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Abstract: Aiming at the problem that multiple Unmanned Aerial Vehicles (UAVs) attack the stationary
target cooperatively under time-varying velocity, the cooperative guidance law with finite time
convergence on two-dimensional plan and the three-dimensional cooperative guidance laws with
impact time constraint are designed separately in this paper. Firstly, based on the relative motion
equation between UAV and target on two-dimensional plane, the time cooperative guidance model of
multiple UAVs is established. Then based on the consistency theory and graph theory, a distributed
time cooperative guidance law is designed, which can ensure that the impact time of all UAVs
can be quickly consistent in a limited time. Next, the cooperative guidance problem is expanded
from two-dimensional plane to three-dimensional space, the motion model between UAV and
target in three-dimensional space is established and the expression of time-to-go estimation under
time-varying velocity is derived. Finally, according to whether there is the communication among
UAVs under the condition of time-varying velocity, a multiple UAVs three-dimensional cooperative
guidance law based on desired impact time and a multiple UAVs three-dimensional cooperative
guidance law based on coordination variables are designed, respectively. The simulation results
show that the cooperative guidance law with finite time convergence on two-dimensional plan and
the three-dimensional cooperative guidance law with impact time constraint proposed in this paper
are effective, which can both realize the saturation attack under the time-varying velocity.

Keywords: multiple UAVs; time cooperative; consensus theory; finite time; time-varying velocity;
three-dimensional; desired impact time; coordination variable

1. Introduction

Multiple UAVs impact time control cooperative guidance (simultaneous attack) is a
difficult problem in the current research. According to whether there is communication
among formation members, the guidance methods of impact time control are divided into
two categories in [1]: The first one is the impact time control method, which assigns the
same designated time to all members before launching, and each member completes the
attack task independently; the second one is the cooperative guidance method, in which
the members exchange information through the communication topology network, adjust
their movements according to the cooperative guidance algorithm, and finally reach the
agreement of impact time.

The method of simultaneous attack by designing impact time control guidance law
appeared earlier. In [2,3], an impact time control item was added to the proportional
guidance law in order to attack the target with a designated time. In reference [4], the
impact time control guidance law with proportional coefficient of 3 in reference [2] was
extended to arbitrary value, and the accuracy of impact time control was improved by a
high-order time-to-go estimation formula. In [5], a nonlinear sliding mode control method
was adopted, and the sliding mode surface was weighted by the non-zero function of the
relative distance and the ideal time-to-go to achieve the impact time requirements. By
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simplifying the relationship between the time of flight and velocity, an impact time control
guidance law based on integral sliding mode control was proposed under varying velocity
in [6], in which, only needing the range of the velocity, the impact time control can be
achieved. However, the gravity and induced resistance of the member were not considered
in the derivation process of the guidance law, which brought some limitations in practical
application. In [7], an impact time control guidance law based on field-of-view shaping
under varying velocity was proposed. The guidance law used an online iterative algorithm
to predict the remaining average velocity, and then updated the adaptive gain to control
the flight time. The time-to-go estimation algorithm was based on proportional guidance,
which was completed by online iteration. This algorithm can improve the accuracy and
velocity of time prediction.

In recent years, with the development of optimization theory, some optimization
approaches such as Reinforcement Learning, Model predictive control (MPC), Model
predictive static programming (MPSP) and Convex optimization have been applied to the
guidance of UAVs. A training framework for the impact time control guidance law based
on reinforcement learning theory was proposed in [8,9], which was robust to parameter
uncertainty. In order to simplify the design of guidance law and improve the robustness of
guidance law, reference [10] designed the terminal guidance law of interceptor based on
meta-reinforcement learning. In [11], the memory pool generation method of traditional
depth Q network (DQN) was improved, and a mid-course penetration control model
of ballistic missile based on Markov decision process was proposed. In reference [12],
Taylor expansion was performed on the model used for prediction on MPC to obtain an
approximate linear model, and predictive control was applied to the linearized model.
In references [13–15], considering the movement of the target in the prediction model,
the tracking and landing of the moving target by unmanned aerial vehicle is realized
by MPC. Reference [16] studied the suboptimal guidance method with terminal angle
constraint based on MPSP, and gave the strategy of selecting the initial value of the control
quantity based on the extended proportional guidance method; the ground stationary and
maneuvering targets were also tested. In reference [17], with the minimum control energy
as the performance index, a nonlinear suboptimal guidance law was derived based on
MPSP method, which could satisfy both terminal position and terminal angle constraints.
Based on convex optimization, a fast guidance law optimization algorithm with impact
time and falling angle constraint was proposed in reference [18].

When the impact angle constraint is considered, the terminal impact angle control
guidance laws are designed in references [19–21]. The generalized form of energy mini-
mization optimal guidance law was derived in reference [19], and on this basis, an optimal
impact angle control guidance law without delay was proposed. Reference [20] designed a
controller with double-loop structure, based on which a three-dimensional impact angle
control guidance law was proposed. Reference [21] expanded the circular navigation
guidance law and realized the control of terminal impact angle.

The above guidance laws need to design the desired impact time in advance, and
there is no information exchange during the flight of the members. In view of this, a time
cooperative guidance architecture based on the “leader-followers” mode was designed
in [22]. The coordination variable was the time-to-go of leader, and for followers, a method
for calculating the rate of change of the line-of-sight angle was designed, so as to meet
the requirement of the followers following the leader and attacking the target at the same
time. In [23], the desired time-to-go was directly set as the average of the time-to-go of
each member, thereby a hybrid guidance law satisfying both impact time and impact angle
was designed.

