
drones

Article

Drones, Deep Learning, and Endangered Plants: A Method for
Population-Level Census Using Image Analysis

Kody R. Rominger 1,* and Susan E. Meyer 2

����������
�������

Citation: Rominger, K.R.; Meyer, S.E.

Drones, Deep Learning, and

Endangered Plants: A Method for

Population-Level Census Using

Image Analysis. Drones 2021, 5, 126.

https://doi.org/10.3390/drones5040126

Academic Editor: Adam T. Cross

Received: 13 September 2021

Accepted: 25 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Science, Utah Valley University, Orem, UT 84058, USA
2 Shrub Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, Provo, UT 84606, USA;

Susan.Meyer@usda.gov
* Correspondence: krominger@uvu.edu; Tel.: +1-801-427-9603

Abstract: A census of endangered plant populations is critical to determining their size, spatial
distribution, and geographical extent. Traditional, on-the-ground methods for collecting census data
are labor-intensive, time-consuming, and expensive. Use of drone imagery coupled with application
of rapidly advancing deep learning technology could greatly reduce the effort and cost of collecting
and analyzing population-level data across relatively large areas. We used a customization of the
YOLOv5 object detection model to identify and count individual dwarf bear poppy (Arctomecon
humilis) plants in drone imagery obtained at 40 m altitude. We compared human-based and model-
based detection at 40 m on n = 11 test plots for two areas that differed in image quality. The model
out-performed human visual poppy detection for precision and recall, and was 1100× faster at
inference/evaluation on the test plots. Model inference precision was 0.83, and recall was 0.74,
while human evaluation resulted in precision of 0.67, and recall of 0.71. Both model and human
performance were better in the area with higher-quality imagery, suggesting that image quality
is a primary factor limiting model performance. Evaluation of drone-based census imagery from
the 255 ha Webb Hill population with our customized YOLOv5 model was completed in <3 h
and provided a reasonable estimate of population size (7414 poppies) with minimal investment of
on-the-ground resources.

Keywords: AI (artificial intelligence); Arctomecon humilis; census; drone; dwarf bear poppy;
endangered plant species; UAS (unmanned aerial system); YOLOv5

1. Introduction

The use of deep learning (AI or artificial intelligence) methodology for object identifi-
cation is a fast-moving area of research that has only recently been applied to the analysis
of UAV (drone) imagery [1]. In this paper we describe an application of the deep learning
object detection model YOLOv5 [2] to locate, identify, and enumerate individual plants of
a single plant species in its desert habitat. This work represents the next step in our efforts
to perform a range-wide census based on drone imagery for the endangered dwarf bear
poppy (Arctomecon humilis), an evergreen perennial species endemic to gypsum badlands
habitat at the northeastern edge of the Mojave Desert of southwestern Utah, USA [3,4].

All known dwarf bear poppy populations occur in close proximity to a rapidly ex-
panding urban area, St. George, Utah. It is estimated that the species has already suf-
fered extirpation due to urban development over half of its original range [4]. Detailed
knowledge of plant abundance and patterns of distribution (i.e., population-level data) is
fundamental to understanding the ecology of rare plant species and is especially important
for implementing effective conservation measures [5–8]. According to the US Fish and
Wildlife Service, population-level census data are essential for management planning to
mitigate further losses in the face of intensive off-road recreational use, urban development,
and other anthropogenic threats to the dwarf bear poppy [4].

Drones 2021, 5, 126. https://doi.org/10.3390/drones5040126 https://www.mdpi.com/journal/drones

https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones5040126
https://doi.org/10.3390/drones5040126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/drones5040126
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones5040126?type=check_update&version=1


Drones 2021, 5, 126 2 of 15

Arctomecon humilis is sparsely and discontinuously distributed across 3650 ha of fragile
and largely inaccessible habitat (Figure 1); see [4] for map. Concerns over disturbance
of biological soil crust in this unique environment have precluded the use of traditional
on-the-ground census methodologies, which would often not be feasible due to the rugged,
steep, and fragile nature of the terrain. Consequently only 5% of the area has ever been
systematically censused, and even rough estimates are unavailable for the Red Bluffs
population, which occupies over two-thirds of the total range [4]. This species is a good
candidate for a remote sensing approach because it grows in sparsely vegetated habi-
tat (Figure 1), and because of its unique blue-green color and mounding growth form
(Figure 2b).

We began our efforts to use drone imagery analysis to census this species in 2018 and
have completed census for three of the eight formally recognized populations [4] based
on visual analysis of the resulting imagery [3,9]. Relatively inexpensive and easy-to-use
drones equipped with high resolution cameras are capable of low-altitude flights over
relatively large areas in short time frames. This has made it possible for us to complete
imagery acquisition for the species across its entire 3650 ha range. However, a major
drawback is the time required for imagery processing and analysis, particularly the visual
enumeration of individual plants. To solve this problem, we investigated how drone-
acquired census imagery could be analyzed using deep learning models to identify and
count the individuals of our species of interest in the imagery.
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Figure 2. (a) Example of a mature dwarf bear poppy in full flower; (b) example of blue/green foliage and mounding growth
form that differentiates the poppy from other herbaceous plant species in the habitat.

