

  drones-04-00045




drones-04-00045







Drones 2020, 4(3), 45; doi:10.3390/drones4030045




Article



Ice Detection on Aircraft Surface Using Machine Learning Approaches Based on Hyperspectral and Multispectral Images



Maria Angela Musci 1,2[image: Orcid], Luigi Mazzara 1,2,* and Andrea Maria Lingua 1,2[image: Orcid]





1



DIATI, Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy






2



PIC4SeR, Politecnico Interdepartmental Centre for Service Robotics, 10129 Torino, Italy









*



Correspondence: luigi.mazzara@polito.it; Tel.: +39-3453183320







Received: 7 July 2020 / Accepted: 14 August 2020 / Published: 18 August 2020



Abstract

:

Aircraft ground de-icing operations play a critical role in flight safety. However, to handle the aircraft de-icing, a considerable quantity of de-icing fluids is commonly employed. Moreover, some pre-flight inspections are carried out with engines running; thus, a large amount of fuel is wasted, and CO2 is emitted. This implies substantial economic and environmental impacts. In this context, the European project (reference call: MANUNET III 2018, project code: MNET18/ICT-3438) called SEI (Spectral Evidence of Ice) aims to provide innovative tools to identify the ice on aircraft and improve the efficiency of the de-icing process. The project includes the design of a low-cost UAV (uncrewed aerial vehicle) platform and the development of a quasi-real-time ice detection methodology to ensure a faster and semi-automatic activity with a reduction of applied operating time and de-icing fluids. The purpose of this work, developed within the activities of the project, is defining and testing the most suitable sensor using a radiometric approach and machine learning algorithms. The adopted methodology consists of classifying ice through spectral imagery collected by two different sensors: multispectral and hyperspectral camera. Since the UAV prototype is under construction, the experimental analysis was performed with a simulation dataset acquired on the ground. The comparison among the two approaches, and their related algorithms (random forest and support vector machine) for image processing, was presented: practical results show that it is possible to identify the ice in both cases. Nonetheless, the hyperspectral camera guarantees a more reliable solution reaching a higher level of accuracy of classified iced surfaces.
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1. Introduction


Human safety is one of the main concerns at airports and aircraft icing represents a significant hazard in aviation [1]. The ice formation leads the aircraft’s balance in a loss of control, and de-icing and anti-icing are necessary treatments for flight safety during the winter [2,3]. However, de-icing operations require the employment of chemicals such as ethylene glycol- (EG-) or propylene glycol- (PG-) that can cause damage to the environment, in particular for the nearby surface and groundwater [3].



Ice accumulation can occur due to the supercooled droplets colliding with a hard surface forming an ice film [4] with an air temperature between 0 and −20 °C [5]. As reported by the FAA (Federal Aviation Administration), structural or in-flight ice and ground ice can be identified [6,7]. The former occurs when the aircraft is flying through visible water such as rain or cloud droplets. The latter, instead, may accumulate on parked aircraft due to precipitation and atmospheric conditions.



According to the temperature, liquid water content, speed of the formation process, aircraft surface temperature and shape, particle concentration and size, it is possible to distinguish three different types of structural ice [8] (Figure 1):




	
Rime ice that is a milky-white deposit of the ice, and it is the result of rapidly freezing of small droplets at low temperature after impacting with the aircraft surfaces. It grows at low temperature (<15 °C) with low water liquid content. The rime density is lower than 0.2–0.3 g cm−3, and it is composed mainly of discrete ice granules [9].



	
Clear or glaze ice, glassy transparent ice, caused by large droplets that run back on the aircraft surface with slow freezing, has a density higher than 0.8 or 0.9 g cm−3 [10].



	
Mixed-ice that has mixed features of the previous ones, because it forms when both rime and clear ice accumulate on the aircraft.








Frost, snow (or slush), fog, drizzle, rain (and their freezing states), and ice pellets can be considered the foremost examples of ground icing.



The sublimation of deposited water vapor on the aircraft can form frost when the temperature is at or below freezing. A fog formed of supercooled water droplets which freeze upon the impact with the aircraft surface, also known as freezing fog, produces a coating of rime/clear ice.



Rain and drizzle, uniform precipitations of liquid water particles, can be distinguished by drop diameters and proximity. The rain is characterized by drops with a diameter more than 0.5 mm very separated, instead of drizzle, that has close drops with diameters less than 0.5 mm. These two kinds of precipitations, in the freezing state, can create ice deposits with a transparent appearance. Snow or slush are precipitations of ice crystals. The slush is formed by water-saturated snow.



As gathered from the Manual of Aircraft Ground De-icing/Anti-icing Operations [2], the difference between in flight and on ground icing is not referred mainly on the characteristics of the ice but the impacts on the flight and the de-icing procedures. As it is possible to notice from the definitions of freezing fog or frost and freezing rain, clear and rime ice can also occur on the ground.



Due to the physical characteristics of these types of ice, their identification is currently based on visual (e.g., for rime ice, snow) and tactile (e.g., for clear ice, frost) inspections carried out by trained and qualified ground crew or flight crew [11].



The cleaning process moreover involves the use of a considerable amount of aircraft de-icing fluids (ADFs), because targeted operations are not achievable. The contamination check shall cover all surfaces that have aerodynamic-, control-, sensing-, movement- or measuring-function such as wings, tail surfaces, engine, fuselage, antennas, and sensors. This investigation requires enough visibility of these parts. A verification of cleaned surfaces shall always be made after the de-icing/anti-icing, and this inspection can be either visual or tactile. The whole procedure is time-consuming and demanding, especially since it is crucial to maintain the flight’s schedule. A time-effective strategy for ice detection is required to limit ADFs use and improve the management of the crew’s operations.



In this context, UAV (uncrewed aerial vehicle) [12] imagery combined with machine learning algorithms has shown excellent potential for rapid, remote, cost-effective detection tasks. This approach allows ice identification from multiple views with an automatic check-up operation.



The SEI (Spectral Evidence of Ice) project [13,14] proposes to provide an integrated solution that can handle the automatic pre-deicing inspection, ice detection, and cleaning verification procedure. The expert crew manages the request of de-icing and sends the UAV to the parking area (or hangar) of a specific aircraft that needs the procedure. The UAV can autonomously recognize the location of the aircraft and starts the inspection. Indeed, the multi-sensor UAV platform, equipped with a hyperspectral or multispectral camera, has been designed to monitor and inspect aircraft in the specific de-icing area of the airport. The main task of the drone is the identification of the location and the extension of the ice-contaminated area. For this purpose, an automatic methodology for geometric and radiometric detection of the ice has been determined. The development of computer-oriented methods for ice detection is still challenging due to the physical characteristics of the ice, variable atmospheric condition, and lack of autonomous technology in this application field.



Several devices have been developed for ice characterization for on-ground and in-flight inspection [15,16]. Some examples are based on ultrasonic, magnetostrictive, and electromagnetic sensors [17,18]. Some researchers such as Gong et al. [19] have discussed the use of the mid-infrared sensor for ice detection. In this field, the spectral imagery, not only in the mir-infrared but also in all electromagnetic range, is an emerging technology because of its high spectral and spatial resolution [20]. Our study would fulfil the gap and present the potential of hyperspectral or multispectral imaging technique in the ice detection on aircraft.



Regardless of devices for data acquisition, machine learning approaches, such as random forest (RF) [14] and support vector machine (SVM) [15], have been utilized for material detection and their characterization [21]. These algorithms perform well in reducing the complexity of the classification task associated with spectral data because they can handle the high dimensionality input space and noisy dataset [22,23].



This work, within the activities of the SEI project, tests the feasibility to use spectral sensors, such as hyperspectral and multispectral cameras, and random forest and support vector machine, as machine learning algorithms.