However, the battlefield environment is relatively complex, and the centralized com-
munication network adopted in [22,23] is difficult to effectively guarantee, so the dis-
tributed network topology is often used. When considering the target maneuvering in a
two-dimensional plane, a distributed cooperative guidance law was designed in [24,25].
The guidance law consists of two parts: one is the local guidance law based on augmented
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proportional navigation; the other is the decentralized coordination strategy based on the
principle of network synchronization. When considering the dynamic characteristics of the
UAVs, the “leader-followers” mode was adopted in [26], the coordination strategy based
on the consistency algorithm and the cooperative guidance law based on the guidance and
control integration model were designed. In [27–29], a terminal cooperative guidance law
under directed topology was proposed. The guidance law consists of two parts: the line of
sight guidance law based on the multi-agent control theory and the line of sight normal
guidance law based on secondary system stability and sliding mode theory.

According to existing literature, both the impact time control and cooperative guid-
ance methods are obtained under the assumption that the velocity is constant or even
adjustable [30,31]. However, in the actual process, the UAV is subject to air resistance
and the velocity changes significantly. Therefore, the above research results are not ap-
plicable to the time coordination problem when the velocity of the unpowered vehicle
changes with the flight state. At present, there are few open literatures on the impact
time control problem of unpowered aircraft with varying velocity: In [32], based on the
reference trajectory designed in the altitude-velocity profile, the range-to-go and time-to-go
were predicted online and maneuvered laterally to correct the trajectory. A double-layer
guidance structure was adopted in [33], based on the prediction-correction guidance law,
the time-to-go was predicted online by neural network, and the time error was corrected by
dynamically adjusting the line-of-sight angle corridor. Considering that the rate of change
of velocity is a quadratic function of velocity, Reference [34] proposed a three-dimensional
impact time cooperative guidance law based on desired impact time.

In order to solve the problem of multiple UAVs attack the stationary target coopera-
tively under time-varying velocity, the cooperative guidance law with finite time conver-
gence on two-dimensional plan and the three-dimensional cooperative guidance laws with
impact time constraint are designed separately in this paper. The main contributions of
this paper are as follows:

(1) The cooperative guidance method on two-dimensional plane proposed in this paper
takes into account three aspects, namely, the finite time consistency of impact time,
the time-varying velocity and the distributed communication topology. In addition,
this paper adopts the communication topology without the leader, and each member
in the cluster has the same status and function. Even if some UAVs in the cluster are
destroyed, the impact time of the remaining clusters can still be quickly consistent.

(2) Compared with reference [34], when the rate of change of velocity is a quadratic
function of velocity, a three-dimensional impact time cooperative guidance law based
on coordination variables is proposed in this paper, which does not need to set the
desired impact time in advance as the impact time is determined by negotiation
among UAVs.

(3) When the rate of change of velocity is the first order function of velocity, the expres-
sion of time-to-go estimation is derived firstly, then according to whether there is
the communication among UAVs, a multiple UAVs three-dimensional cooperative
guidance law based on desired impact time and a multiple UAVs three-dimensional
cooperative guidance law based on coordination variable are designed respectively,
which can both realize the saturation attack.

The rest of this paper is arranged as follows: In the second part, multiple UAVs
time cooperative guidance model is established on two-dimensional plane, and then a
cooperative guidance law with finite time convergence under time-varying velocity is
designed. In the third part, the cooperative guidance problem is expanded from two-
dimensional plane to three-dimensional space, the motion model between UAV and target
in three-dimensional space is established and the expression of time-to-go estimation under
time-varying velocity is derived. The three-dimensional cooperative guidance law based
on the desired impact time and the three-dimensional cooperative guidance law based on
the coordination variables are designed respectively under time-varying velocity. Several
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numerical simulation examples are provided in the fourth part. The final part gives the
conclusion of this study.

2. Cooperative Guidance Law with Finite Time Convergence under Time-Varying
Velocity on Two-Dimensional Plan
2.1. Mathematical Model of benween UAV and Target on Two-Dimensional Plan

In order to establish the terminal motion Equation of the UAV under time-varying
velocity, the following assumptions are made firstly.

Assumption 1. The UAV and the target are regarded as mass points.

Assumption 2. The target is considered static.

In Figure 1, M and T represent the missile and the target, respectively, and the
mathematical model of motion between them can be expressed as

.
r = −VM cos σM (1)

.
q = −VM sin σM

r
(2)

.
γM = aM/VM (3)

.
VM = −(D + mg sin γM)/m (4)

σM = γM − q (5)

where, VM is the UAV velocity, r is the range-to-go. γM is the flight path angle, q is the
line-of-sight angle and σM is the leading angle, respectively. aM is the acceleration, which
is normal to the UAV velocity vector. L and D represent the aerodynamic lift and drag
respectively. m is the mass of UAV and g is the gravitational acceleration.
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Figure 1. Motion model of UAV considering aerodynamic forces.

The aerodynamic drag D can be expressed as

D = CDρV2
MSre f /2 (6)

where, CD is the drag coefficient, ρ is atmospheric density and Sre f is the aerodynamic
reference area of the UAV.

It can be known from [35] that when CD is considered as constant CD0 and ρ is also
considered as constant, the change rate of velocity can be expressed as

.
VM = −KMV2

M (7)

where, KM = CD0ρSre f /2m is the coefficient of
.