Many studies have used drones along with deep learning models to collect data
in agriculture [10–13], and there are publications describing this approach for a variety
of wild organisms, including plant species in general [14–19] and especially invasive
species [20–23]. Interest in using drone imagery as a tool in rare plant conservation is
increasing [14], but to our knowledge no published studies to date have successfully
applied a deep learning approach to drone-acquired imagery with the goal of enumerating
individuals of a rare plant species. Reckling et al. [24] were able to visually identify
individuals of their herbaceous target species with the aid of an a priori species distribution
model, but they were not successful in their efforts to use AI for species recognition in drone
imagery. Our specific objectives in this study were to: (1) report on detection accuracy
of the YOLOv5 model trained on a custom drone-based imagery dataset for dwarf bear
poppy, (2) compare the accuracy of the YOLOv5 model against a human worker trained in
identifying dwarf bear poppy in drone imagery, (3) evaluate the effect of image quality on
model accuracy, and (4) present the results of a drone/AI census for one population of the
target species (Webb Hill). We emphasize our approach for building a deep learning model
in an effort to provide a beginning road map to aid conservation researchers considering
the use of AI for drone-based census of other plant species.

2. Materials and Methods
2.1. Study Area

In the current study, we conducted a drone-based census of the Webb Hill population,
which represents roughly 12% of the total suitable habitat for the poppy. We were limited
to census of the lands managed by the Bureau of Land Management (BLM) along with
some state and county-managed lands for a total of 255 ha. We were unable to census
any of the privately-owned land, mainly because these areas were under construction or
already built upon. Additionally, we analyzed census and validation flights from across a
small subset of the Red Bluffs population as an area of interest (n = 6 flights) for testing the
deep learning model against a human worker with imagery that differed in quality from
the Webb Hill imagery.
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2.2. Drone Flights and Imagery Processing

Our protocol for acquiring and processing drone imagery for analysis is described
in detail in our earlier papers [3,9]. For the present work, drone flights were made using
DJI Phantom 4 Pro V2 drones (SZ DJI Technology Co. Ltd. Shenzhen, China), which
were equipped with a stock 20 MP camera (f/2.8-f/11, 84◦ FOV). Drone census flights
at Webb Hill were conducted during the late fall of 2019 (October–November). Flights
were made at 40 m above ground level (AGL) with the following settings adjusted within
the flight planning app: 70/70 side/front image overlap, ISO 100, “Auto” shutter speed
(vs aperture or shutter priority), and white balance set to “Cloudy”. We carried out 36
census flights across the population, capturing 9666 images and covering roughly 255 ha
of habitat. Due to poor image quality, imagery captured from two flights (flights 10 and
32, respectively) were excluded from analysis. In addition to census flights, we conducted
15 m AGL validation flights across a subset (n = 6 plots) of areas flown for census in order
to validate the poppy detection at census-level.

All drone census and validation flights were carried out by a two-person team, each
operating a drone. Both drone operators were Part 107 licensed with the Federal Aviation
Administration (FAA) and were authorized to conduct flights with the FAA, BLM, and U.S.
Fish and Wildlife Service (USFWS). The total time in the field was 24 h per person for a
total of 48 person hours.

The collected images were organized by flight and copied into an in-house imagery
storage database. All imagery was processed in Adobe Photoshop (Photoshop CC 2020,
Adobe Systems Inc., San Jose, CA, USA) to correct for light and color distortions within the
imagery as described in our earlier work [3]. The images were then processed into ortho-
mosaics using Pix4D software (Pix4D S.A., Lausanne, Switzerland) and each orthomosaic
was loaded into ArcGIS Pro (ESRI, Redlands, CA, USA) for further analysis. Orthomosaics
were used as the basis of the training imagery that was used to build the deep learning
model, to conduct the model-versus-human comparison of detection accuracy, and to carry
out the full Webb Hill drone-based census.

2.3. Building the Deep Learning Model
2.3.1. YOLOv5 Basics

For poppy detection in drone imagery, we used the “You Only Look Once”, or
YOLOv5, model, the 5th version of the YOLO family of object detection models [2]. The
YOLOv5 model comes pre-trained on the COCO dataset [25], which provides baseline
weights for hyperparameter settings, resulting in drastically reduced training times when
training on a customized dataset. This version of YOLO was designed to be particularly
accessible to people who do not necessarily come from a computer programming back-
ground [26]. The YOLOv5 model uses the PyTorch framework (as opposed to Darknet),
which makes integrating a local GPU for training and inference (using the trained model to
detect objects and predict classes) relatively easy. This was ideal for our purposes.

