J. Miniaturization of Image Sensors: The Role of Innovations In Complementary Technologies in Overcoming Technological Trade-offs associated with Product Innovation. J. Eng. Technol. Manag. 2017, 44, 58–69. [Google Scholar] [CrossRef]
Ref. | UAV Type | Crop | Sensor | Estimated Variables | Reference Variables | Model |
---|---|---|---|---|---|---|
[62] | Rotary | Peanut | Multispectral | NDVI | Visual wilting score | Linear regression |
[63] | Fixed wing | Vineyard | Thermal | CWSI | Leaf water potential | Linear regression |
[64] | Rotary | Peach orchard | Multispectral, thermal | PRI | Stomatal conductance | Linear regression |
[65] | Fixed wing | Olive orchard | Hyperspectral, thermal | , CSWI, CF | Stomatal conductance | Linear regression |
[58] | Rotary | Apple orchard | Multispectral, thermal, RGB | , WDI | Soil water potential | Direct comparison |
[66] | Rotary | Bog and mire vegetation | Thermal | CSWI | Soil moisture, fAPAR | Quadratic regression |
[67] | Fixed wing | Citrus orchard | Hyperspectral | PRI | Water content | Linear regression |
[68] | Rotary | Vineyard | Multispectral, thermal | NDVI, GNDVI, | Stomatal conductance | Linear regression |
[69] | Fixed wing | Almond, apricot, peach, orange | Thermal | , CSWI | Stem water potential | Linear regression |
[61] | Fixed wing | Mandarin and orange | Thermal | NWSB, CSWI | Stem water potential | Linear regression |
[70] | Fixed wing | Barley | Thermal, RGB | WDI | Measured stress values | Direct comparison |
[71] | Rotary | Pomegranate | Multispectral, thermal | CSWI | Irrigation data | Direct comparison |
[72] | Rotary | Black poplar | Thermal | Canopy temperature | Stomatal conductance | Linear regression |
[13] | Rotary | Vineyard | Multispectral, thermal, RGB | CWSI | Stomatal conductance | Direct comparison |
[73] | Rotary | Nectarine orchard | Thermal | CWSI | Stem water potential, stomatal conductance | Linear regression |
[74] | Rotary | Nectarine, peach | Thermal | Adaptive CWSI | Stem water potential, stomatal conductance | Linear regression |
[75] | ? | Vineyard, olive orchard | Thermal | Stem water potential | Linear regression | |
[76] | ? | Vineyard | Multispectral | Narrow spectral bands | Stem water potential | MLP NN |
[77] | Rotary | Vineyard | Multispectral, thermal | CWSI | Strem water potential | Linear regression |
[78] | Rotary | Vineyard | Multispectral | Vegetation indices | Stem water potential | MLP NN |
[79] | Rotary | Vineyard | Thermal | CWSI | Stem water potential, stomatal conductance | Linear regression |
[80] | Fixed wing | Vineyard | Multispectral, RGB, NIR | TCARI/OSAVI | BRIX | Linear regression |
[81] | Rotary | Orange orchard | Multispectral | PRI | Stem water potential | Linear regression |
[82] | Rotary | Peach, nectarine, orange | Multispectral | PRI | Xanthophyll epoxidation state | Linear regression |
[83] | Fixed wing | Cotton | Thermal | TIR emitance | Soil water content | Linear regression |
[84] | Rotary | Olive, peach | Multispectral, thermal | Fluorescence (UAV) | Fluorescence (ground) | Linear regression |
[85] | Fixed wing | Citrus orchard | Hyperspectral, thermal | PRI, VI, | Stomatal conductance, leaf water potential | Linear regression |
[86] | Fixed wing | Vineyard | Multispectral, thermal | PRI | Stomatal conductance, leaf water potential | Linear regression |
[87] | Rotary | Almond orchard | Multispectral, RGB | NDVI | Stem water potential | Linear regression |
[88] | Rotary | Almond orchard | Multispectral, RGB | NDVI | Stem water potential | Linear regression |
[89] | ? | Almond orchard | Multispectral | Multispectral bands (PCA) | Stem water potential | Linear regression |
Ref. | UAV Type | Crop | Sensor | Model Input | Model Output | Model Type |
---|---|---|---|---|---|---|
[100] | Rotary | Sunflower | Multispectral | NDVI | Nitrogen treatment | Linear regression |
[101] | Rotary | Cotton | Multispectral | Several VIs | Nitrogen concentration and uptake | Linear regression |
[102] | Rotary | Wheat | Multispectral | NDVI | Nitrogen concentration and uptake | Linear regression |
[103] | Rotary | Grass | Hyperspectral | Average reflectance spectra | Sodium and potassium content | PLS regression |
[104] | Rotary | Turfgrass | Multispectral | NDVI | Nitrogen content | Linear regression |