Firstly, the purpose is the selection of the most suitable sensor to mount on a UAV prototype that has to respond to cost requirements. For this reason, a multispectral camera, as a low-cost sensor, was examined to reduce the system production cost. At the same time, the paper addresses the definition of the time-effective automatic methodology for ice detection using the machine learning approach. As known, the hyperspectral camera has a spectral resolution of more than 100 bands instead of the multispectral camera that has a few bands (most of the cases from three to 15). A dimensionality reduction process has been applied to accurately compare the performance of the two algorithms on images with sharply different spectral resolution.



Since the UAV prototype is under construction, the experimental analysis was performed with a simulation dataset acquired on the ground. However, the methodology can be easily transferred to a UAV application.




2. Materials and Methods


This section describes the two sensors (Section 2.1), the methodology (Section 2.2), and the algorithms and accuracy assessment (Section 2.3, Section 2.4 and Section 2.5).



2.1. Sensor Description


The data acquisition was performed by a hyperspectral camera (Senop Rikola) and a multispectral camera (MAPIR Survey 3N). Senop Rikola hyperspectral camera is a snapshot camera based on a Fabry–Perot Interferometer [24,25]. It includes two not aligned sensors: one sensor acquires near-infrared bands (659.2–802.6 nm) and the second captures visible bands (from 502.8 to 635.1 nm). The MAPIR survey 3N is a multispectral camera, and it records RGN (red, green, and near-infrared bands) images as red (660 nm), green (550 nm), and near-infrared (850 nm) bands [26]. An RGB camera with specifications comparable with the MAPIR (same spatial resolution, optics, and pixel size) was used to include the blue band (475 nm). The reason for the introduction of an additional band is explained in the Methodology (Section 2.2).



The Senop and the MAPIR are lightweight UAV sensors, and they were selected because they have a similar spectral range from 500 to 950 nm. Table 1 summarizes the specifications of the two sensors.




2.2. Methodology


The overall methodology is shown in the schema below (Figure 2).



For data collection, ice samples were generated in the laboratory using molds and a real section of the aircraft wing. Since the idea was to have ice samples similar to rime (white ice) and clear ice (transparent ice), two types of ice were created. Snow or other varieties of ice cited above are not considered in this analysis because its production in our laboratory was not possible. The details of sample production and data acquisition will be explained in Section 3.



The hyperspectral and multispectral images were radiometrically corrected using the empirical line method (ELM) and the reference panel.



After that, the dimensionality reduction with principal component analysis (PCA) was executed on the hyperspectral data. This step allows defining two new datasets, the one composed by principal component hypercubes and the ones with a reduced number of bands. The original hyperspectral dataset and both the new ones also with multispectral images were classified to evaluate the performance of the detection and the computational time. Moreover, for the multispectral case, further analysis was made using the RGBN (red, green, blue, near-infrared) images, to understand the improvement of the additional band on the classification.




2.3. Dimensionality Reduction of Hyperspectral Images: Feature Extraction and Feature Selection


The high dimensionality of hyperspectral images is a crucial problem in real-time application because it takes time both in the acquisition and in ice detection steps. Moreover, it can produce the so-called Hughes phenomenon [27]. For addressing this issue, the most popular methods for dimensionality reduction are feature extraction and feature selection. Feature extraction refers to a linear or nonlinear transformation procedure that reduces the data redundancy in the spatial and spectral domain. Feature selection refers to a process to define a subset of the original features without a transformation [28,29,30]. PCA is widely used as a feature extraction method, but it can also be used for feature selection.



The PCA dimensionality reduction is based on the estimation of the eigenvalues of the covariance matrix [31,32,33]. For each pair of bands, the covariance is calculated as (1):


   σ  i , j   =  1  N − 1     ∑   p = 1  N  ( D  N  p , i   −  μ i  )  (  D  N  p , j   −  μ j   )   



(1)




where DNp,j and DNp,j are digital numbers of a pixel p in the bands i and j, respectively, and the μi and μj are the averages of the DN for bands i and j. Then the covariance matrix is defined as (2):


   C  b , b   =  (       σ  1 , 1      …     σ  1 , j        …   …   …       σ  i , 1      …     σ  i , j        )   



(2)







The roots of the characteristic equation provide the eigenvalues λ (3):


  det  (  C − λ I  )  = 0  



(3)




where C refers to the covariance matrix (2), and I is the diagonal identity matrix.



The eigenvalues indicate the quantity of original information that they compress. The variance percentage for each principal component is calculated as the ratio of each eigenvalue and the sum of all of them. Those components which contain minimum variance and, thus, the minimum number of information can be discarded. The matrix form of the principal components can be expressed as (4):


   Y i  =  (       w  1 , 1      …     w  1 , j        …   …   …       w  i , 1      …     w  i , j        )   X j   



(4)




where Y is the vector of the principal components (PC), W the transformation matrix, and X the vector of the original data, the coefficients wi,j are the eigenvectors, and they link the PC with the real variable providing information on their relationship. The eigenvectors can be calculated for each λk as (5):


   (  C −  λ k  I  )   w k  = 0  



(5)




where C and I can be defined as the (3), while λk is the k eigenvalues and wk is the k eigenvectors.



There are three practical criteria to select the most representative PCs [34]:




	
Cumulative percentage of total variation: the representative PCs must contribute to the cumulative percentage of total variation to achieve 80% or 90%.



	
Kaiser’s criterion: the selected PCs must have a variance that exceeds 1, which means that if all the variables are independent, the PCs have variance equal to 1 in the correlation matrix.



	
Screen graph: it is the plot of eigenvalues λk related to the order number of that eigenvalue k. The PC number can be selected looking at the ‘elbow’ in the graph, that indicates the components to retain. The number of PCs to use will be given by the smallest k characterized by the trend of λk. The trend of the function must be sharply decreasing on the left of ‘elbow’ point, while on the right, it has to be constant or weakly decreasing [35].








Once the PCs have been chosen, the interpretation of them is based on eigenvectors, derived from the (5). The meaning of PCs can be determined looking at the coefficient (   w  i , j    ) of variables Xj. The greater    w  i , j     is, the higher the correlation, and Xj is the most important for the PC [36].




2.4. Machine Learning: Random Forests and Support Vector Machine


Random forest (RF) algorithm builds multi-decision trees (forest) that operate as an ensemble trained with a bagging mechanism [37,38]. The bagging mechanism samples N random bootstraps of the training set with replacement. The number of trees characterized the forest, and the higher the number of trees, the more accurate the classification [39]. Moreover, the following parameters can affect the performance of the RF classifier: the tree depth, that is the number of splits for each tree, the split criteria, that handle the split at each node (such as GINI index), and the minimum split [40,41].



Support vector machine (SVM) is a binary algorithm and constructs an optimal hyperplane or a set of hyperplanes, that can be employed for the classification task [42]. The best hyperplane can separate data points of different classes, and it is usually the plane that has the most significant margin between the two classes [40]. SVM can be extended to the multiclass problem through two different approaches: the one-against-all or the one-against-one. In the one-against-all approach, a set of N binary classifiers is applied to the N-class problem. The second approach, one-against-one, carries out a series of binary classifiers to each pair of classes. The training sample size has a high impact on the performance of the SVM, as defined in Myburgh G. et al. [43].




2.5. Evaluation Metrics


Either for the random forest and the support vector machine, the accuracy assessment for the performance evaluation can be achieved with different parameters based on the error matrix. According to the literature, the selected parameters are the following [44,45]:




	
Overall accuracy (OA) that is the ratio of the total number of correctly classified pixels with respect to the total number of reference pixels;



	
User’s accuracy (UA) that is the ratio of pixels correctly classified in given class with respect to all pixels classified in the specific category.








Moreover, in this specific real-time application, the computational time for the classification part was assessed. The processing time of the training procedure was not taken into account because the final goal was to use transfer learning.





3. Ice Detection: An Experimental Analysis


For the experimental analysis, it was not possible to collect the real types of ice; thus, different kinds of ice were generated in the laboratory as much as similar to the case study. Two types of ice were produced: the first one similar to the rime ice with milky-white color and the second one to the glassy clear ice.