In simple terms, the YOLO model works by first creating features in the training image
(backbone), which are then passed to the next layer; these features are then mixed, matched,
and combined in various ways (neck); and then finally, bounding boxes are drawn around
predicted objects (Figure 3a; passed features from previous layers), and a class prediction
with level of confidence is made for each predicted object (head). The model then runs
inference on an internal validation dataset. Based on the results, the model adjusts the
hyperparameters and applies the changes during the next epoch. This is why the model is
said to “learn”. For more detailed information on how YOLOv5, as well as other YOLO
models are designed and function, please see these references [2,27–30].

We experimented with several different sizes of the YOLOv5 model by training
with our dataset on both the local GPU (NVIDIA GeForce GTX 1080) and cloud-based
GPU (Google CoLaboratory Pro. Google LLC. Mountain View, CA, US; Tesla P100) for a
relatively short amount of time (≥250 epochs). We selected the YOLOv5 small model for
poppy detection due to its relatively fast training times, as well as high detection accuracy.
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Training results from the other model sizes were comparable in accuracy but much slower
in training-times.
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Figure 3. Example of model inference output at two plots. Panels on the left (a) are from census imagery (40 m AGL), while
panels on the right (b) are from validation imagery (15 m AGL) over the same area. Red boxes were the model predictions
(with confidence level), and green boxes were visually confirmed as poppies.

2.3.2. Training Imagery Selection

To build a training dataset of poppy images, we first had to ensure the images being
fed to the model were confirmed poppies. This may seem obvious, but images of poppies
collected from 40-m AGL were often blurred or color distorted and were sometimes not
easy to distinguish from similar-looking plants or from the background (Figure 3a). To
mitigate this problem, we used only census (40 m AGL) imagery from areas that also had
validation (15 m AGL) imagery. The visual difference in image quality from 40 to 15 m AGL
is quite dramatic (Figure 3), and the majority of poppies can be reliably confirmed in the
15 m AGL imagery [9]. Training images were obtained from across all poppy populations
for which drone imagery was available. However, the majority of the training images were
from the Webb Hill and Red Bluffs populations.

2.3.3. Imagery Annotation and Model Training

The YOLOv5 model requires an input of annotated training images representing the
target object class, along with a corresponding comma separated values (csv) file containing
bounding box coordinates and class labels, for each image. We chose two target classes to
train the model: poppy, specifically non-flowering poppies; and similar vegetation. We
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found that providing the model with additional objects (other plant or plant-like objects
from the same census imagery) that were labelled as not poppies (i.e., similar vegetation)
resulted in higher model precision. The source training imagery was from the individual
census flight orthomosaics. To use orthomosaics for training, we first had to divide the
larger orthomosaic into individual tiff images of 416 × 416 pixels each. We used images of
this size to speed up model training, and because this area was sufficiently small to draw
bounding boxes closely around our target objects. The model can use images of various
sizes, but use of larger-sized images greatly increases the model training time.

We used the python-based tool LabelImg [31] to annotate all images. Annotation was
done by manually drawing bounding boxes around the target objects and labeling each box
with its appropriate class. We annotated 389 images resulting in 1975 total annotations—
755 poppy annotations, and 1220 similar plant annotations. We uploaded the images into
an image processing framework, Roboflow (Roboflow, Inc. Des Moines, IA, USA), to
separate the images into training and validation, as well as to perform additional image
augmentations. Within Roboflow, the images were randomly separated into training and
validation subsets of 245 training and 144 validation images, respectively. Further, each
of the 245 images had three additional “augmentations” performed per image, resulting
in 980 training images for model input. The augmentations were randomly selected from
the following five user-selected options: 90◦ rotate (clockwise, counterclockwise); crop
(0% to 39%); saturation (between -29% and 29%); brightness (between -25% and 25%);
and exposure (between -8% and 8%). Each specific augmentation was randomly applied
within the settings shown in parenthesis above. Augmentations were subjectively chosen
in order to bolster the number of training images and to give the model a wide variety of
possibilities for how poppies could appear in the imagery.

Using the YOLOv5s model baseline weights (from the COCO dataset), we trained our
custom model for 9000 epochs across five separate training runs (4 runs for 1000 epochs, 1
run for 5000 epochs) taking roughly 10.4 h to complete. The final weights file was saved
for inference use or for additional model training. The training was done in the cloud with
Google Colab Pro.