[105] | Rotary | Corn | CIR | Several vegetation indices | Nitrogen concentration and uptake | PLS regression |
[106] | Rotary | Macadamia | RGB + NIR | CCCI, NDRE | Leaf nitrogen level | Linear regression |
[9] | Rotary | Corn | Multispectral, hyperspectral | Variety of indices | Nitrogen concentration | Polynomial regression |
[107] | Rotary | Wheat | Multispectral | NDVI, REIP | Nitrogen concentration | Linear regression |
[108] | Fixed wing | Corn | RGB | NGRDI | Nitrogen status (chlorophyll content) | LS regression |
[109] | Rotary | Potato | Multispectral | NDVI, GNDVI | N status (chlorophyll content, LAI) | Linear regression |
[110] | Parafoil-wing | Potato | Multispectral | NDVI, GNDVI | N status (chlorophyll content, LAI) | Linear regression |
[111] | Rotary | Sugar beet | Multispectral | VIs, green pixel fraction | Nitrogen concentration | Multilinear regression |
[112] | Parafoil and fixed wing | Wheat | Multispectral | Vegetation indices | Nitrogen uptake | Exponential regression |
[113] | Rotary | Rice | RGB | DGCI | Nitrogen concentration | Linear regression |
[114] | Rotary | Wheat | Hyperspectral | Selected bands | Nitrogen concentration | Multilinear regression, MLPNN |
[115] | ? | Winter oilseed rape | Multispectral | Vegetation indices | Nitrogen concentration | Linear regression |
[26] | Rotary | Soybean | Multispectral, thermal, RGB | Spectral indices and features | Nitrogen concentration | PLSR, SVR, ELR |
[116] | Rotary | Oat | Hyperspectral | Vegetation indices | Nitrogen concentration | Linear regression |
[117] | Fixed wing | Rice | Multispectral | Vegetation indices | SPAD (chlorophyll content) | Linear regression |
[118] | Rotary | Wheat | RGB | PCs of color features | Nitrogen concentration | Linear regression |
[119] | Rotary | Canola | Multispectral, hyperspectral | Selected spectral bands | Potassium deficiency level | Discriminant analysis |
[120] | Rotary | Rice | Multispectral | Vegetation indices | Nitrogen treatment | Linear regression |
[121] | Rotary | Sunflower | Multispectral | NDVI | Nitrogen concentration | Linear regression |
[122] | Rotary | Rice | Hyperspectral | PCs of spectral bands | Nitrogen concentration | Linear regression |
[123] | ? | Wheat | RGB | Color parameters | Nitrogen treatment | Linear regression |
[124] | Rotary | Corn | RGB | Pixels | Nitrogen deficiency level | Logistic regression |
[125] | Rotary | Rice | RGB, CIR, multispectral | Vegetation indices | Nitrogen accumulation (leaf and plant) | Linear regression |
[15] | Rotary | Wheat | Multispectral | RDVI | Nitrogen concentration | Several ML models |
[126] | Rotary | Rice | RGB | PCs of color features | Nitrogen concentration | Quadratic regression |
[127] | Rotary | Wheat | Hyperspectral | Selected bands | Nitrogen concentration | Multilinear regression |
Ref. | UAV Type | Crop | Disease | Sensor | Model Input | Model Output | Model Type |
---|---|---|---|---|---|---|---|
[144] | Fixed wing | Vineyard | Flavescence dorée | Multispectral | 20 indices and parameters | Classif. healthy and diseased | ROC analysis |
[145] | Fixed wing | Vineyard | Flavescence dorée, grapevine trunk | Multispectral | 24 indices and parameters | Classif. healthy and 2 diseases | ROC analysis |
[146] | Rotary | Vineyard | Flavescence dorée | Multispectral | Image pixels | Classif. healthy and diseased | RBFNN |
[131] | Rotary | Sugar beet | Leaf spot | RGB | L*a*b* color pixels | Disease severity | K-means clustering |
[140] | Rotary | Peanut | Late leaf spot | RGB | Hue angle, greener area | Leaf drop (disease indicator) | Linear regression |
[65] | Fixed wing | Olive orchard | Verticillium wilt | Hyperspectral, thermal | , CSWI, CF | Disease severity | ANOVA analysis |
[152] | Fixed wing | Olive orchard | Verticillium wilt | Hyperspectral, thermal | , CSWI, CF | Disease severity | ANOVA analysis |
[132] | Rotary | Radish | Fusarium wilt | RGB | Color and texture features | Disease severity | CNN |
[133] | Rotary | Pinus forest | Simulated (herbicide) | Multispectral | Vegetation indices | Disease severity | Random forest |
[134] | Rotary | Pinus forest | Simulated (herbicide) | Multispectral | Vegetation indices | Disease severity | Random forest |