The former was created using the water vapor condensed into the freezer at a temperature of −15 °C and its thickness reaches values between 2 and 6 cm. The latter was generated by freezing tap water within plastic molds at a temperature of −15 °C. Different plastic molds were used for producing different blocks of ice that contained from 5 to 20 mL of water with a thickness of approximately around 3 cm. The ice blocks were located on a section of an aircraft wing to simulate the typical conditions in which the ice is present.



The aluminum panel used in the tests was a section of a Socata MS.894 Rally Minerva with a dimension of 400 × 400 × 2 mm. Before icing, the panel was stored in a freezer so the icing would start with low surface temperature. Figure 3 shows the configuration of the samples.



3.1. From Data Collection to Sample Annotation


The dataset was built by collecting a ground measurement. The acquisitions were performed at Photogrammetry, Geomatics and GIS Laboratory of DIATI (Department of Environment, Land and Infrastructure Engineering) at Politecnico di Torino (Italy) [46]. During this campaign, 10 images for the hyperspectral and eight for the multispectral sensor with different illumination conditions were collected (18 images in overall). The various illumination conditions were generated using a different number of lamps and a combination of lamps and natural light to simulate the real scenario in which the drones will be used in the parking area or the hangar. The term “Test” refers to each image with different environmental conditions in this paper. All data were recorded, maintaining stable positions and varying rotations of the camera slightly.



The hyperspectral camera was used in manual mode connected to the computer through a USB cable. The selected image resolution was 1010 × 1010 pixels. The images were composed by 100 bands covering the spectral range from 502 to 906 nm, with a wavelength step of 4 nm and a Full with Half Maximum resolution (FWHM, where Wide means low gap index). The integration time was set at 450 ms based on the environmental illumination condition. The sequence of the bands was automatically generated using the Rikola Hyperspectral Imager software v2.0. These parameters were chosen to cover the whole spectral range. The whole electromagnetic spectrum was also covered to identify the most characteristic bands and features of studied materials. For the MAPIR instead, the camera’s sensitivity was set to ISO- 800, and the exposure time was fixed to 1/15 s.



The two datasets of images were radiometrically calibrated using the Empirical Line Calibration tool of ENVI 4.7 [47]. Then, the images of each sensor were manually annotated. In both cases, the same 10 classes were considered: rime ice, clear ice, white aluminum, aluminum, floor tile, wood and reference panel (white, black, grey 21%, and grey 27%). The representative classes were only the rime ice, the clear ice, and the white aluminum (Figure 3). These classes were chosen according to the materials that it was possible to distinguish in the real case at aircraft scale. The selected materials were related to the object (in our case, the aircraft) and the ice. Other materials were included in the background in different classes to improve the performance of the classification. The option of a single class for background materials would alter the accuracy of outcomes. The number of samples per class for each dataset are reported in Table 2.



The training and test samples were collected based on visual interpretation. ArcGIS Pro 2.5.0 toolbox was used to create polygons as reference data for each class.




3.2. Dimensionality Reduction of Hyperspectral Data: Results


To reduce the hyperspectral data dimensionality, PCA was carried out using the “Principal components tools” of ArcGIS Pro 2.5.0 [48]. As described in Section 2.3, it was possible to adopt the PCA as feature extraction and band selection method.



As the first step, the feature extraction was performed to define the principal components. In the second step, the selected PCs were used for significative band selection. Both feature extraction and band selection methods were applied for understanding the best solution for ice detection.



Therefore, for the feature extraction, the eigenvalue and cumulative variance were obtained to identify the number of principal components (PCs), which means the new dimensionality. The outcomes of the first image only were reported as an example because the selection process and conclusions were the same for the other pictures. Table 3 shows the percentages of the primary five components of the sample image. As can be seen from Table 3, three PCs reach 90.31% of the total variance in original data for the first criterion and pass the 1% for Kaiser’s rule (Section 2.3). As a consequence, the dimensionality of the new representation is three, and the rest of the component can be discarded. Moreover, also the screen plot in Figure 4 illustrates that it is possible to identify three as the number of PCs (third rule described in Section 2.3).



After the identification of the PC number, the first three principal components were used to select a reduced number of original bands for the classification task. The band selection process was carried out using the eigenvectors for each PC. The higher the absolute value of the band eigenvector, the higher the importance of that band for the specific principal component. According to this criterium, considering that the number of significative bands is strictly related to the application, a threshold of eigenvector values, defined for each component, allows to identify the significative bands. The plot of eigenvector values reports the correlation between spikes of the function and the representative bands. Figure 5, Figure 6 and Figure 7 represent the eigenvector values with respect to the band number for the three selected principal components in four representative images (Test1, Test2, Test6, Test10) among 10 hyperspectral images. Different illuminations and the change of the state of ice characterize these four tests, and this comparison was made to check the recurrence of the most significant bands, that can be selected. The presence of spikes in the eigenvectors function allows to recognize the bands, for all the images for the three selected PCs (Table 4):



As it is possible to notice in Table 4, there are recurring bands in each test. Taking into account all the identified bands, a new hypercube with 27 bands, that are 1 (506.31 nm), 3–7 (from 514.48 to 530.11 nm), 14 (558.28 nm), 25 (602.47), 32–38 (from 630.2 to 654.19 nm), 78–89 (from 817.58 to 861.65 nm) can be generated. However, considering only the popular bands in each principal component of all images, the number of significative bands can be further reduced to 10. The significative bands, in this latter case, are 4–5 (from 518.12 to 522.48 nm), 33–37 (from 634.36 to 650.38 nm), 83–85 (from 837.98 to 846.21 nm).



Three new datasets came from the dimensionality reduction process: 10 new images composed by the three PCs, 10 new hypercubes with 10 bands and 10 hypercubes with 27 bands. The first set of modified hypercubes was created through the toolbox “Principal Component Analysis” of ArcGIS Pro 2.5.0 selecting three as a maximum number of principal components. The two remaining datasets with reduced hypercubes were generated using a customized routine of Matlab for hyperspectral data decomposition and the “Composite Bands” tool of ArGIS Pro 2.5.0 [49] for the selected band composition.




3.3. Hyperparameter Tuning for Random Forest and Support Vector Machine


The hyperparameter tuning process plays a crucial role in improving the accuracy of RF and SVM algorithms.



Before starting with the hyperparameters adjustment, data were split in 80% for training and 20% for testing. The tuning of hyperparameters was made on the training set for defining a model. Accuracy assessment was carried out for either the training and testing set to verify the performances of the model in the classification task. The validation curve allows to visualize the values of the model hyperparameters, and it shows different values of the single hyperparameter related to the accuracy trend.



The optimized hyperparameters were chosen according to two criteria. The first one is the minimum difference between the overall accuracy of training and validation models, and the second one is the best user’s accuracy only for the validation. It is necessary to notice that for the evaluation of the accuracy the random choice of the samples has to be taken into account; thus, tolerance has to be considered. Accuracy analysis of training and validation are presented for both the algorithms.



Moreover, the accuracy assessment of the rime ice, clear ice, and white aluminum is under the attention among the other classes. These three classes are distinctive in the real de-icing application. The clear ice, as explained in the Introduction (Section 1), is critical to identify by visual inspection. Thus, it has a relevant weight in this analysis.



The tuning was implemented either for RF or SVM on a single image (Test_1) of both datasets (hyperspectral and multispectral images) and the “Segmentation and Classification tools” of ArcGIS Pro 2.5.0 [50]. The tests were made on a window workstation (Windows 10) with an Intel® Core™ I7-6500U CPU at 2.50 Ghz, GPU AMD Radeon™ R7 M360 (Iceland) (six compute units at 980 MHz, 2048 MB) and 16 GB of RAM.



Since SEI project application requires a near real-time approach (Section 1), in this section, the computational time was evaluated because one of the aims of the optimization is the definition of the trade-off between accuracy and processing time.