2.4. A.I. Model vs. Human Poppy Detection

To test the utility of using our customized model for census across relatively large
areas, we ran model inference on imagery in test plots that had not been previously used
for model training or validation, but for which both census (40 m) and validation (15 m)
imagery were available. The same area was also evaluated by a worker trained to visually
detect poppies in the imagery. We used precision and recall as our metrics for evaluating the
accuracy of both the model inference and human evaluation results. Precision is calculated
as the number of correctly marked objects divided by the total number of marked objects
(error of commission), whereas recall is the number of correctly marked objects divided by
the total number of objects present (error of omission). We evaluated n = 11 plots from two
poppy populations, Webb Hill (n = 5) and an area of interest (AOI, n = 6) at the Red Bluffs
population. Each test plot was made up of 48 images of 416 × 416 pixels (approximately
4.78 × 4.78 m) each, representing a contiguous area within the plot. The total area examined
across the test plots was approximately 1.21 hectares. All test plots had poppies present in
≥1 image, but poppies were not present in many of the individual images of the respective
test plot. As mentioned previously, the Webb Hill imagery was collected in late fall 2019
(Oct-Nov), while the Red Bluffs imagery was collected in spring 2020 (March) prior to
poppy flowering (Figure 2b). We used imagery from two populations to compare the
results of model inference and human evaluation on higher quality imagery relative to
the lower quality Webb Hill imagery. We suspected the obvious, that the higher quality
imagery would yield better evaluation results, but we also wanted to better understand
what the optimal imagery capture conditions are for the dwarf bear poppy. In the Webb
Hill imagery, poppies were far less conspicuous due to the presence of spent inflorescences.
These largely obscured the distinct blue-green poppy foliage, making them difficult to
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separate from similar vegetation or even from the background. In contrast, the Red Bluffs
imagery was taken in the spring following a rainstorm, which made the blue-green poppy
foliage stand out against the wet and darkened background. Additionally, the previous
season’s spent inflorescences were mostly no longer present on the plants (Figure 2b).

We used the methods developed by Rominger and Meyer [3] as the basis of our evalu-
ation and validation of the test plots. All the census tiles in each plot were passed through
model inference and separately evaluated by the human worker. Worker evaluation was
done in Adobe Photoshop, where scale and zoom could be manipulated to closely examine
and ultimately mark each plant. Any basic photo software could be used for this type of
evaluation, as long as the software has a zoom-in function. After the model and the human
worker completed detections on the test plots, each set of results was evaluated and scored
against the validation imagery by a second trained worker who did not take part in the test
plot evaluations. Each object detected by either the model or by the human worker was
checked against the validation imagery to confirm if the identified plants were poppies
and to identify any poppies that were missed. Plants were scored as either marked/not
confirmed, marked/confirmed, or missed. Detected plants that could not be confirmed
in the validation imagery as poppies were scored as marked/not confirmed, which drove
the precision metric (confirmed/marked). Poppies that were not detected were scored as
missed, which negatively impacted the total recall percentage (confirmed/actual). How-
ever, poppies that were <5 cm in diameter were excluded from consideration, regardless of
whether they were detected or missed by either the model or worker. This was because
poppies <5 cm could not always be reliably identified in the validation imagery. The time
required for model inference and for visual evaluation of each plot was also recorded.

2.5. Drone/AI Census of Webb Hill
2.5.1. Model Inference

To accurately perform model inference, the same image size used for model training
was required as input for the trained model. We processed our previously generated census-
level orthomosaics (n = 36) into individual 416 × 416 px images, resulting in ~147,000
individual images for inference. We developed a customized python script to automate the
process of tiling the orthomosaics into individual tiff files, moving the files to the inference
directory, and merging the resulting inference csv files into one csv for each individual
flight.

All 147,000 images were run through inference on the local GPU. The detection
threshold was set to 50% confidence, meaning that only objects predicted with >50%
confidence were displayed. At this level of confidence, we obtained higher precision, but
at the cost of lower recall. If the confidence was set lower, better recall was achieved, but at
the cost of lower precision. This tradeoff is unavoidable, so we used a balanced confidence
level that worked well for our purposes. When the model detected a poppy, a bounding
box was drawn around the poppy (Figure 3a) and a copy of the corresponding image was
saved, along with a separate csv file containing coordinates of the bounding box(es), class,
and confidence level. From the csv files for each flight, we tabulated the number of detected
poppies, as well as the duration of inference, and entered these data into a spreadsheet for
further analysis.

We validated the bounding boxes in the census areas that had corresponding valida-
tion imagery using the same validation methods described earlier (Section 2.5.1) across
n = 6 validation flight areas. For the purpose of estimating true population size, an account-
ing of missed and misidentified poppies was needed. We calculated a correction factor to
apply to the final number of poppies detected by the model that takes these errors into
account. The correction factor was calculated as precision multiplied by the inverse of
recall. This made the correction factor for missed poppies a number >1, which increased the
estimated number of plants, thereby accounting for missed or undetected poppies. Finally,
multiplying by precision (which is always ≤1) decreased the total number of estimated
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poppies, thereby accounting for mis-identified detections. The visual validation process
took roughly 2 h for each validation plot.