VM.
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When the influence of aerodynamic drag and gravity on UAV velocity is comprehen-
sively considered, it is pointed out in [36] that the range of velocity decrease is directly
proportional to the current velocity, and the change rate of velocity can be expressed as

.
VM = −KM1VM (8)

where, KM1 is the deceleration control parameter, and the parameter size varies from 0.001
to 0.125.

The time-to-go estimation method in reference [34] is adopted in this paper, which
can be expressed as

tgo =
r

VM

(
1 + N′σ2

M

)( σM
sin σM

) 1
N−1

(9)

Defining

N′ =
2− N

6(N − 1)(2N − 1)
(10)

where, N is the proportional guidance coefficient, all the following N have the same
meaning.

2.2. Design of Cooperative Guidance Law with Finite Time Convergence

Terminal strike time t f i of the ith UAV can be expressed as

t f i = tgoi + t (11)

where, tgoi is the actual time-to-go of the ith UAV.
It can be obtained from Equation (11)

t f i − t f j = tgoi − tgoj (12)

As can be seen from Equation (12), when tgoi of all UAVs is consistent, cooperative
attack can be realized.

It can be obtained from Equation (1)

|σi| = arccos
(
− .

ri
Vi

)
(13)

Substitute Equation (13) into Equation (9)

t̂go =
ri
Vi

(
1 + N′(− .

ri/Vi)
2
)( − .

ri/Vi

sin(− .
ri/Vi)

) 1
N−1

(14)

Defining

xi =
ri
Vi

, vi =

.
ri
Vi

(15)

It can be obtained from Equations (14) and (15)

t̂go = xi

(
1 + N′(−vi)

2
)( −vi

sin(−vi)

) 1
N−1

(16)

It can be seen from Equation (16) that the aim of cooperative guidance law with finite
time convergence can be transformed into: Control xi and vi to achieve consistency in finite
time, which is

lim
t→T
||xi − xj|| = 0, lim

t→T
||vi − vj|| = 0, i, j = 1, 2, · · · n, T > 0 (17)
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It can be obtained from Equation (15)

.
xi = vi (18)

It can be obtained from Equations (1), (5) and (15)

.
vi =

.
σi sin σi =

( .
γi −

.
qi
)

sin σi

= −ai sin σi
Vi

+ Vi sin2 σi
ri

(19)

Substitute Equation (2) into Equation (19)

.
vi = −

airi
.
qi

Vi
2 +

ri
.
qi

2

Vi
(20)

Combining Equations (18) and (20), the second-order time cooperative guidance
model for multiple UAVs is as follows:{ .

xi = vi
.
vi = −

airi
.
qi

Vi
2 +

ri
.
qi

2

Vi

(21)

The communication topology among multiple UAVs can be represented by undirected
graph G(A) = (υ, ξ, A), in which υ describes the set of nodes, ξ represents the connection
between two nodes, matrix A = [aij] ∈ Rn×n represents the weight coefficient matrix. If
information can be exchanged between the ith UAV and the jth UAV, aij = 1; otherwise,
aij = 0. In particular, aii = 0, i = 1, 2, · · · , n. Since G(A) is an undirected graph, there is
aij = aji. If there is at least one path between any two nodes in G(A), the whole graph is
connected. The Laplace matrix corresponding to undirected graph G(A) among multiple
UAVs is defined as L = [lij] ∈ Rn×n, Where the elements of the matrix are

lij =


n
∑

k=1,k 6=i
aik, j = i

−aij, j 6= i
(22)

The cooperative guidance law with finite time convergence is given in the form of
Theorem 1.

Theorem 1. For the multiple UAVs system, if the communication topology G(A) is undirected
and connected, the distributed time cooperative guidance law as shown in Equation (23) is designed
to make the system states xi and vi converge to the same in a limited time.

ai =
V2

i
ri

.
qi


−α[

n
∑

j=1
lijxj + sig(

n
∑

j=1
lijxj)

k
]− β[

n
∑

j=1
lijvj + sig(

n
∑

j=1
lijvj)

k
]

−γ[sign(xi − 1
n

n
∑

j=1
xj) + sign(vi − 1

n

n
∑

j=1
vj)]

+ Vi
.
qi (23)

where, α > 0, β > 0, γ > 0 are the coupling strengths, sig(x)k = |x|ksign(x), sign(x) is a sym-

bolic function, |x| is the absolute value of x and 0 < k < 1.
n
∑

j=1
lijxj =

n
∑

j=1
aij(xi(t)− xj(t)) and

n
∑

j=1
lijvj =

n
∑

j=1
aij(vi(t)− vj(t)) represent relative displacement information and relative velocity

information, respectively. Different variations of Vi are shown in Equations (7) and (8) respectively.

2.3. Proof of Theorem 1

First, the following two lemmas are introduced.
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Lemma 1. In [37]: Let G be an undirected connected graph, then the corresponding Laplace matrix
L is a positive semidefinite symmetric matrix, that is L ≥ 0. In particular, the symmetric matrix has
exactly one zero eigenvalue, and the left and right eigenvectors corresponding to the zero eigenvalue
are 1n

T and 1n respectively, that is, L1n = 0n and 1n
T L = 0n

T hold at the same time. The n
eigenvalues of matrix L are nonnegative real numbers, which are recorded as

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) (24)

where, λ2(L) is the algebraic connectivity of G, the following formula holds and satisfies ξT Lξ ≥
ξTλ2ξ, ξ is a positive vector.