As described in Section 2.4, the hyperparameters for each classifier have to be tuned. They are the same either for hyperspectral and multispectral. The optimization was executed in manual mode. For the RF algorithm, the maximum number of samples for each class was fixed; we tuned two hyperparameters: the tree depth and the number of trees. For what concerns the SVM instead, only the maximum number of samples per class was tuned.



3.3.1. Hyperparameters Tuning for the Hyperspectral Dataset


Starting for the RF, the sample size was set to 2000 for each class for tuning the tree depth and the number of the trees. The tree depth optimization was done varying its value from 5 to 30. Instead, the number of trees was fixed to 50. As reported in Table 5, the difference between the overall accuracy (OA) is comparable in all training and validation configuration. The case with a depth equal to 5 was kept out because it was not reasonable with a low number of trees. Therefore, looking just to the validation results, the tree depth equal to 30 produces the best value of OA and clear ice accuracy. For these reasons, the selected tree depth was equal to 30.



Instead, for the number of tree selection, the tree depth value was fixed to 30, according to Table 5. The number of trees was varied from 5 to 50 (Table 6). Following the same reasoning defined for the selection of tree depth, the cases with a lower number of trees were excluded. Indeed, the differences among the OA is comparable in the other configurations. Concerning Table 6, the cases 15, 30, and 50 were characterized by a similar OA value that is also the highest one (87.9% on average). However, the accuracy of the C_i class leads with a gap in the case 50. As a consequence, the number of trees equal to 50 was the optimized value.



In Figure 8, the comparison between training and validation overall trends among all the considered depths and numbers of trees can be appreciated. The validation curves confirm the previous observations and the criteria used for the optimized hyperparameters selection.



Table 7 presents the RF processing time for the training in the analyzed configurations considering the tuning of both the hyperparameters. In the case of D_Trees, the processing times are not excessively influenced by the increase of the depth number. While in the case of N_trees, the higher the number of trees, the higher the computational time. However, the computational time is stable after 15 N_tree because the selected sample size does not affect the number of trees. It is possible, thus, to choose 50 as N_trees value.



For what concerns the SVM instead, the maximum number of samples per class ranged between 100 and 5000 samples. The differences between OA training and validation remains 8% on average in all configurations (Table 8). The highest value of the OA (validation) occurs in the case of 5000 samples, but this configuration was excluded because the related computational time is too long (3h4′25″) (Table 9). Thus, the cases of 100, 750, and 1000 were taken into account. The configuration 100 was discarded because the sample size was small, and the random choice of the sample hugely affects the overall accuracy in the images.



For the remaining cases, since OA is comparable, thus the hyperparameter selection was based on the accuracy of the clear ice. In the validation, the C_i accuracy is 94.0% in the 750 sample case, instead of 92.7% in the 1000 sample case. According to this consideration, the selected number of samples was 750. The validation curves confirm that this parameter is the best fit (Figure 9).



Table 9 reports the processing time for each configuration. It is possible to notice that, as expected, the computational time increases according to the increase of the sample size.




3.3.2. Hyperparameter Tuning for the Multispectral Dataset


With the RF, the samples size was set to 10,000 for each class. Tree depth and the number of trees ranges were chosen according to the number of samples and the image resolution. For multispectral images, the training sample size is five times greater than the hyperspectral, and the resolution is 4000 × 3000 pixels instead of 1010 × 1010 pixels. The case 50_30 was chosen as starting point according to the previous tuning on hyperspectral data (Section 3.3.1). The tree depth optimization was done, varying its value from 30 to 60. The number of trees ranged from 50 to 125.



Table 10 presents the training and validation accuracies considering all the combinations of the number of trees (xx in the test code) and the depth tree (yy in the test code).



The OA in training and validation is constant in all configurations, 81% and 77%, respectively. As a consequence, the best configuration can be defined, looking only to the validation accuracy. The OA accuracy is not strongly affected by the different hyperparameters. However, the test 100_30 presents the highest value of OA (77,8%). Looking at the clear ice UA, the best case should be 125_40 with a value of 69.8% instead of 69.7% in the case 100_30. From these observations, it is not possible to recognize this case as the best fit without the computational time analysis because the UA for C_i is quite similar (Table 11).



For what concerns the processing time, in all configurations, the trend increases according to the number of trees increasing. The case 100_30 was selected because it has a good trade-off between processing time (6′55″ instead of 8′58″ for the case 125_40), overall and glassy ice accuracy.



For the SVM classifier, only the sample size per class ranged between 500 and 2000 samples. In Table 12, it can be noticed that cases with 1500 and 2000 samples have the best OA and the latter also has the highest value for the C_i accuracy (68.6%). Nonetheless, taking into account the computational time (Table 13), the test with 2000 samples lasts around 20 min more than the test with 1500 samples (1h5′43″). The best fit can be considered the configuration with 1500 samples.



Table 13 provides the computational time in all configurations and displays that the increase of sample size defines the increasing of the processing time trend in a proportional way.





3.4. Ice Detection using Hyperspectral Data: Results


The ice detection was performed on three types of hypercubes:




	
the original hypercubes collected with the Senop Rikola (Section 3.1);



	
the reduced hypercubes composed by the selected bands (27 bands and 10 bands) (Section 3.2);



	
the images formed by the three principal components (PC images) (Section 3.2).








For the classification, the “Classify Raster” tool of ArcGIS Pro 2.5.0 [51] and the Test_1 was employed for the training. The analysis, in this section, is focused on two main parameters: the accuracy and the computational time for the classification only.



In general, as explained in Section 2.5 both overall accuracy and user’s accuracy were used for assessing the classification. As mentioned in Section 3.1, some materials are included in the background, but at the same time annotated as different classes to check the performance on different materials. Since these classes were not included in the real scenario, because in that case, the background will be different (e.g., asphalt instead of floor tile), the overall accuracy was included just to show the general performance of the algorithms. However, the primary parameter is the user’s accuracy, because the object of this study is the detection of the ice and in detail the clear ice due to its transparent property.



For each dataset (original hypercubes, reduced hypercubes, and PC images), random forest and SVM with the optimized hyperparameters derived from Section 3.3.1 were used. For the RF, the hyperparameters selected for the classification are the number of trees equal to 50, tree depth equal to 30 and 2000 samples. For the SVM, the classification with 750 samples was performed.



As in the case of PCA (Section 3.2), the classification evaluation is shown only in four representative images (Test_1, Test_2, Test_6, and Test_10). Test_1, Test_2 and Test_6 present varied environmental conditions and Test 10 was included to display the behavior of the model in the presence of ice phase transition.



For what concerns the original dataset classified with the RF, the overall accuracy reaches a maximum value of 88%, and the computational time is 14 min on average (Table 14). The classification performs better on the clear ice than the other classes, reaching a maximum value of ca. 96%. Regarding the rime ice, its accuracy is on average under 50% since the radiometric response is similar to that related to the white aluminum (67% on average).



With SVM classifier (Table 15), the overall accuracy reaches a maximum value of 92%, and the computational time is 17 min on average. Additionally, in this case, C_i user’s accuracy is higher than the other significant classes, reaching a maximum value of ca. 97%. Rime ice accuracy is on average under 60% since the radiometric response is similar to that related to the white aluminum (78% on average).



As presented in Table 14 and Table 15, the SVM reaches better accuracy on average than the RF. Indeed, the overall accuracy is 86.2% for the RF and 88.8% for SVM. The drawback of the SVM is the processing time. The average computational time is 14′22″ for the RF and the 17′5″ for the SVM. Therefore, the RF is faster than the SVM in the classification process.



For both algorithms, Test_10 reports low user’s accuracy values compared with the other tests, because in this case, ice was starting to melt. This evidence also recurs in the reduced hypercube datasets and the PCA dataset. There is only one test in which the ice is starting to melt. Thus, it is predictable that the algorithm, in this case, works worst and the detection of the ice in other physical states was out of this preliminary study. It is well known that the ice changes its features according to its state. Thus, for the real case application, further acquisitions will be made for training the algorithm and improving the detection of the ice while changing its state to the liquid one.