[148] | Rotary | Vineyard | Grapevine leaf stripe | Multispectral | NDVI | Disease severity | Linear regression |
[135] | ? | Vineyard | N/A | RGB | Vegetation indices | Classif. ground, healthy, diseased | CNN |
[149] | Rotary | Potato | Necrosis | Multispectral | GNDVI | Disease severity | Linear regression |
[150] | Fixed wing | Potato | Potato blight | Multispectral, NIR | NDVI | Disease severity | Visual inspection |
[151] | Rotary | Peanuts | tomato spot wilt | Multispectral | Vegetation indices | Disease severity | Linear regression |
[141] | Rotary | Potato | Blackleg disease | RGB, NIR | NDVI | Disease detection | Thresholding |
[14] | Rotary | Paperback tea trees | Myrtle rust | Hyperspectral | Vegetation indices | 5-class classification | XGBoost |
[136] | Rotary | Citrus | HLB | RGB | Pixels | Classif. healthy and diseased | SVM |
[153] | Fixed wing | Scots pine | Red band needle blight | Thermal | Raw crown temperature | Disease severity | Linear regression |
[137] | Rotary | Wheat | Wheat yellow rust | Multispectral | Vegetation indices | Disease severity | Random forest |
[142] | Rotary | Potato | Potato late blight | RGB | Severity index | Disease severity | Thresholding |
[138] | Rotary | Potato | Potato virus Y | RGB | Cropped images | Classif. healthy and diseased | CNN |
[139] | Rotary | Soybean | Target spot, powdery mildew | RGB | Color, texture, shape features | Classif. healthy and 2 diseases | Several classifiers |
[143] | Rotary | Rice | Sheath blight | RGB, multispectral | NDVI | Disease severity | Linear regression |
Ref. | UAV Type | Crop | Pest | Sensor | Model Input | Model Output | Model Type |
---|---|---|---|---|---|---|---|
[109] | Rotary | Potato | Colorado potato beetle | Multispectral | NDVI, GNDVI | Damage detection | Linear regression |
[157] | Rotary | Oak | Oak splendour beetle | Multispectral (CIR) | NDVI | Damage quantification | PCA |
[150] | Fixed wing | onion | Thrips | Multispectral, NIR | NDVI | Damage detection | Visual inspection |
[16] | Rotary | Pine forest | Pine processionary moth | RGB | Moisture stress index | Damage quantification | Logistic regression |
[119] | Rotary | Canola | Green peach aphid | Multispectral, hyperspectral | NDVI | Potassium content (indirect) | Discriminant analysis |
[158] | Fixed wing | Sorghum | Sugarcane aphid | Multispectral | NDVI | Aphid density | Linear regression |
[160] | Rotary | Vineyard | Grapes Phylloxera | Multispectral, hyperspectral, RGB | Vegetation indices, DVM | Plant vigor | Linear regression |
[161] | Rotary | Vineyard | Grapes Phylloxera | Multispectral, hyperspectral, RGB | Vegetation indices, DVM | Plant vigor | Linear regression |
[162] | ? | forest | N/A | RGB | Texture features | Damage detection | Random forest |
[159] | Rotary | Chinese pine | Chinese pine caterpillar | Hyperspectral | Selected bands | Defoliation quantification | Piecewise PLSR |
Ref. | UAV Type | Crop | Weed | Sensor | Model Input | Model Output | Model Type |
---|---|---|---|---|---|---|---|
[166] | Rotary, fixed wing | Soybean | Palmer amaranth, Italian ryegrass | Hyperspectral | Images | Weed detection | Visual inspection |
[163] | Rotary | N/A | Morningglory, cocklebur, Palmer amaranth, waterhemp | RGB | Cropped images | Classif. four weed species | CNN |
[164] | Rotary | Barley | N/A | RGB | Excess green index | Weed harrowing impact | Linear regression |
[17] | Rotary, fixed wing | Sorghum | Palmer amaranth, barnyardgrass, Texas panicum, morningglory | RGB | Excess green index | Weed infestation | K-means |
[165] | Rotary | Sugarcane | Tridax daisy, sourgrass | RGB | Statistical image descriptors | Crop and weed classification | Random forest |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbedo, J.G.A. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses. Drones 2019, 3, 40. https://doi.org/10.3390/drones3020040
Barbedo JGA. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses. Drones. 2019; 3(2):40. https://doi.org/10.3390/drones3020040
Chicago/Turabian StyleBarbedo, Jayme Garcia Arnal. 2019. "A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses" Drones 3, no. 2: 40. https://doi.org/10.3390/drones3020040
APA StyleBarbedo, J. G. A. (2019). A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses. Drones, 3(2), 40. https://doi.org/10.3390/drones3020040