λ2(L) = min
ξ 6=0, 1Tξ=0

ξT Lξ

||ξ||2
(25)

Lemma 2. In [38]: For system

.
x = f (x), f (0) = 0, x = (x1, x2, . . . , xn)

T ∈ Rn (26)

in which f (x) = [ f1(x), . . . , fn(x)]T . Assuming that there is a continuous function
V(x) : Rn → [0, ∞) and real numbers k > 0(β > 0), α ∈ (0, 1) that satisfy the following Equation

.
V(x) + k(V(x))α ≤ 0 (27)

or .
V(x) + kV(x) + β(V(x))α ≤ 0, x ∈ Rn (28)

The system is considered as finite time stable. In addition, let T(x0) represent the adjustment
time function, then the finite convergence time T(x0) satisfies

T(x0) ≤
V1−α(x0)

k(1− α)
(29)

or

T(x0) ≤
1

k(1− α)
ln

kV1−α(x0) + β

β
, x ∈ Rn (30)

and for all t > T(x0), there is V(x) = 0.

Proof. First, substitute Equation (23) into Equation (21) to obtain

.
xi = vi
.
vi = ui = −α[

n
∑

j=1
lijxj + sig(

n
∑

j=1
lijxj)

k
]− β[

n
∑

j=1
lijvj + sig(

n
∑

j=1
lijvj)

k
]

−γ[sign(xi − 1
n

n
∑

j=1
xj) + sign(vi − 1

n

n
∑

j=1
vj)], i = 1, 2, · · · , n

(31)

Let xi = xi − 1
n

n
∑

j=1
xj, vi = vi − 1

n

n
∑

j=1
vj, i = 1, 2, · · · , n represent the relative position

error and relative speed error of each UAV respectively. Then the error system Equation is
.
xi = vi
.
vi = ui − 1

n

n
∑

j=1
uj, i = 1, · · · , n (32)

Let x = [x1
T , x2

T , · · · , xn
T ] = Mx, v = [v1

T , v2
T , · · · , vn

T ] = Mv, in which
M = I − 1

n N, N is an all 1 square matrix of order n.
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Combine Equations (31) and (32) to obtain
.
x = v
.
v = −M

.
v = −Mu

= −αM[Lx + sig(Lx)k]− βM[Lv + sig(Lv)k]− γM[sign(Mx) + sign(Mv)]
(33)

According to M = I − 1
n N and Lemma 1

LM = L = ML (34)

Substitute Equation (34) into Equation (33){ .
x = v
.
v = −α[Lx + sig(Lx)k]− β[Lv + sig(Lv)k]− γM[sign(x) + sign(v)]

(35)

Let ζ = (xT , vT)
T

, then Equation (35) can be re-expressed as

ζ
′
= −B1ζ − B2sig(Lζ)

k − γB3sign(ζ) (36)

where

B1 =

[
0n −In
αL βL

]
(37)

B2 =

[
0n 0n
αIn βIn

]
(38)

B3 =

[
0n 0n
M M

]
(39)

L =

[
Ln 0n
0n Ln

]
(40)

The following mainly proves Equation (36). The proof of Equation (36) is transformed
into the proof of Theorem 2. �

Theorem 2. When the control gain satisfies α/β2 < λ2(L), 0 < k < 1, the undirected connected
topology Equation (31) can achieve finite time consistency, that is, there are

xi →
1
n

n

∑
j=1

xj, vi →
1
n

n

∑
j=1

vj (41)

Proof. Since matrix M has a simple eigenvalue of 0, the corresponding right eigenvector
is 1n, and 1 is the other n− 1 multiple eigenvalues. Then if x = 0 and v = 0 hold, if and
only if x1 = x2 = · · · = xn and v1 = v2 = · · · = vn. Therefore, when the error variables x
and v converge to zero in finite time, the finite time consistent control of the system can
be obtained.

The following Lyapunov function is constructed

V1(t) =
1
2

ζ
T P1ζ (42)

where, P1 =

[
αβ
n (L + LT) α

n In
α
n In

β
n In

]
.
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Expand Equation (42)

V1(t) = 1
2 ζ

T P1ζ

= αβ
2n xT(L + LT)x + α

n xT Inv + β
2n vT Inv

≥ 1
2 ζ

TQ1ζ

(43)

where, Q1 =

[
2αβ

n λ2(L)In
α
n In

α
n In

β
n In

]
.

If the control parameters satisfy β > 0 and λ2(L) > α/2β2, according to Lemma 1,
Q1 > 0 can be obtained. It can be concluded from Equation (43) that Lyapunov function
V1(t) ≥ 0, and if V1(t) = 0, if and only if ζ = 02n.