The same analysis was carried out for the reduced hypercube datasets (27 bands and 10 bands) (Table 16). The reached OA with RF classifier has a maximum value of 83.8% for the hypercubes with 27 bands and 80.6% for the hypercubes with 10 bands. The computational time varies from 28.5″ for the 27 bands to 26.5″ for the 10 bands. These observations demonstrate that the two cases are comparable, and the dataset with 10 bands can be considered reliable. Moreover, the C_i user’s accuracy stands that the model has in any way a good performance. As a consequence, it verifies that the set of bands selected using the PCA is adequate for the classification task.



Table 17 presents the outcomes of the SVM. The overall accuracy reaches a maximum value of 87.3% for the 27 bands-hypercubes and 80.8% for the 10 bands-hypercubes. The processing time varies from 1′50″ to 1′40″, respectively, for the 27 bands and the 10 bands. Regarding the clear ice, the dimensionality reduction does not affect accuracy. Even if the SVM accuracy has the same trend of RF for the two datasets, there are still slight differences (Table 16 and Table 17). Referring to the average OA for the 27 bands, the SVM performs better than the RF, while for the 10 bands is the opposite. For both reduced datasets, the SVM has a higher user’s accuracy of C_i class, and it is slower compared with the RF.



Turning now to the analysis on the PC dataset, for the RF algorithm, Table 18 indicates that there is a perceivable reduction of the accuracy rate concerning original and reduced hypercubes. The average OA does not overcome the value of 72%. Regarding the computational time, it is around 38″ on average.



For the SVM algorithm, Table 19 presents findings comparable to the RF one. The average OA does not overcome the value of 76%. Moreover, the computational time is around 1′17″ on average.



These observations demonstrate that either SVM and RF produce ambiguous and inaccurate outcomes in some cases and the resulting average accuracy for clear ice (77.8% for SVM and 73.4% for RF) could be not acceptable for our applications. Finally, the comparison between the two algorithms proves that SVM behaves better than RF. Overall and user’s accuracy for all classes always have a higher value in SVM, but its computational time is twice as much as RF’s one. Hence the classification with the SVM is still slower than the RF’s.



According to the above analysis, for the ice detection in all datasets (original, reduced 27 bands, reduced 10 bands and PC), it is possible to make some general considerations. SVM and RF accuracy are comparable in all cases. Indeed, the difference between the accuracies is from 0.1% to 2%. Despite these minimal differences, the SVM presents the higher values of the user’s and overall accuracy on average than the RF classifier. The reduction of dimensionality affects the overall accuracy slightly. Considering the difference between the original hypercube and the PC hypercube, the OA decreasing on average is 12% for the SVM classifier, instead of 14% for the RF one.



For the user’s accuracy of the C_i, a descending trend based on the dimensionality of the feature space cannot be defined. However, the differences of clear ice accuracy between the best case (10 bands hypercube) and the worst case (PC images) is 7% for the SVM and 9% for the RF.



The processing time is strictly related to the size of the feature space. The dimensionality reduction helps to contract the processing time. In general, the analysis on the computational time shows that the RF is faster than the SVM, both in training and classification parts.



Figure 10 illustrates the results of the classification for each dataset. It can be appreciated graphically the discrepancy related to the reduction of the number of bands. Specifically, Figure 10 refers to the Test_1 hypercube classified with SVM. The RF graphical results are not included because it is impossible to detect the visual differences compared with the SVM accuracy. As can be seen, the clear ice is well detected in all the cases; while the rime ice identification gets worse according to the reduction of the bands.




3.5. Ice Detection Using Multispectral Data: Results


The ice detection was performed in the case of multispectral images on two datasets:




	
the original data acquired with the MAPIR (RGN images);



	
the multispectral data composed with the blue band of the RGB (RGBN images).








The optimized hyperparameters identified after the tuning (Section 3.3.2) were used. For the RF, the hyperparameters selected for the classification are the number of trees equal to 100, tree depth equal to 30 and 10,000 samples. For the SVM, the number of samples is 1500.



Considering the RGN dataset, the classification assessment is described in four representative images (Test_1, Test_2, Test_6, and Test_10) that have the same characteristics of the hypercubes described in Section 3.4. For the RGBN dataset, only the Test_1 integrated with the blue band is cited to demonstrate the improvement related to the blue presence in terms of accuracy.



With the RF, the evaluation of the outcomes on RGN images shows that OA is on average 49.5%. Instead, the computational time on average is 6′43″ (Table 20). As expected, the lack of blue band alters deeply also values of UA compared with hyperspectral hypercubes. For example, the maximum value for the glassy ice accuracy is lower than the 80%. Thus, it is not sufficient to be considered correct and accurate.



With the SVM, the accuracy assessment of the RGN dataset shows that OA is on average 49.2%. Instead, the computational time on average is 23′40″ (Table 21). The missing blue band problem is still visible. Indeed, the clear ice accuracy does not surpass the value of 67% in the best configuration.



Nonetheless, the comparison among the two algorithms shows that RF performs better classification on average and its computational time is lower than SVM’s one.



Considering that the accuracy assessment for the RGN dataset is not comparable with the ones obtained using the hypercube with similar feature space size (e.g., PC images), the blue band was added to create RGBN images. Indeed, looking to the results of the band selection (Section 3.2) it is possible to notice that the blue band has essential weight.



Table 22 illustrates an overview of the accuracy and the processing time in the RGBN case. As can be seen, the OA reported a significant increase compared with the RGN images. Indeed, it overcomes the value of 80% for both the algorithms. The UA values are higher than the average of the respective values in the RGN case. At the same time, the computational time decreases for the RGBN images.



Regarding the comparison between the two algorithms in the RGBN case, the SVM produces a better classification, but its computational time is longer than the RF’s one.



Figure 11 highlights the results of the classification in the two datasets using the SVM. The improvement related to the introduction of the additional band is evident. The blue band allows to reduce the classification noise and at the same time a better identification of all materials. Moreover, the enhancement of the distinction between rime ice or clear ice and white aluminum is clear.





4. Discussion


Since the previous section describes already the outcomes related to the dimensionality reduction of hyperspectral data and the classification with the two algorithms on the different datasets, the discussion focuses on:




	
the consideration related to the use of hyperspectral or multispectral images for the ice detection task;



	
the comparison between the two classifiers in terms of computation time and accuracy;



	
the comparison among the detection of the different material.








For what concern the first point, this study confirms that for the ice detection task, the use of hyperspectral images is more reliable. However, on the other hand, highlights that the advantage of operating with multispectral data (with the same spatial resolution of the hyperspectral images) is related to the computational time. The latter, indeed, is one of the crucial problems in real-time application.



The outcomes demonstrate that the hyperspectral data are suitable for real-time applications after a priori analysis. A dimensionality reduction process can easily compress the size of hyperspectral data preparing the data for the classification task. This step leads to breaking down the limits related to the computational time of the original hypercubes. The experimental analysis shows that the processing time can be improved, downscaling the spectral resolution. The case of reduced hypercube with 10 bands can be considered a trade-off between accuracy and computational time, regardless of the employed algorithm.



Moreover, starting with the analysis of significative bands, a multispectral sensor can be defined for facilitating the acquisition and classification operations. It is crucial to take into account, in the case of multispectral images, that the spatial resolution is four times greater than the hyperspectral. The results obtained with the introduction of a significative band (in this case, the blue band) shows the effectiveness of predefined-band knowledge in the classification.



Regarding the classifiers, it is possible to state that the SVM performs better in terms of accuracy; on the opposite, the RF classifier is faster than the SVM. This observation is valid for both datasets: the multispectral and the hyperspectral dataset. However, the accuracy reached with the multispectral data is not comparable with ones of the hyperspectral camera regardless of the selected algorithm.



