Efficient Drone-Based Rare Plant Monitoring Using a Species Distribution Model and AI-Based Object Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Species Distribution Modeling for Flight Planning
2.2.1. Species Presence Locations
2.2.2. Environmental Layers
2.2.3. Modeling Species Distribution
2.2.4. Flight Path Generation
2.2.5. Time of Day Flight Planning
2.3. Flight Data Acquisition and Processing
2.4. Analysis of UAS Data for Plant Locations
2.4.1. Expert-Directed Visual Analysis
2.4.2. Semi-Automated Detection with Computer Vision
3. Results
3.1. Species Distribution Modeling
3.2. Targeted Flight Plan and UAS Data
3.3. Analysis of Geum Radiatum Locations
3.3.1. Results of Visual Analysis
3.3.2. Computer Vision
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | elevation | soils | dist. to water | solar | aspect | slope |
Contribution [%} | 70.1 | 16.8 | 5.3 | 2.7 | 1.9 | 1.0 |
References
- Alexander, H.M.; Reed, A.W.; Kettle, W.D.; Slade, N.A.; Roels, S.A.B.; Collins, C.D.; Salisbury, V. Detection and Plant Monitoring Programs: Lessons from an Intensive Survey of Asclepias meadii with Five Observers. PLoS ONE 2012, 7, e52762. [Google Scholar] [CrossRef]
- Elzinga, C.L.; Salzer, D.W.; Willoughby, J.W. Nature Conservancy (U.S.) Measuring & Monitoring Plant Populations; U.S. Dept. of the Interior, Bureau of Land Management; Nature Conservancy: Arlington, VA, USA, 1998; Volume 1730-1. [Google Scholar]
- North Carolina General Assembly Endangered and Threatened Wildlife and Wildlife Species of Special Concern. 1979. Available online: https://www.ncleg.net/EnactedLegislation/Statutes/HTML/ByArticle/Chapter_113/Article_25.html (accessed on 15 January 2020).
- Strumia, S.; Buonanno, M.; Aronne, G.; Santo, A.; Santangelo, A. Monitoring of Plant Species and Communities on Coastal Cliffs: Is the Use of Unmanned Aerial Vehicles Suitable? Diversity 2020, 12, 149. [Google Scholar] [CrossRef] [Green Version]
- Rominger, K.; Meyer, S.E. Application of UAV-Based Methodology for Census of an Endangered Plant Species in a Fragile Habitat. Remote Sens. 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Jaud, M.; Letortu, P.; Théry, C.; Grandjean, P.; Costa, S.; Maquaire, O.; Davidson, R.; Le Dantec, N. UAV survey of a coastal cliff face–Selection of the best imaging angle. Meas. J. Int. Meas. Confed. 2019, 139, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Groos, A.R.; Bertschinger, T.J.; Kummer, C.M.; Erlwein, S.; Munz, L.; Philipp, A. The Potential of Low-Cost UAVs and Open-Source Photogrammetry Software for High-Resolution Monitoring of Alpine Glaciers: A Case Study from the Kanderfirn (Swiss Alps). Geoscience 2019, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Rossini, M.; Di Mauro, B.; Garzonio, R.; Baccolo, G.; Cavallini, G.; Mattavelli, M.; De Amicis, M.; Colombo, R. Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology 2018, 304, 159–172. [Google Scholar] [CrossRef]
- Šašak, J.; Gallay, M.; Kaňuk, J.; Hofierka, J.; Minár, J. Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain. Remote Sens. 2019, 11, 2154. [Google Scholar] [CrossRef] [Green Version]
- Vivero, S.; Lambiel, C. Monitoring the crisis of a rock glacier with repeated UAV surveys. Geogr. Helv. 2019, 74, 59–69. [Google Scholar] [CrossRef]
- López, J.J.; Mulero-Pázmány, M. Drones for Conservation in Protected Areas: Present and Future. Drones 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, M.J.; Bishop, J.A. Predicting and Preventing Elephant Poaching Incidents through Statistical Analysis, GIS-Based Risk Analysis, and Aerial Surveillance Flight Path Modeling. Trop. Conserv. Sci. 2016, 9, 525–548. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.-H.; Phinn, S.; Johansen, K.; Robson, A.; Wu, D. Optimising drone flight planning for measuring horticultural tree crop structure. ISPRS J. Photogramm. Remote Sens. 2020, 160, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Goodrich, M.A. UAV intelligent path planning for Wilderness Search and Rescue. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 709–714. [Google Scholar]
- Pérez-Carabaza, S.; Scherer, J.; Rinner, B.; López-Orozco, J.A.; Besada-Portas, E. UAV trajectory optimization for Minimum Time Search with communication constraints and collision avoidance. Eng. Appl. Artif. Intell. 2019, 85, 357–371. [Google Scholar] [CrossRef]
- Juan, V.S.; Santos, M.; Andújar-Márquez, J.M. Intelligent UAV Map Generation and Discrete Path Planning for Search and Rescue Operations. Complexity 2018, 2018, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, M.; Reis, G.M.; Anderson, J.; Bobadilla, L.; Al Sabban, W.; Smith, R.N. Development of environmental niche models for use in underwater vehicle navigation. IET Cyber-Syst. Robot. 2020, 2, 67–77. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- US Fish and Wildlife Service Spreading Avens (Geum Radiatum) Recovery Plan. 1993. Available online: http://ecos.fws.gov/docs/recovery_plans/1993/930428.pdf (accessed on 11 March 2018).