Find the derivative of Lyapunov function V1(t) and substitute the control protocol
(36) to obtain

V′1 = − 1
2 ζ

T
(P1B1 + B1

T P1)ζ − 1
2 ζ

T
(P1B2 + B2

T P1)sig(Lζ)
k

− 1
2 ζ

T
[γ(P1B2 + B2

T P1)]sign(ζ)

= − 1
2 ζ

T
[

α2

n (L + LT) 0n

0n
β2

n (L + LT)− 2α
n In

]
ζ

−ζ
T
[

α2

n In
αβ
n In

αβ
n In

β2

n In

]
sig(Lζ)

k − 1
2 ζ

T
[

2α
n γM α+β

n γM
α+β

n γM 2β
n γM

]
sign(ζ)

≤ −ζ
T P2ζ − ζ

T P3Lksig(ζ)k − 1
2 γζ

T P4Msign(ζ)

(44)

According to the known condition ||δi||≤ γ < ∞

V′1 ≤ −ζ
T P2ζ − ζ

T P3Lksig(ζ)k
(45)

where

P2 =

[
α2λ2(L)

n 0

0 β2λ2(L)−α
n

]
(46)

P3 =

[
α2

n
αβ
n

αβ
n

β2

n

]
(47)

P4 =

[
2α
n

α+β
n

α+β
n

2β
n

]
(48)

From Lemma 1 to obtain

V1(t) = 1
2 ζ

T P1ζ

= αβ
2n xT(L + LT)x + α

n xT Inv + β
2n vT Inv

≤ αβ
n λmax(L)xT Inx + α

n xT Inv + β
2n vT Inv

≤ ζ
T P5ζ

(49)

where

P5 =

[
αβλmax(L) α

2n
α

2n
β

2n

]
(50)

From Equation (50), the following Equation holds

V1(t) ≤ λmax(P5)ζ
T

ζ (51)

where, take the parameter m3 = λmax(P5).
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From Equation (45) to obtain

V′1 ≤ −λmin(P2)ζ
T

ζ − λmin(P3)λ2
k(L)ζTsig(ζ)k

(52)

where, take the parameter m1 = λmin(P2), m2 = λmin(P3)λ2
k(L).

Combining Equations (51) and (52), we can get

V′1(t) ≤ −
m1

m3
V1(t)−

m2

m3
V1(t)

1+k
2 (53)

To summarize, Equation (53) satisfies the conditions of Lemma 2, that is, it can be
obtained in finite time

ζ = (xT , vT)
T
= (0, 0)T (54)

That is, in finite time

xi →
1
n

n

∑
j=1

xj, vi →
1
n

n

∑
j=1

vj, i = 1, 2, · · · , n (55)

The specific convergence time is

T =
2m3

m1(1− k)
ln

m1V1−k(0) + m2

m2
(56)

To summarize, the cooperative guidance law expressed by Equation (23) with finite
time convergence has been proved. �

3. Three-Dimensional Cooperative Guidance Law with Impact Time Constraint under
Time-Varying Velocity
3.1. Mathematical Model of UAV in Three Dimensional Space

In this section, the cooperative guidance problem is expanded from two-dimensional
plane to three-dimensional space, and the relative motion model between UAV and target is
shown in Figure 2. The symbols in this section that are the same as those in the Section 2.1
have the same meanings.
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Figure 2. Motion model between UAV and target in three-dimensional space. (where, ψL is the line
of sight azimuth. ψM represents the heading angle.)

Then the kinematics Equation of the UAV can be expressed as

.
x = VM cos γM cos ψM.
y = VM sin γM.
z = VM cos γM sin ψM

(57)
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The dynamic Equation of the UAV can be expressed as

.
VM = −D

m − g sin γM.
γM = L cos ν

mVM
− g cos γM

VM.
ψM = L sin ν

mVM cos γM

(58)

where, ν is the bank angle.
The change rate of r, ψL and q can be expressed as

.
r = VM sin γM sin q−VM cos γM cos(ψM − ψL) cos q
.
ψL = VM cos q sin(ψM−ψL)

r cos q
.
q = VM cos γM sin(ψM−ψL) sin q−VM sin γM cos q

r

(59)

When the rate of change of velocity is the first order function of velocity, az and ay are
the acceleration of the pitch channel and the acceleration of the yaw channel respectively,
then the dynamic equation of UAV can be simplified as

.
VM = −KM1VM.
γM = az/VM.
ψM = ay/VM

(60)

Similarly, when the rate of change of velocity is the quadratic function of velocity, the
dynamic Equation is adopted in reference [34], which is

.
VM = −KMV2

M.
γM = az/VM.
ψM = ay/VM

(61)

3.2. Time-to-Go Estimation

When the rate of change of velocity is the first order function of velocity, integrating
Equation (8) to get

VM(t) = VM0e−KM1t (62)

where, VM0 is the initial velocity of the UAV.
From reference [34] we can get

.
σM = − (N − 1)VM(t) sin σM

r0

(
sin σM
sin σM0

) 1
N−1

(63)

where, r0 is initial range-to-go.
Substituting Equation (62) into Equation (63), yields

.
σM = Ke−KM1t(sin σM)

N−2
N−1 (64)

where, K = − (N−1)VM0
r0

(sin σM0)
1

N−1 .
From Equation (64), we can get

e−KM1tdt =
1
K
(sin σM)

2−N
N−1 dσM (65)

By integrating Equation (65), we can get

− 1
KM1

e−KM1t =
1
K

∫ σM

σM0

(sin σM)
2−N
N−1 dσM (66)
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From reference [34], we can get

1
K

∫ σM

σM0

(sin σM)
2−N
N−1 dσM ≈

1
K

∫ σM

σM0

σ
2−N
N−1
M +

2− N
N − 1

σ
N

N−1
M
6

dσM (67)

Equation (66) can be further simplified to obtain

t =

ln

(
−KM1

(
1
K
∫ σM

σM0

(
σ

2−N
N−1
M + N−2

N−1
σ

N
N−1

M
6

)
dσM

)
+ e−KM1t0

)
KM1

(68)

where, t0 is the initial time and σM0 is the initial leading angle.
When r is zero, σM is zero, so Equation (68) can be re-expressed as

tgo =

ln
(
−KM1

(
r

VM

(
1 + 2−N

6(N−1)(2N−1)σ2
M

)(
σM

sin σM

) 1
N−1
)
+ 1
)