Finally, turning now to material detection, this study focuses the attention on the classification of clear ice. As explained in the Introduction (Section 1), the clear ice is not visible with the naked eye and requires tactile inspection. The ice, in the real case, could have different features (e.g., density, shape) than the ice samples that were generated in this study. At this stage of our work, other types of ice were examined to understand if the classification was able to distinguish, as two classes, the different condition of the same material, such as transparent ice and rime ice. Due to its characteristics, the rime ice is more visible; thus, the detection is more straightforward. Concerning the ice detection reliability, it is possible to underline that both algorithms conservatively recognize both forms of ice. For instance, if an area is contaminated by ice, conservative way means that it is much more unlikely that the algorithms recognize that area as aluminum or as other material instead of ice (this is the case of a false negative). This example implies that even if the algorithms recognize an area of aluminum as ice, it is very improbable that the contrary occurs. It is possible to notice in Figure 10 and Figure 11 that the main false negative can be associated with the white aluminum, that is identified as ice.



In the real case, not to apply de-icing fluids to some areas with ice is more dangerous than applying the de-icing procedure on some other areas that do not need it. Therefore, it could be possible that some de-icing fluids will be wasted for areas in which actually ice is not present; however, the safety, that is a primary goal, is not compromised.



Moreover, although the radiometric classification is noisy for the rime ice, the results can be improved with the use of geometric features. The previous activities of the SEI project [14] demonstrated that the rime ice is accurately identifiable in this application, using the RGB sensor and a photogrammetric approach.




5. Conclusions


In this paper, the feasibility to use spectral images for ice detection was studied, testing different sensors with different spectral resolutions such as the Senop Rikola and the MAPIR. To address this purpose, two different types of ice samples were created to understand if it was possible to distinguish clear ice (transparent ice) from rime ice (white ice). Then, images were collected in different illumination conditions, because there is no open-source and ready to use dataset to face this specific task. Moreover, semantic segmentation algorithms (such as RF and SVM) were defined, also evaluating the accuracy and the processing time.



The main challenges of this work were the definition of the efficient use of hyperspectral data in the near real-time application and the research of spectral resolution and algorithms capable of providing higher accuracy and limited computational time.



This experimental analysis demonstrates the possibility to use the reduced hypercubes and both the RF and SVM as a classifier with an OA higher than 80% on average.



As feature work, we plan to transfer the knowledge and the promising outcomes acquired through this simulation in a drone application. Moreover, the drone’s application can help to consider also other kinds of ice that are not possible to reproduce in the laboratory, such as snow and freezing rain.
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Figure 1. Ice types: rime ice, clear ice, and mixed-ice. (Photo credit: NASA, adapted from [8]). 
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Figure 2. Methodology workflow. 
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Figure 3. Example of annotated image with reference data. Training set sample (a) and validation set sample (b). 
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Figure 4. Screen graph on a sample image. Zoom of the ‘elbow’. 
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Figure 5. First principal component eigenvalues plot. 
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Figure 6. Second principal component eigenvalues plot. 
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Figure 7. Third principal component eigenvalues plot. 
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Figure 8. RF validation curve for maximum depth (on the left) and maximum number of trees (on the right). 
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Figure 9. SVM validation curve for the maximum number of samples. 
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Figure 10. The classification results on Test_1 with SVM. (a) Original classified hypercube, (b) reduced classified hypercube-27 bands, (c) reduced classified hypercube-10 bands, and (d) PC classified hypercube. 
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Figure 11. The classification results on Test_1 with SVM. (a) RGN classified images and (b) RGBN classified images. 
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Table 1. Sensor specifications: the Senop Rikola hyperspectral camera and the MAPIR Survey3N multispectral camera.






Table 1. Sensor specifications: the Senop Rikola hyperspectral camera and the MAPIR Survey3N multispectral camera.





	Camera
	Senop Rikola
	MAPIR Survey3N





	Lens optics
	H 36.5°, V 36.5°
	H 41° HFOV (47 mm)



	Spectral range
	500–900 nm
	550–850 nm



	Spectral channels
	380
	3



	Spectral resolution
	1 nm
	-



	Shutter type
	Global
	Rolling



	Focal length
	9 mm
	8.25 mm



	Image resolution
	1010 × 1010 pixels
	4000 × 3000 pixels



	Pixel size
	5.5 μm
	1.55 μm



	Weight
	720 g
	75.4 g



	Dimensions
	172.7 × 89 × 77 mm
	59 × 41.5 × 36 mm



	Cost
	≈60,000€
	≈700€
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Table 2. Hyperspectral and multispectral reference samples per class.
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	Class
	Hyperspectral Samples (Pixels)
	Multispectral Samples (Pixels)





	Rime ice
	10,156
	101,797



	Clear ice
	10,457
	104,819



	White aluminum
	11,632
	116,588



	Aluminum
	3580
	35,912



	Wood
	10,896
	93,624



	Floor tile
	19,812
	198,572



	White reference panel
	9545
	95,672



	Black reference panel
	16,024
	160,617



	21% grey reference panel
	12,980
	130,089



	27% grey reference panel
	10,670
	106,949



	Average pixels per class
	10,523
	104,058
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Table 3. Principal component analysis (PCA): example of eigenvalue and cumulative variance in percentage on a single sample image.






Table 3. Principal component analysis (PCA): example of eigenvalue and cumulative variance in percentage on a single sample image.





	Component
	Percent %
	Cumulative%





	1
	80.0010
	80.0010



	2
	8.4818
	88.4828



	3
	1.8341
	90.3169



	4
	0.9935
	91.3104



	5
	0.5888
	91.8992
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Table 4. Band selection for the three principal components (PC) in the representative tests (Test1, Test2, Test6, Test10).






Table 4. Band selection for the three principal components (PC) in the representative tests (Test1, Test2, Test6, Test10).





	Principal Component
	Test1
	Test2
	Test6
	Test10





	1
	1, 3–7, 25, 32–38
	1, 3–6, 14, 33–37
	1, 3–6, 32–37
	4, 5, 32–34, 36, 37



	2
	80–85
	80–85
	78–89
	83–89



	3
	35–37
	35–37
	35–37
	35–37, 86–89
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Table 5. Training accuracy (on the left) and validation accuracy (on the right) for random forest (RF) tree depth optimization. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow, the selected optimized hyperparameter.






Table 5. Training accuracy (on the left) and validation accuracy (on the right) for random forest (RF) tree depth optimization. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow, the selected optimized hyperparameter.





	
D_Trees

	
Training Accuracy (%)

	
Validation Accuracy (%)




	
R_i

	
C_i

	
W_a

	
Overall

	
R_i

	
C_i

	
W_a

	
Overall






	
5

	
73.6842

	
91.0615

	
74.7475

	
92.5425

	
42.4802

	
92.9577

	
64.8855

	
85.5371




	
10

	
80.1887

	
98.8636

	
92.9412

	
97.0971

	
44.4992

	
94.9346

	
69.5067

	
87.7175




	
15

	
78.8018

	
98.8506

	
93.4524

	
96.8969

	
43.128

	
95.0083

	
68.9602

	
87.0574




	
20

	
84.6535

	
93.956

	
93.8547

	
97.2472

	
41.2747

	
94.108

	
68.7908

	
86.6773




	
25

	
79.3427

	
97.1429

	
93.4911

	
96.8468

	
42.2256

	
92.5159

	
68.932

	
86.5173




	
30

	
81.6038

	
99.422

	
95.3757

	
97.2472

	
43.6863

	
95.7816

	
70.8692

	
87.83
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Table 6. Training accuracy (on the left) and validation accuracy (on the right) optimization of RF number of trees. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow the selected optimized hyperparameter is shown.






Table 6. Training accuracy (on the left) and validation accuracy (on the right) optimization of RF number of trees. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow the selected optimized hyperparameter is shown.