3. Results
3.1. A.I. Model Accuracy

Model accuracy was evaluated by the precision and recall metrics after training for
9000 epochs. The final custom-trained YOLOv5 model had an average precision of 0.64
and an average recall of 0.55. However, this result reflects both training classes (poppy and
similar vegetation). Looking specifically at the poppy class precision (Figure 4a), the model
consistently performed at greater than 0.8 at nearly all confidence levels. Poppy class
recall was not as high as precision but was still reasonably accurate between 0.5 and 0.8
recall until around 0.85 confidence when it sharply declined (Figure 4b). At 0.5 confidence,
recall was still greater than 0.6, which provided sufficient accuracy. We found that these
predicted metrics for precision and recall reflected favorable model performance relative to
the metrics obtained by visual detection in our earlier work [3].
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3.2. A.I. Model vs. Human Comparison
3.2.1. All Test Plots

In comparing test plot evaluations carried out by a trained worker to the AI model
inference results, the AI model had higher precision and recall across all test plots as well as
when plots were evaluated by population, with the exception of slightly lower recall across
the Red Bluffs plots (Table 1). The model was 1.36× higher in precision than the human
worker: model 0.83 precision vs. human 0.67. It was also slightly better at recall: 0.74 recall
vs. 0.71 for the trained worker. In measuring inference/evaluation time across each plot
as well as all plots pooled, the AI model was significantly faster than the human worker.
Inference by the model for all plots required less than one minute (0.56 min), while the
worker evaluation required 657 min (ca. 11.0 h), for an inference/evaluation improvement
of over 1100 times by the AI model. All other metrics being equal, these time savings
alone would make the drone/AI census method much more advantageous when scaled up
to the entire 255 ha census area than either visual detection in the imagery or traditional
on-the-ground methods.
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Table 1. Summary of results for AI model inference (left panel) vs. human worker evaluation (right panel) of n = 11 validation plots (top panel). Middle (Red Bluffs, n = 6 plots) and
bottom (Webb Hill, n = 5 plots) panels compare evaluation results for plots separated by population.

AI Model Human Worker
All Plots Marked Confirm Missed Actual Precision Recall Time 1 Marked Confirm Missed Actual Precision Recall Time 1

Plot 1 31 21 4 25 0.68 0.84 0.06 17 8 17 25 0.47 0.32 78
Plot 2 39 34 10 44 0.87 0.77 0.05 49 34 10 44 0.69 0.77 54
Plot 3 5 4 1 5 0.80 0.80 0.08 6 4 1 5 0.67 0.80 51
Plot 4 1 0 3 3 0.00 0.00 0.03 5 1 2 3 0.20 0.33 63
Plot 5 6 4 3 7 0.67 0.57 0.06 13 7 0 7 0.54 1.00 81
Plot 6 1 1 2 3 1.00 0.33 0.06 6 3 0 3 0.50 1.00 57
Plot 7 20 19 2 21 0.95 0.90 0.03 18 15 6 21 0.83 0.71 54
Plot 8 30 30 4 34 1.00 0.88 0.06 43 33 1 34 0.77 0.97 60
Plot 9 7 5 8 13 0.71 0.38 0.06 16 11 2 13 0.69 0.85 54

Plot 10 15 13 12 25 0.87 0.52 0.05 13 10 15 25 0.77 0.40 57
Plot 11 14 10 1 11 0.71 0.91 0.04 16 10 1 11 0.63 0.91 48
Total 2 169 141 50 191 0.83 0.74 0.58 202 136 55 191 0.67 0.71 657

Red Bluffs
Plot 3 5 4 1 5 0.80 0.80 0.08 6 4 1 5 0.67 0.80 51
Plot 5 6 4 3 7 0.67 0.57 0.06 13 7 0 7 0.54 1.00 81
Plot 6 1 1 2 3 1.00 0.33 0.06 6 3 0 3 0.50 1.00 57
Plot 7 20 19 2 21 0.95 0.90 0.03 18 15 6 21 0.83 0.71 54
Plot 8 30 30 4 34 1.00 0.88 0.06 43 33 1 34 0.77 0.97 60

Plot 11 14 10 1 11 0.71 0.91 0.04 16 10 1 11 0.63 0.91 48
Total 2 76 68 13 81 0.89 0.84 0.33 102 72 9 81 0.71 0.89 351

Webb Hill
Plot 1 31 21 4 25 0.68 0.84 0.06 17 8 17 25 0.47 0.32 78
Plot 2 39 34 10 44 0.87 0.77 0.05 49 34 10 44 0.69 0.77 54
Plot 4 1 0 3 3 0.00 0.00 0.03 5 1 2 3 0.20 0.33 63
Plot 9 7 5 8 13 0.71 0.38 0.06 16 11 2 13 0.69 0.85 54

Plot 10 15 13 12 25 0.87 0.52 0.05 13 10 15 25 0.77 0.40 57
Total 2 93 73 37 110 0.78 0.66 0.25 100 64 46 110 0.64 0.58 306