KM1
(69)

Then Equation (69) can be re-expressed as

tgo =

ln
(
−KM1

(
r

VM

(
1 + N′σ2

M

)( σM
sin σM

) 1
N−1
)
+ 1
)

KM1
(70)

where, N′ has the same meaning as in Equation (10).
It is also pointed out in [34] that when the rate of change of velocity is the quadratic

function of velocity, the time-to-go can be expressed as

tgo =
eKMVM( r

VM
(1+N′σ2

M
)(

σM
sin σM

)
1

N−1 ) − 1
KMVM

(71)

3.3. Three-Dimensional Cooperative Guidance Law Based on Desired Impact Time

In this section, the main objective is to design the three-dimensional cooperative
guidance law based on desired impact time when the rate of change of velocity is the
first-order function of velocity.

The guidance law adopts the form in reference [34], which is as follows:

.
γM = N

.
q

.
ψM = N

.
ψL

 3
2 −

1
2

√
1 + 240V5

Mxz(
NVMxz

.
ψL

)2
r3

xz

et

 (72)

where, VMxz and rxz are the projection of velocity and the projection of the distance in the
XZ plane, respectively. Where, VMxz = VM cos γM, rxz = r cos q. et is the impact time error,
which is

et = td − t− tgo (73)

where, td, t, tgo are the desired impact time, the current time and the estimation of the
time-to-go in the yaw channel, respectively.

According to Equation (70), the tgo in yaw channel can be expressed as

tgo =

ln
(
−KMxz

(
rxz

VMxz

(
1 + N′η2

M

)( ηM
sin ηM

) 1
N−1
)
+ 1
)

KMxz
(74)
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where, ηM is the leading angle in the yaw channel, which meets ηM = ψL − ψM. KMxz is
the coefficient of rate of velocity change in the XZ plane, and which satisfies

.
VMxz = −KMxzVMxz (75)

Derive both sides of VMxz = VM cos γM with respect to time

.
VMxz =

.
VM cos γM −VM

.
γM sin γM (76)

By Equations (75) and (76), KMxz can be expressed as

KMxz = −
( .

VM cos γM −VM
.
γM sin γM

)
/VMxz (77)

Up to now, the parameters in Equation (72) have clear meanings.

3.4. Three-Dimensional Cooperative Guidance Law Based on Coordinated Variables

In Section 3.3, the three-dimensional cooperative guidance law based on desired
impact time needs to set the desired impact time for each UAV, there is no information
exchange among members. For this purpose, the three-dimensional cooperative guidance
law based on coordinated variables is designed in this section.

The desired impact time ξ is selected as the coordination variable. Since the impact
time constraint is controlled only through the yaw channel, the control energy consumption
of the pitch channel is not considered, and the yaw channel acceleration can be expressed as

ay = NVMxz
.
ψL

3
2
− 1

2

√√√√√1 +
240V5

Mxz(
NVMxz

.
ψL

)2
r3

xz

(
ξ − t− tgo

) (78)

Using Taylor expansion series, Equation (78) can be re-expressed as

ay = NVMxz
.
ψL −

60V5
Mxz

NVMxz
.
ψLr3

xz

(
ξ − t− tgo

)
= ay1 − ay2

(
ξ − t− tgo

) (79)

where, ay1 = NVMxz
.
ψL, ay2 =

60V5
Mxz

NVMxz
.
ψLr3

xz
.

The cost function of UAV i(i = 1, 2, . . . , n) is taken as

Ji(ξ) = a2
y,i (80)

The total cost function of formation can be expressed as the sum of control energy of
each UAV when the control energy consumption of the pitching channel is not considered.

Jt(ξ) =
n

∑
i=1

a2
y,i (81)

Take the impact time that minimizes the total energy consumption of the formation as
the desired impact time, namely

ξ∗ = argminJt(ξ) (82)

It can be obtained from Equations (79) and (81)

Jt(ξ) =
n

∑
i=1

(
ay1,i − ay2,i

(
ξ − t− tgo,i

))2 (83)
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Find the partial derivative of Equation (83) with respect to ξ can be obtained

∂Jt(ξ)
∂ξ = 2

n
∑

i=1
ay,i

∂ay,i
∂ξ

= 2
n
∑

i=1

(
−ay1,iay2,i + a2

y2,i
(
ξ − t− tgo,i

)) (84)

According to Equation (82), it can be obtained

ξ∗ =

n
∑

i=1

(
a2

y2,i
(
t + tgo,i

)
+ ay1,iay2,i

)
n
∑

i=1
a2

y2,i

(85)

Let δ =
n
∑

i=1
ay1,iay2,i/

n
∑

i=1
a2

y2,i, then Equation (85) can be re-expressed as

ξ∗ =

n
∑

i=1
a2

y2,i
(
t + tgo,i

)
n
∑

i=1
a2

y2,i

+ δ (86)

It can be seen from Equation (86) that ξ∗ consists of two parts. When the UAV is close
to the target, compared with the first part, δ is very small, not in an order of magnitude. So
δ can be ignored and the desired suboptimal solution of impact time can be obtained.