	
N_Trees

	
Training Accuracy (%)

	
Validation Accuracy (%)




	
R_i

	
C_i

	
W_a

	
Overall

	
R_i

	
C_i

	
W_a

	
Overall






	
5

	
85,3403

	
96.5909

	
91.0053

	
97.1471

	
39.0855

	
93.9542

	
66.8908

	
86.0172




	
10

	
83.3333

	
99.422

	
95.4802

	
97.5475

	
41.1854

	
93.9344

	
67.7368

	
86.6573




	
15

	
82.381

	
99.422

	
94.2529

	
97.3974

	
45.4699

	
95.1604

	
71.3681

	
87.9587




	
20

	
80.7512

	
98.3051

	
95.2663

	
97.2472

	
43.2602

	
94.2122

	
71.205

	
87.2575




	
25

	
85.8586

	
97.2067

	
95.0549

	
97.6977

	
42.8571

	
93.4959

	
72.0339

	
87.3253




	
30

	
82.6923

	
97.7011

	
93.2203

	
97.1972

	
44.0476

	
94.3548

	
71.1538

	
87.8743




	
35

	
86.8687

	
99.4253

	
95.6522

	
97.998

	
44.081

	
93.75

	
70.892

	
87.3375




	
40

	
83.0846

	
96.4912

	
90.3226

	
96.9469

	
42.1217

	
94.2997

	
68.7988

	
86.5973




	
45

	
81.6425

	
98.8506

	
92.1348

	
97.0971

	
42.6404

	
95.098

	
69.9681

	
87.4375




	
50

	
81.6038

	
99.422

	
95.3757

	
97.2472

	
43.6863

	
95.7816

	
70.8692

	
87.83
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Table 7. Processing time for the training in RF using different values of tree depth (on the left) and the number of trees (on the right). In yellow the time for training the model with the selected optimized hyperparameter is shown.






Table 7. Processing time for the training in RF using different values of tree depth (on the left) and the number of trees (on the right). In yellow the time for training the model with the selected optimized hyperparameter is shown.





	D_Trees
	Processing Time
	N_Trees
	Processing Time





	5
	34″
	5
	14″



	10
	31″
	10
	26″



	15
	26″
	15
	32″



	20
	26″
	20
	31″



	25
	27″
	25
	32″



	30
	33″
	30
	29″



	-
	-
	35
	33″



	-
	-
	40
	30″



	-
	-
	45
	33″



	-
	-
	50
	33″










[image: Table] 





Table 8. Training accuracy (on the left) and validation accuracy (on the right) optimization of support vector machine (SVM) number of the sample. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow the selected optimized hyperparameter is shown.






Table 8. Training accuracy (on the left) and validation accuracy (on the right) optimization of support vector machine (SVM) number of the sample. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow the selected optimized hyperparameter is shown.





	
N_Samples

	
Training Accuracy (%)

	
Validation Accuracy (%)




	
R_i

	
C_i

	
W_a

	
Overall

	
R_i

	
C_i

	
W_a

	
Overall






	
100

	
77.6744

	
97.7401

	
92.1687

	
96.3964

	
56.6879

	
99.1667

	
72.4719

	
91.4671




	
250

	
86.8687

	
97.7401

	
96.7568

	
97.9980

	
46.8354

	
96.4567

	
74.5247

	
89.7206




	
500

	
86.6667

	
1.0000

	
94.6237

	
97.9479

	
44.7059

	
95.2756

	
73.1707

	
88.6228




	
750

	
93.5135

	
99.4382

	
98.4615

	
99.0490

	
51.8644

	
93.9623

	
90.9091

	
90.9182




	
1000

	
91.8919

	
98.895

	
97.3822

	
98.7487

	
52.8571

	
92.6740

	
89.0000

	
91.0679




	
2000

	
91.5344

	
1.0000

	
97.8836

	
98.9990

	
49.6815

	
93.8697

	
89.4444

	
89.8204




	
5000

	
97.1910

	
1.0000

	
98.4925

	
99.5996

	
52.9825

	
92.8058

	
91.1917

	
91.3673
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Table 9. Processing time for the training in SVM using different values of sample size. In yellow the time for training the model with the selected optimized hyperparameter is shown.






Table 9. Processing time for the training in SVM using different values of sample size. In yellow the time for training the model with the selected optimized hyperparameter is shown.





	N_Samples
	Processing Time





	100
	2′8″



	250
	12′26″



	500
	24′51″



	750
	47′21″



	1000
	1h18′2″



	2000
	1h33′36″



	5000
	3h4′25″
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Table 10. Training accuracy (on the left) and validation accuracy (on the right) RF tree depth and the number of trees optimization. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. The test name is defined as xx_yy, where xx is the number of trees, yy is the depth. In yellow the selected optimized hyperparameter is shown.






Table 10. Training accuracy (on the left) and validation accuracy (on the right) RF tree depth and the number of trees optimization. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. The test name is defined as xx_yy, where xx is the number of trees, yy is the depth. In yellow the selected optimized hyperparameter is shown.





	
Test (xx_yy)

	
Training Accuracy (%)

	
Validation Accuracy (%)




	
R_i

	
C_i

	
W_a

	
Overall

	
R_i

	
C_i

	
W_a

	
Overall






	
50_30

	
70.5078

	
66.9162

	
56.3398

	
81.6832

	
55.3701

	
68.7615

	
60.2531

	
77.1311




	
50_40

	
69.8004

	
67.3592

	
56.2977

	
816582

	
54.1104

	
67.8014

	
60.6952

	
77.0461




	
50_50

	
69.5568

	
67.5865

	
55.8317

	
81.5282

	
53.0954

	
68.4173

	
60.8929

	
77.2861




	
50_60

	
70.0849

	
67.6036

	
54.2184

	
81.4681

	
53.5284

	
68.5125

	
60.6882

	
77.6211




	
75_30

	
68.8278

	
67.2374

	
55.5764

	
81.4281

	
53.9481

	
67.9496

	
60.4317

	
77.1311




	
75_40

	
69.9799

	
67.5952

	
56.2234

	
81.7932

	
53.4521

	
68.7778

	
59.3454

	
76.9912




	
75_50

	
69.5681

	
66.3261

	
55.0188

	
81.5732

	
53.0235

	
67.9594

	
59.4336

	
77.0561




	
75_60

	
68.8259

	
66.6204

	
53.4672

	
81.2381

	
54.9031

	
68.4853

	
61.2722

	
77.3711




	
100_30

	
67.2472

	
67.9566

	
54.3531

	
81.4881

	
56.2536

	
69.6554

	
61.6554

	
77.8161




	
100_40

	
71.1968

	
67.5524

	
56.8807

	
81.8782

	
54.2343

	
69.0955

	
60.4542

	
77.6161




	
100_50

	
70.6303

	
67.463

	
57.5832

	
81.3081

	
54.5098

	
68.7132

	
61.0991

	
77.3811




	
100_60

	
69.8595

	
67.5313

	
55.8442

	
81.3281

	
54.0376

	
69.2891

	
60.8715

	
77.5611




	
125_30

	
68.8588

	
66.3749

	
54.7497

	
81.2081

	
53.224

	
69.2393

	
59.2529

	
77.4511




	
125_40

	
69.0385

	
67.5875

	
55.7325

	
81.7182

	
52.5876

	
69.8535

	
60.451

	
77.6211




	
125_50

	
69.5795

	
67.8422

	
56.7398

	
81.7282

	
53.6558

	
69.1431

	
59.2657

	
77.3261




	
125_60

	
691205

	
66.6516

	
55.627

	
81.4181

	
53.7237

	
69.7354

	
60.792

	
77.7861
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Table 11. Processing time for the training in RF using different values of tree depth and the number of trees. In yellow the time for training the model with the selected optimized hyperparameter is shown.






Table 11. Processing time for the training in RF using different values of tree depth and the number of trees. In yellow the time for training the model with the selected optimized hyperparameter is shown.