- Massey, J.; Atkinson, T.; Whitson, P. Endangered and Threatened Plant Survey of 12 Species in the Eastern Part of Region IV; 1980; USFWS Contract 14-160004-78-108. Report. Available online: https://ecos.fws.gov/ecp/report/table/critical-habitat.html (accessed on 20 June 2020).
- Massey, J.R. An Atlas and Illustrated Guide to the Threatened and Endangered Vascular Plants of the Mountains of North Carolina and Virginia; Southeastern Forest Experiment Station: Asheville, NC, USA, 1983; Volume 20. [Google Scholar]
- US Fish and Wildlife Service Spreading Avens Fact Sheet. 2011. Available online: https://www.fws.gov/asheville/pdfs/SpreadingAvens_factsheet.pdf/ (accessed on 15 January 2018).
- Peeples, G. Botanists Blitz Area Cliffs for Endangered Plant. 2008. Available online: https://www.fws.gov/southeast/articles/botanists-blitz-area-cliffs-for-endangered-plant/ (accessed on 19 May 2020).
- Godt, M.J.W.; Johnson, B.R.; Hamrick, J. Genetic Diversity and Population Size in Four Rare Southern Appalachian Plant Species. Conserv. Biol. 1996, 10, 796–805. [Google Scholar] [CrossRef]
- Schafale, M.P.; Weakley, A.S. North Carolina Natural Heritage Program Classification of the Natural Communities of North Carolina: Third Approximation; North Carolina Natural Heritage Program, Division of Parks and Recreation; Department of Environment, Health, and Natural Resources: Raleigh, NC, USA, 1990.
- Harrison, S.; Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 2017, 119, 207–214. [Google Scholar] [CrossRef]
- Pittillo, J.D.; Hatcher, R.D.; Buol, S.W. Introduction to the Environment and Vegetation of the Southern Blue Ridge Province. Castanea 1998, 63, 202–216. [Google Scholar]
- US Fish and Wildlife Service Spreading Avens (Geum Radiatum) 5-Year Review: Summary and Evaluation. 2020. Available online: https://ecos.fws.gov/docs/tess/species_nonpublish/2953.pdf/ (accessed on 20 June 2020).
- Ulrey, C.; Quintana-Ascencio, P.F.; Kauffman, G.; Smith, A.; Menges, E.S. Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biol. Conserv. 2016, 200, 80–92. [Google Scholar] [CrossRef]
- Maxent Software for Modeling Species Niches and Distributions, Version 3.4.1. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent (accessed on 15 March 2018).
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Wiser, S.K.; Peet, R.K.; White, P.S. Prediction of Rare-Plant Occurrence: A Southern Appalachian Example. Ecol. Appl. 1998, 8, 909. [Google Scholar] [CrossRef]
- Gobeyn, S.; Mouton, A.M.; Cord, A.F.; Kaim, A.; Volk, M.; Goethals, P.L. Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecol. Model. 2019, 392, 179–195. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Elith, J. Species Distribution Modeling with R.R CRAN Project. 2013. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.9177&rep=rep1&type=pdf/ (accessed on 23 September 2019).