ξ† =

n
∑

i=1
a2

y2,i
(
t + tgo,i

)
n
∑

i=1
a2

y2,i

(87)

Let the weight of each UAV be wi, and wi = a2
y2,i/

n
∑

i=1
a2

y2,i, then Equation (87) can be

re-expressed as

ξ† =
n

∑
i=1

wi
(
t + tgo,i

)
(88)

To summarize, taking the desired impact time as the coordination variable, the coop-
erative guidance law designed based on the coordination variable can be expressed as

.
γM = N

.
q

.
ψM = N

.
ψL −

60V5
Mxz

NV2
Mxz

.
ψLr3

xz

(
ξ − t− tgo

) (89)

4. Numerical SIMULATION
4.1. Performance Verification of Cooperative Guidance Law with Finite Time Convergence under
Time-Varying Velocity on Two-Dimensional Plan

The effectiveness of the cooperative guidance law with finite time convergence under
time-varying velocity on two-dimensional plan proposed in this paper is verified by
numerical simulations. The simulation situation is as follows: in the horizontal plane,
aiming at the stationary target, four UAVs fly cooperatively and finally hit the target. The
available overload limit for UAVs is 10 g, and the parameters of cooperative guidance law
are α = 0.025, β = 0.1, γ = 0.5, k = 0.2.
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The communication topology of the four UAVs is undirected and connected, which
is as shown in Figure 3, and the corresponding weight coefficient matrix is shown in the
following formula.

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 (90)
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The position of the target is (12, 0) km, the initial conditions of the four UAVs are
shown in Table 1.

Table 1. Initial parameters of the four UAVs.

UAVs Initial Position (m) Velocity (m/s) Initial Flight Path Angle (deg)

M1 (0, 1900) 242 −8
M2 (0, 400) 238 −3
M3 (0, −700) 240 3
M4 (0, −1100) 241 5

4.1.1. When the Rate of Change of Velocity Is the First Order Function of Velocity

The miss distance and strike time of four UAVs are given in Table 2. It can be seen
from the table that the maximum miss distance is 1.97 m and the maximum strike time
deviation is less than 0.01 s, which reflects the effectiveness of the guidance law when the
rate of change of velocity is the first order function of velocity.

The simulation results are shown in Figure 4. It can be seen from Figure 4a that all
four UAVs can gradually fly to the target. As can be seen from Figure 4b, the distance
between each UAV and the target is getting closer and closer, and finally decreases to
0, which indicates that the four UAVs can hit the target accurately. As can be seen from
Figure 4c, the

.
r/Vm of the four UAVs are inconsistent at the initial time, but reach the same

after 8 s, which indicates that the cooperative guidance law can make the
.
r/Vm reach the

consistency quickly, and also means that the time-to-go of four UAVs reach the consistency
within 8 s. It can be seen from Figure 4d that the time-to-go of the four UAVs can quickly
converge to the consistency within 8 s, which shows that the cooperative guidance law
makes the time-to-go reach the consistency quickly, and also shows the correctness of the
analysis in Figure 4c. It can be seen from Figure 4e that the velocity of the four UAVs
decrease linearly with time, which shows the effectiveness of the cooperative guidance
law when the rate of change of velocity is the first order function of velocity. It can be
seen from Figure 4f that the overload amplitude of the four UAVs is relatively large in
the first 3.5 s. According to the analysis of Figure 4c, this is because the deviation of

.
r/Vm

is relatively large in the initial 3.5 s, and a large overload is required to make the
.
r/Vm

converge to the consistency quickly, which reflects the advantages of fast convergence and
strong robustness of cooperative guidance law with finite time. In addition, although the
overload command is large in initial 3.5 s, it is still within the available overload range of
[−10 g, 10 g], so the algorithm has certain engineering application potential. There is a
certain sudden change in the overload command around 10 s, which is caused by switching
the cooperative guidance law to the proportional guidance law. After 10 s, under the action
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of proportional guidance law, the overload command amplitude of each UAV gradually
decreases and converges to 0 in the final stage.
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Table 2. Initial parameters of the four UAVs.

UAVs Miss Distance (m) Strike Time (s)

M1 0.45 61.03
M2 1.42 61.03
M3 0.78 61.03
M4 1.97 61.03
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4.1.2. When the Rate of Change of Velocity Is the Quadratic Function of Velocity

When the rate of change of velocity is the quadratic function of velocity, as can be seen
from Figure 5a,b, four UAVs gradually fly to the target and hit the target at the same time
in 53.27 s, which proves the effectiveness of the cooperative guidance law. It can be seen
from Figure 5e that the velocity of each UAV decreases more slowly than that in Figure 4e.
Therefore, when the rate of change of velocity is the quadratic function of velocity, the
UAVs can attack the target in a shorter time.
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To summarize, the cooperative guidance law with finite time convergence under
time-varying velocity on two-dimensional plan proposed in this paper can ensure that
multiple UAVs reach the target at the same time, the miss distance and strike time deviation
meet the requirements, and the required overload is within the available overload range,
which shows the effectiveness of this method.

4.2. Performance Verification of Three-Dimensional Cooperative Guidance Law under
Time-Varying Velocity

In order to verify the three-dimensional cooperative guidance law based on desired
impact time and the three-dimensional cooperative guidance law based on coordination
variables proposed in this paper, the following simulations are carried out. The position of
the target is (200, 0, 0) km, and the four UAVs are required to reach the target position at
the same time to strike the target. The proportional guidance constants are all 3, and the
initial parameters are shown in Table 3.

Table 3. Simulation parameters under the three-dimensional cooperative guidance law.