	Test
	Processing Time





	50_30
	2′59″



	50_40
	2′54″



	50_50
	2′57″



	50_60
	3′4″



	75_30
	4′50″



	75_40
	5′8″



	75_50
	5′4″



	75_60
	5′13″



	100_30
	6′55″



	100_40
	7′23″



	100_50
	7′25″



	100_60
	7′24″



	125_30
	9′23″



	125_40
	8′58″



	125_50
	9′1″



	125_60
	9′25″
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Table 12. Training accuracy (on the left) and validation accuracy (on the right) optimization of SVM number of the sample. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow the selected optimized hyperparameter is shown.






Table 12. Training accuracy (on the left) and validation accuracy (on the right) optimization of SVM number of the sample. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow the selected optimized hyperparameter is shown.





	
N_Samples

	
Training Accuracy (%)

	
Validation Accuracy (%)




	
R_i

	
C_i

	
W_a

	
Overall

	
R_i

	
C_i

	
W_a

	
Overall






	
500

	
67.8201

	
62.1644

	
54.3074

	
80.9231

	
51.924

	
64.772

	
60.339

	
75.9512




	
1000

	
67.1179

	
64.2766

	
57.4959

	
80.463

	
51.8227

	
66.7797

	
62.0635

	
76.6062




	
1500

	
66.7683

	
64.8352

	
54.526

	
80.213

	
52.5362

	
67.6934

	
61.0333

	
77.0711




	
2000

	
68.616

	
66.6042

	
54.0258

	
80.283

	
53.9737

	
68.603

	
61.3453

	
77.0461
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Table 13. Processing time for the training in SVM using different values of the number of samples. In yellow the time for training the model with the selected optimized hyperparameter is shown.






Table 13. Processing time for the training in SVM using different values of the number of samples. In yellow the time for training the model with the selected optimized hyperparameter is shown.





	N_Samples
	Processing Time





	500
	24′47″



	1000
	50′47″



	1500
	1h5′43″



	2000
	1h23′20″
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Table 14. Accuracy and processing time on the original dataset with random forest. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 14. Accuracy and processing time on the original dataset with random forest. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Test

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
Test_1

	
41.7311

	
96.3272

	
69.0852

	
87.3775

	
13′22″




	
Test_2

	
46.3158

	
96.3636

	
70.9497

	
88.8378

	
14′38″




	
Test_6

	
53.2446

	
81.6364

	
69.1238

	
86.9974

	
12′37″




	
Test_10

	
43.3428

	
52.7938

	
59.5405

	
81.5763

	
16′9″
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Table 15. Accuracy and processing time on the original dataset with SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 15. Accuracy and processing time on the original dataset with SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Test

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
Test_1

	
50.4886

	
95.1975

	
88.0297

	
90.39

	
15′2″




	
Test_2

	
56.6781

	
97.0843

	
82.5337

	
91.91

	
16′48″




	
Test_6

	
56.5801

	
80.2994

	
72.5888

	
88.39

	
15′4″




	
Test_10

	
63.1236

	
55.4054

	
64.4209

	
84.54

	
21′29″
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Table 16. Accuracy and processing time on the reduced hypercube (27 and 10 bands) with RF. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 16. Accuracy and processing time on the reduced hypercube (27 and 10 bands) with RF. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Bands N°

	
Test

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
27

	
Test_1

	
41.7047

	
92.7769

	
69.1438

	
82.5365

	
25″




	
Test_2

	
52.2158

	
93.28

	
74.6367

	
86.0572

	
28″




	
Test_6

	
40.4255

	
70.997

	
67.0165

	
80.3561

	
31″




	
Test_10

	
34.1797

	
54.2955

	
56.0549

	
76.3753

	
30″




	
10

	
Test_1

	
43.5185

	
95.4392

	
69.9213

	
80.8962

	
24″




	
Test_2

	
50.1825

	
94.8074

	
74.7238

	
83.2366

	
27″




	
Test_6

	
38.9886

	
80.3754

	
59.7285

	
77.0154

	
26″




	
Test_10

	
30.7018

	
57.7818

	
56.6897

	
73.0546

	
29″
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Table 17. Accuracy and processing time on the reduced hypercube (27 and 10 bands) with SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 17. Accuracy and processing time on the reduced hypercube (27 and 10 bands) with SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Bands N°

	
Test

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
27

	
Test_1

	
45.2203

	
94.4217

	
70.1794

	
82.84

	
1′33″




	
Test_2

	
62.4833

	
96.7882

	
72.6236

	
87.32

	
1′52″




	
Test_6

	
53.3607

	
84.0215

	
68.2892

	
82.18

	
1′58″




	
Test_10

	
45.7447

	
61.0082

	
59.3465

	
78.02

	
1′57″




	
10

	
Test_1

	
44.1153

	
94.9749

	
70.038

	
79.37

	
1′35″




	
Test_2

	
48.8522

	
96.144

	
72.9124

	
80.84

	
1′43″




	
Test_6

	
49.3736

	
84.3806

	
67.8459

	
78.89

	
1′42″




	
Test_10

	
33.6364

	
61.4594

	
55.3836

	
72.78

	
1′40″











[image: Table] 





Table 18. Accuracy and processing time on the PC images with RF. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 18. Accuracy and processing time on the PC images with RF. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Test

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
Test_1

	
37.8215

	
94.8214

	
65.92

	
75.8552

	
34″




	
Test_2

	
41.1435

	
75.6241

	
78.6325

	
73.5947

	
39″




	
Test_6

	
33.5897

	
68.3121

	
57.9747

	
69.4139

	
39″




	
Test_10

	
46.1314

	
54.9505

	
72.1607

	
70.9542

	
41″
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Table 19. Accuracy and processing time on the PC images with SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 19. Accuracy and processing time on the PC images with SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Test

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
Test_1

	
42.4956

	
95.3888

	
68.2451

	
78.16

	
59″




	
Test_2

	
42.7742

	
81.6558

	
80.7923

	
78.24

	
1′5″




	
Test_6

	
45.1613

	
77.8899

	
64.8072

	
76.05

	
1′16″




	
Test_10

	
45.9184

	
56.5625

	
71.4886

	
72.29

	
1′48″
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Table 20. Accuracy and processing time on the RGN (red, green, and near infrared) images with RF. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 20. Accuracy and processing time on the RGN (red, green, and near infrared) images with RF. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Test

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
Test_1

	
54.9565

	
69.7936

	
60.7158

	
77.6311

	
6′40″




	
Test_2

	
36.1789

	
42.5788

	
35.2851

	
47.9226

	
6′36″




	
Test_6

	
25.2031

	
33.7942

	
8.2353

	
30.9185

	
6′30″




	
Test_10

	
34.7062

	
33.3841

	
44.8087

	
41.34

	
7′5″
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Table 21. Accuracy and processing time on the RGN images with SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 21. Accuracy and processing time on the RGN images with SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Test

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
Test_1

	
52.2795

	
67.3587

	
63.1305

	
76.9362

	
22′13″




	
Test_2

	
34.8404

	
41.2713

	
32.8609

	
46.8527

	
23′9″




	
Test_6

	
25.8493

	
35.6347

	
10.6874

	
30.6135

	
23′55″




	
Test_10

	
40.3123

	
37.1409

	
42.4566

	
42.375

	
25′21″
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Table 22. Accuracy and processing time on the RGBN(red, green, blue, near-infrared) image with RF and SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.






Table 22. Accuracy and processing time on the RGBN(red, green, blue, near-infrared) image with RF and SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.





	
Classifier

	
Accuracy (%)

	
Processing Time




	
R_i

	
C_i

	
W_a

	
Overall






	
RF

	
57.9867

	
54.2284

	
83.7163

	
84.495

	
4′49″




	
SVM

	
62.3726

	
57.3843

	
88.1515

	
86.695

	
8′18″
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