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Helliwell, R.; Chapman, J. Use of Species Distribution Models in Conservation Biology. Report on File with Interagency Special Status/Sensitive Species Program. 2013. Available online: https://www.fs.fed.us/r6/sfpnw/issssp/documents4/inv-rpt-use-of-species-dist-models-in-cons-bio-201302.pdf/ (accessed on 15 March 2018).
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- North Carolina Natural Heritage Program. Natural Heritage Element Occurrences. Available online: https://ncnhde.natureserve.org/content/data-download (accessed on 28 June 2018).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2019. Available online: http://qgis.osgeo.org (accessed on 22 November 2016).
- North Carolina Floodplain Mapping Program. North Carolina 20 Ft DEM. Available online: http://geodata.lib.ncsu.edu/NCElev (accessed on 19 March 2018).
- Suri, M.; Hofierka, J. A New GIS-based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans. GIS 2004, 8, 175–190. [Google Scholar] [CrossRef]
- U.S. Geological Survey. North Carolina National Land Cover Data Set (NLCD). Available online: https://nrcs.app.box.com/v/gateway/folder/22222601427 (accessed on 5 March 2018).
- U.S. Geological Survey (USGS). Gap Analysis Project (GAP), 2016, GAP/LANDFIRE National Terrestrial Ecosystems 2011: U.S. Geological Survey data release. [CrossRef]
- Soil Survey Staff. The Gridded Soil Survey Geographic (SSURGO) Database for North Carolina. Available online: https://gdg.sc.egov.usda.gov/ (accessed on 7 March 2018).
- U.S. Geological Survey. National Hydrography Dataset (NHD). U.S. Geological Survey. 2017. Available online: http://nhd.usgs.gov/ (accessed on 10 June 2017).
- North Carolina Department of Transportation. Statewide System & Non-System Road Routes. Available online: https://connect.ncdot.gov/resources/gis/pages/gis-data-layers.aspx (accessed on 26 March 2018).
- GRASS GIS. Available online: https://grass.osgeo.org/ (accessed on 25 March 2021).
- U.S. Environmental Protection Agency. Level III and IV Ecoregions of the Continental United States. Available online: https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states (accessed on 19 March 2018).
- Young, N.; Carter, L.; Evangelista, P. A MaxEnt Model v3. 3.3 e Tutorial (ArcGIS V10). Natural Resource Ecology Laboratory, Colorado State University and the National Institute of Invasive Species Science. 2011. Available online: https://ibis.colostate.edu/webcontent/ws/coloradoview/tutorialsdownloads/a_maxent_model_v7.pdf(accessed on 30 June 2020).
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J. A Brief Tutorial on Maxent. 2017. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 3 January 2019).
- U.S. Geological Survey. 1:24,000 Topo Map. Bakersville, NC. 1997. Available online: https://ngmdb.usgs.gov/topoview (accessed on 11 October 2018).
- Brown, D.M. Vegetation of Roan Mountain: A Phytosociological and Successional Study. Ecol. Monogr. 1941, 11, 61–97. [Google Scholar] [CrossRef]
- DroneDeploy Web App. Available online: https://www.dronedeploy.com/ (accessed on 3 January 2018).
- DroneDeploy User Documentation. V.3. Available online: https://support.dronedeploy.com/docs (accessed on 22 March 2018).
- Bonnet, S.; Lisein, J.; Lejeune, P. Comparison of UAS photogrammetric products for tree detection and characterization of coniferous stands. Int. J. Remote Sens. 2017, 38, 5310–5337. [Google Scholar] [CrossRef]
- NC Floodplain Mapping Program. Digital Elevation Model, DEM03. Available online: https://sdd.nc.gov/ (accessed on 14 March 2018).
- DroneDeploy Flight App. V.2.73.0. Available online: https://www.dronedeploy.com (accessed on 10 June 2018).
- DJI GO. V.4.2.14. Available online: https://www.dji.com/goapp (accessed on 23 May 2018).
- Agisoft PhotoScan Software. Agisoft Metashape. Available online: https://www.agisoft.com/ (accessed on 30 January 2020).