1 Time is reported in total minutes of inference/evaluation per plot. 2 Totals for marked, confirmed, missed, actual, and time reported as sum of plots; total for precision calculated as total confirmed/total
marked; total for recall calculated as total confirmed/actual.
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3.2.2. Imagery Quality Difference: Webb Hill vs. Red Bluffs Plots

Breaking down the test plot evaluations into their respective populations showed
higher precision and recall for both the model and the human worker with the Red Bluffs
imagery (Table 1). This result was not surprising, as we knew the Webb Hill imagery
quality was not as good as the imagery from Red Bluffs, due to the non-optimal condition
of the plants in the late fall season as well as often shadowy conditions due to the short day
length. However, given the lower quality imagery at Webb Hill, the model still had 0.78
precision and 0.66 recall, which was much higher than the human worker (0.64 and 0.58 for
precision and recall, respectively). These results underscore the usefulness of obtaining
imagery under optimal flight conditions in the field, in terms of both plant phenology and
light conditions and that poppy detections for both AI and human were more accurate
when imagery is captured in more favorable conditions.

3.3. Webb Hill Census Imagery Analysis

Orthomosaics representing the Webb Hill census imagery covered a total area of
246.2 ha and consisted of 34 flights (accounting for the two flights that were not analyzed)
that varied in area covered ranging from 0.28–19.3 ha (Table 2). Processing the imagery
into orthomosaics took 4248 min (70.8 h), which is mostly computer runtime rather than
worker labor. Once the orthomosaics were tiled into 416 × 416 px images for analysis, total
model inference time was 147.2 min (2.45 h), with inference times that were approximately
proportional to flight area and that ranged from 0.7 min (flight 13) to 14.8 min (flight 7;
Table 2). Of the 147,411 image tiles passed through inference, the model detected and
drew bounding boxes on poppies in 4994 individual images (Figure 5, only 3.4% of total
images had poppies detected). The total number of poppies marked in the imagery was
6283, which means that some tiles contained ≥ 1 detected poppy (Table 2). Most marked
poppies (74%) were concentrated in the ten most-populated flight areas, while the 10
least-populated flight areas collectively included only 5.4% of total marked poppies. Much
of this difference was due to differences in the areal extent of the flights, but even when
area is taken into account, the flights that included 74% of the poppies only accounted
for 38% of the area, indicating that poppies were concentrated in these areas. The ten
least-populated flight areas occupied 21% of the total area, so that poppies at 5.4% of the
total were markedly underrepresented.
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Table 2. Summary of the drone census and the YOLOv5 inference results at the Webb Hill poppy population. Results
presented by individual census flight. Census flights 10 and 32 were excluded from analysis.

Flight # #Images Area 1 GSD 2 F-time 3 P-Time 4 #Poppy #Tiles #PopTiles 5 #Pop/Tiles 6 I-Time 7

1 333 11.1 2.13 22 152 356 1472 257 0.00174 14.8
2 308 8.6 1.17 17 144 256 3850 209 0.00142 3.5
3 316 8.5 1.03 17 106 350 5092 283 0.00192 5.1
4 352 9.3 1.04 17 129 443 5120 318 0.00216 4.8
5 245 8.1 1.28 14 114 99 3564 88 0.00060 4.2
6 226 6.1 0.91 12 98 146 5390 135 0.00092 9.7
7 357 8.5 0.78 21 164 838 11,000 657 0.00446 1.4
8 318 7.9 1.08 20 108 51 4928 45 0.00031 4.5
9 253 6.1 0.84 14 128 38 6700 36 0.00024 6.1

11 362 9.5 1.01 19 163 65 5810 63 0.00043 3.7
12 446 12.3 1.2 25 133 60 5916 60 0.00041 2.8
13 139 0.58 0.68 7 65 2 806 2 0.00001 4.3
14 460 12.2 1.06 25 200 102 9600 95 0.00064 3.3
15 192 5.9 1.11 10 89 69 5148 54 0.00037 4.3
16 107 0.28 0.32 4 56 14 1683 13 0.00009 8.2
17 161 6.2 1.52 9 72 164 2925 130 0.00088 4.0
18 270 9.8 1.66 17 163 141 2840 116 0.00079 3.5

19&20 8 619 19.3 1.84 65 205 697 3680 500 0.00339 3.8
21 495 9.7 1.09 25 220 545 5356 432 0.00293 2.9
22 251 7.6 1.09 15 122 441 3996 348 0.00236 6.0
23 363 9.3 1.21 20 156 401 10,275 286 0.00194 4.5
24 317 9.6 1.23 17 125 337 5824 269 0.00182 5.7
25 103 3.3 1.1 5 45 43 1980 42 0.00028 4.8
26 239 6.1 1.09 15 131 26 3283 26 0.00018 2.9
27 203 5.1 0.95 14 133 80 4235 60 0.00041 5.5
28 227 6.1 0.99 13 131 117 4736 103 0.00070 1.6
29 225 7.8 1.46 12 116 52 3410 48 0.00033 2.0
30 162 6.2 1.41 11 74 34 3422 32 0.00022 2.1
31 205 6.9 1.39 11 91 70 3416 64 0.00043 7.0
33 307 5.1 1.06 11 159 91 3597 83 0.00056 5.0
34 292 4.8 1.03 11 164 76 3429 63 0.00043 2.8
35 193 4.7 1.07 7 145 40 2444 38 0.00026 2.1
36 213 3.6 1.16 8 147 39 2484 39 0.00026 0.7