UAVs Initial Position (km) Velocity (m/s) Initial Flight Path Angle (deg) Initial Heading Angle (deg)

M1 (−35, 20, −30) 1950 0 0
M2 (−15, 21, −17) 1850 2 −2
M3 (15, 25, 20) 1750 1 2
M4 (25, 22, 31) 1800 −1 3

4.2.1. Simulations of Three-Dimensional Cooperative Guidance Law Based on Desired
Impact Time When the Rate of Change of Velocity Is the First-Order Function of Velocity

The desired impact time is set to 170 s, the simulation results are shown in Figure 6.
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Figure 6. Simulations of three-dimensional cooperative guidance law based on desired impact time when the rate of change
of velocity is the first-order function of velocity.

As can be seen from Figure 6a–e, under the action of the cooperative guidance law,
the four UAVs gradually approach and finally strike the target. From Figure 6b–e, it can be
seen that the time for the UAVs to reach the target is 170 s, which is the same as the desired
impact time, which indicates the effectiveness of the cooperative guidance law. As can be
seen from Figure 6b, the impact time errors of the four UAVs gradually decrease, which
reach the same in about 80 s, and converge to zero in the terminal time. As can be seen
from Figure 6e, the leading angle in the yaw channel increases in the early stage and then
decreases gradually until the terminal time converges to 0.

4.2.2. SIMULATIONS of Three-Dimensional Cooperative Guidance Law Based on
Coordinated Variables When the Rate of Change of Velocity Is the First-Order Function
of Velocity

Considering the mutual communication, the desired impact time is negotiated among
UAVs. The simulation results are shown in Figure 7.
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weight, so this member plays a decisive role in the negotiation process. The remaining 

Figure 7. Simulations of three-dimensional cooperative guidance law based on coordinated variables when the rate of
change of velocity is the first-order function of velocity.

Figure 7a–f show the variation curves of three-dimensional flight trajectory, impact
time error, flight path angle, heading angle, the leading angle of velocity in yaw channel
and the weight with time respectively. As can be seen from Figure 7a, all four UAVs can
reach the specified target point. As can be seen from Figure 7b, the impact time errors
of the four UAVs converge to 0 at terminal time, and the desired impact time obtained
through negotiation is 188.2 s. As can be seen from Figure 7f, M1 has the largest weight, so
this member plays a decisive role in the negotiation process. The remaining three UAVs
adjust their flight trajectories according to the desired impact time determined by M1, so as
to achieve cooperative strike target. As can be seen from Figure 7b, the impact time error
of M1 first converges to 0.

4.2.3. Simulations of Three-Dimensional Cooperative Guidance Law Based on Coordinated
Variables When the Rate of Change of Velocity Is the Quadratic Function of Velocity

Simulations of three-dimensional cooperative guidance law based on coordinated
variables when the rate of change of velocity is the quadratic function of velocity are shown
in Figure 8. As can be seen from Figure 8a–f, the four UAVs hit the target at the same time
through negotiation. Compared with Figure 7, the flight time is shorter, only 154.1 s, this
is because when the velocity change rate is a quadratic function of velocity, the velocity
decreases more slowly. As can be seen from Figure 8f, M1 has the largest weight, so this
member plays a decisive role in the negotiation process. The remaining three UAVs adjust
their flight trajectories according to the desired impact time determined by M1, so as to



Drones 2021, 5, 100 21 of 24

achieve cooperative strike target. As can be seen from Figure 8b, the impact time error of
M1 first converges to 0.
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To summarize, the three-dimensional cooperative guidance law with impact time
constraint under time-varying velocity proposed in this paper is effective and can make
multiple UAVs attack targets cooperatively.

5. Conclusions

This paper has studied the terminal multiple UAVs cooperative guidance problem
with impact time control under time-varying velocity. Firstly, on a two-dimensional plane,
the cooperative guidance problem is transformed into a second-order consistency control
problem, considering the finite time consistency of impact time, the time-varying velocity
and the distributed communication topology, a distributed time cooperative guidance
law based on graph theory and consistency theory is designed. Then the cooperative
guidance problem is expanded from two-dimensional plane to three-dimensional space,
compared with reference [34], when the rate of change of velocity is a quadratic function of
velocity, a three-dimensional impact time cooperative guidance law based on coordination
variables is proposed in this paper, which does not need to set the desired impact time
in advance; the impact time is determined by negotiation among UAVs. When the rate
of change of velocity is the first order function of velocity, the expression of time-to-go
estimation is derived firstly, then according to whether there is the communication among
UAVs, a multiple UAVs three-dimensional cooperative guidance law based on desired
impact time and a multiple UAVs three-dimensional cooperative guidance law based on
coordination variable are designed, respectively. The simulation results show that the
cooperative guidance laws designed in this paper can all realize the saturation attack.
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Nomenclature

M, T UAV and target
γM, q, σM flight path angle, line of sight angle and leading angle
VM, aM velocity and acceleration
L, D aerodynamic lift and drag respectively
KM, KM1 coefficient of velocity change rate
A weight coefficient matrix
sign(·) symbolic function
α, β, γ, k coupling coefficients
ψL, ψM azimuth of the line of sight and heading angle
ξ∗ total energy consumption
r, tgo rang-to-go and time-to-go
m, g mass and gravitational acceleration
Sre f aerodynamic reference area
CD, ρ drag coefficient and atmospheric density
N proportional guidance coefficient
L Laplace matrix
λ eigenvalue
ay acceleration of yaw channel
az acceleration of pitch channel
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