- Agisoft Metashape User Manual Version 1.5. 2019. Available online: https://www.agisoft.com/pdf/metashape-pro_1_5_en.pdf (accessed on 30 January 2020).
- Jayathunga, S.; Owari, T.; Tsuyuki, S. Evaluating the Performance of Photogrammetric Products Using Fixed-Wing UAV Imagery over a Mixed Conifer–Broadleaf Forest: Comparison with Airborne Laser Scanning. Remote Sens. 2018, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- ImportPhotos: A QGIS Plugin to Visualise Geotagged Photos. v.2.2. Available online: https://mariosmsk.com/2019/07/02/qgis-plugin-importphotos/ (accessed on 16 July 2019).
- Zheng, C.; Abd-Elrahman, A.; Whitaker, V. Remote Sensing and Machine Learning in Crop Phenotyping and Management, with an Emphasis on Applications in Strawberry Farming. Remote Sens. 2021, 13, 531. [Google Scholar] [CrossRef]
- Microsoft/VOTT: Visual Object Tagging Tool. Available online: https://github.com/microsoft/VoTT (accessed on 22 April 2018).
- Darknet: Open Source Neural Networks in C. Available online: http://pjreddie.com/darknet (accessed on 11 February 2020).
- Dorrer, M.; Popov, A.A.; Tolmacheva, A.E. Building an artificial vision system of an agricultural robot based on the DarkNet system. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 032032. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Zhou, A.; Fu, X.; Ma, Y.; Piao, C. UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective. Sensors 2020, 20, 2238. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. 2018. Available online: https://pjreddie.com/yolo/ (accessed on 20 April 2019).
- Petras, V.; Newcomb, D.J.; Mitasova, H. Generalized 3D fragmentation index derived from lidar point clouds. Open Geospat. Data Softw. Stand. 2017, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Bagaram, M.B.; Giuliarelli, D.; Chirici, G.; Giannetti, F.; Barbati, A. UAV Remote Sensing for Biodiversity Monitoring: Are Forest Canopy Gaps Good Covariates? Remote Sens. 2018, 10, 1397. [Google Scholar] [CrossRef]
- North Carolina OneMap. Latest Orthoimagery. Available online: https://services.nconemap.gov/secure/rest/services/Imagery/Orthoimagery_Latest/ImageServer (accessed on 19 January 2020).
Variable | Attributes |
---|---|
Climate | Cool, cloudy, windy |
Soil | Clay loam, loam, sandy loam, hummus soils |
Geology | Rock substrates composed of muscovite and quartz schist or phyllite, biotite, quartz diorite, granitoid gneiss, and garnet rich mica |
Hydrology | Moderate poorly drained to excessively drained |
Topography | Cliff faces and ledges, outcropping and scattered boulders, or exposed mountain peaks with 10% to 90% exposure. Rounded mountain tops, bluff/cliff faces open to partly sheltered. Surface cracks and crevices serve for placement of grass mounds and moss, which influence the surface features. 0–90-degree slopes on W, WNW, NW, NNW, and NNE exposures |
Physiography | Elevation of 1400 to 2100 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reckling, W.; Mitasova, H.; Wegmann, K.; Kauffman, G.; Reid, R. Efficient Drone-Based Rare Plant Monitoring Using a Species Distribution Model and AI-Based Object Detection. Drones 2021, 5, 110. https://doi.org/10.3390/drones5040110
Reckling W, Mitasova H, Wegmann K, Kauffman G, Reid R. Efficient Drone-Based Rare Plant Monitoring Using a Species Distribution Model and AI-Based Object Detection. Drones. 2021; 5(4):110. https://doi.org/10.3390/drones5040110
Chicago/Turabian StyleReckling, William, Helena Mitasova, Karl Wegmann, Gary Kauffman, and Rebekah Reid. 2021. "Efficient Drone-Based Rare Plant Monitoring Using a Species Distribution Model and AI-Based Object Detection" Drones 5, no. 4: 110. https://doi.org/10.3390/drones5040110
APA StyleReckling, W., Mitasova, H., Wegmann, K., Kauffman, G., & Reid, R. (2021). Efficient Drone-Based Rare Plant Monitoring Using a Species Distribution Model and AI-Based Object Detection. Drones, 5(4), 110. https://doi.org/10.3390/drones5040110