Total 9259 246.2 n/a 530 4248 6283 147411 4994 0.03388 147.2

Avg 280.6 7.5 1.15 16.1 128.7 190.4 4467 151.3 0.00103 4.5
1 Flight area (hectares); 2 GSD calculated as cm2/pixel; 3 F-time = drone flight time (mins) 4 P-time = imagery processing time (mins);
5 #PopTiles = number of tiles with detected poppies; 6 #Pop/Tiles = total number of tiles with poppies/sum of all tiles; 7 I-time = AI
inference time (mins); 8 Flights 19 and 20 were processed and analyzed together.

Overall, the density of marked poppies was extremely low (26.5 poppies-ha−1). Much
of the area, although comprised of gypsum soils, was likely not suitable habitat, resulting
in clustering of the poppies in the most favorable areas, an effect observed in previous
census evaluations for this species [3]. This demonstrates the utility of drone-based census
methods as opposed to on-the-ground census, as locating so few poppies scattered over
such a large area would be a daunting task on the ground.

When the correction factor based on precision (0.78) and recall (0.66) was applied to
the number of marked poppies at Webb Hill, we obtained an estimate of 7414 poppies in
the census area in autumn 2019. The total time to complete the census and analysis was
7995 min (~133 h). The on-the-ground/field time was 48 h, or 37% of the total time, with
the remaining 63% or 82 h consisting of computer runtime with very little worker time
involved.
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4. Discussion

In this paper, we present evidence that we have solved a major limitation of the previ-
ous drone-based census methodology that this work was built upon [3]. By incorporating
the use of an AI model to detect poppies in drone imagery, we have essentially eliminated
the bottleneck of visual imagery evaluation. We also showed that the AI model performed
better than a trained worker in both precision and recall. Finally, we presented the results
of the drone-based Webb Hill census and AI poppy detection and enumeration to show
that the AI approach is feasible at the population level. Our results show that we have
developed a viable census method worth investigating for additional plant species.

4.1. Limitations of Drone Census and AI Evaluation Methods

There are some limitations to using drones and AI models for poppy census. One of
our biggest issues with detection accuracy was differences in image quality. Using imagery
taken from 40 m AGL was problematic, especially when captured in unfavorable seasons.
We did not anticipate the presence of spent inflorescences on the poppies to obscure the
blue/green poppy foliage (Figure 5). In fact, we thought the inflorescences would make
the poppies even more distinct in the imagery. Additionally, even between-flight imagery
quality was an issue (Table 2); this was mainly due to the drone not maintaining a consistent
40 m AGL. We flew the Webb Hill population in late 2019, well before we began methods
development to use an AI-based object detector. Ideally, we would have flown test plots
and used that imagery directly with a trained AI model. The results could then have
guided us in mission planning in terms of how many validation plots were needed, or
even to a conclusion that census flights would need to be flown at lower altitude. Imagery
quality is the key to AI model detection success, and we learned the hard way that some of
our imagery was not adequate for higher precision and recall results. By greatly reducing
the time needed for image analysis, AI will potentially make it possible to better optimize
conditions for image acquisition, as there will be more time to spend in the field and more
opportunity to choose the best seasonal window for image acquisition.

There will always be a lower detection limit, whether using deep learning technology
or with human workers. We made the decision to limit the size threshold for poppies based
on how well we could reliably verify them in validation imagery. We settled on excluding
poppies <5 cm in diameter, as poppies this small are not big enough to flower, which is a
metric for determining if a seedling has recruited into the population. We know that there
are many occasions when poppies can be detected and verified reliably when they are
<5 cm in diameter; however, both precision and recall are greatly improved when poppies
below this size threshold are excluded.

The final limitation discussed here is imagery processing time. Though most imagery
processing time is computer runtime rather than worker labor, imagery processing is still
a very time-consuming process. We processed 33 census flights that required 72.9 h of
computer runtime for the Webb Hill census, an average of about 2 h of computer runtime
per flight (Table 2) using a relatively high-powered workstation. This process can likely be
dramatically improved by processing with a supercomputer either in the cloud or locally.
To use drone-based plant census methods for larger populations, processing times for
producing orthomosaics from raw imagery will need to be greatly improved.

4.2. Advantages of Drone Census and AI Evaluation Methods

There are, however, many advantages to using drones for plant census. One of the
big advantages is the sheer amount of data that can be gleaned from imagery in addition
to counts of individuals of the target species. Processing imagery into orthomosaics
using Pix4D also allows for the creation of digital elevation models (DEMs), from which
additional environmental variables can be extracted (such as slope, aspect, hydrology
features, etc.) and analyzed for use in other models (i.e., a fine-scale species distribution
model (SDM)). The detected poppy bounding boxes output csv file allows for plotting the
poppies into mapping software where geospatial tools can be employed to look at clustering
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patterns or distance relationships and relationships with environmental variables. The
amount of information that can be extracted from drone imagery is staggering.

Our work in this project has focused on analyzing census-level data to get counts
of individuals in the population. However, using deep learning to perform classifica-
tion within the target species could also be used to look at and measure other types of
information. This could make it possible to develop a method for large-scale monitoring
and demographic studies, similar to our earlier demographic study for the dwarf bear
poppy [15], much more efficiently over even larger areas. For example, with imagery
taken during the flowering season, poppies could be sub-classified by flowering class (i.e.,
flowering, non-flowering) and size. If a minimal on-the-ground component is added to
collect flowering and fruit data along with imagery obtained during the same time period,
the number of seeds produced could be calculated across an entire population [15]. Up
until very recently, this kind of large-scale demographic data was thought to be virtually
impossible to obtain.

Traditional on-the-ground census methods are often not feasible for population-level
data collection over large areas. At the heart of this lack of feasibility, it usually comes
down to time and cost. Obviously, drones can cover more habitat in a given time frame
than on-the-ground workers, but another advantage of drone census coupled with AI
detection methods potentially addresses a well-documented issue in plant census, survey,
and monitoring studies, namely observer error [31–34]. Plant species with low abundance,
such as dwarf bear poppy, are particularly prone to observer error, primarily as observer
failure to detect the plant (false absence or error of omission). This was true even when
decoy plants with readily distinguishable morphology or phenological stage (including
plants in full bloom) [31] were deployed. In our method, we systematically exclude
poppies that are ≤5 cm in diameter due to difficulty in confirming their identification. In
contrast, even skilled observers on the ground often fail to detect individuals of the target
species [32], with failure increasing with increased size of search area [31] and longer time
spent searching [34]. Drone/AI-based plant census methods have a detection threshold
that is objective, measurable, and subject to modification as needed, unlike the omission
error in on-the-ground census methods that attempt to detect every plant.

One of our main objectives when setting out to do this work was to design innovative
methods that are also inexpensive, as we were thinking in terms of utility for land managers
or researchers attempting to collect population-level plant data. Relative to funding for
animal species research, plant conservation research is notoriously underfunded [35],
which often makes the cost of data collection the biggest driver of decisions as to what
data can be collected and over how large an area. Our total time to complete a 246-ha
population-level census, including drone flights, imagery processing, validation, and
inference, was 133 h, with most of that time accounted for in computer processing. Even
the 48 h spent conducting drone flights was mostly flight time, with some time for workers
to navigate to different flight areas. We do not have data available to directly compare
this to on-the-ground census of poppy habitat. However, Zhang et al. [35] conducted
species-richness surveys across 356 quarter-hectare plots in boreal forest habitat with 12
observers (1 observer/plot) and found that the average survey time per plot was 82 min,
ranging from 20-194 min per plot depending on density. Species richness surveys are
generally more time consuming than counting individuals of one species; however, this
example shows that the potential time invested in on-the-ground survey efforts over larger
areas can be high, and ultimately very expensive, relative to drone/AI census methods.

The ability to analyze drone imagery using deep learning methodology has reduced
the time investment for plant census by orders of magnitude relative to human visual
analysis. The method presented here can be used to collect and analyze an enormous
amount of data over a relatively large area. The method is especially suited to species with
distinctive morphology in sparsely vegetated habitat. Many edaphically restricted species
of conservation concern, particularly those found in semiarid and arid environments,
meet these criteria. We think that with a well-designed training program and an initial
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investment in a drone and a computer with software capable of processing and visualizing
imagery, our methods could readily be incorporated by conservation botanists as well as
land managers and their contractors.

5. Conclusions

The next steps in developing our improved drone-based population-level census
methodology for more widespread use are: (1) complete image processing and AI analysis
of our range-wide census imagery for dwarf bear poppy, (2) develop a procedure to project
census points onto maps to examine spatial patterns of distribution and environmental
correlates, (3) incorporate these spatial data to build a species distribution model that
will be used to identify potential areas for the establishment of new dwarf bear poppy
populations, and (4) apply our methodology to additional species of conservation concern.
We have been invited by our funding partners to try drone-based census on two additional
rare plant species, which gives us the opportunity to test the applicablity of our method to
species with different morphologies and that occupy different habitats.
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