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Abstract: In this work, a real-time collision avoidance algorithm was presented for autonomous
navigation in the presence of fixed and moving obstacles in building environments. The current
implementation is designed for autonomous navigation between waypoints of a predefined flight
trajectory that would be performed by an UAV during tasks such as inspections or construction
progress monitoring. It uses a simplified geometry generated from a point cloud of the scenario. In
addition, it also employs information from 3D sensors to detect and position obstacles such as people
or other UAVs, which are not registered in the original cloud. If an obstacle is detected, the algorithm
estimates its motion and computes an evasion path considering the geometry of the environment.
The method has been successfully tested in different scenarios, offering robust results in all avoidance
maneuvers. Execution times were measured, demonstrating that the algorithm is computationally
feasible to be implemented onboard an UAV.

Keywords: UAVs in construction; obstacle avoidance; LiDAR; optimization; non-linear programming

1. Introduction

In the last years, the use of UAVs (unmanned aerial vehicles), also known as drones,
has increased exponentially. These vehicles have been introduced in many different engi-
neering fields such as civil engineering [1,2] or photogrammetry and remote sensing [3]
applications. Their reduced cost and versatility are the main reasons for the increase in
their use. In most cases, UAVs are used for outdoor applications using remote sensing
payloads such as RGB cameras or LiDAR sensors, but also for indoor applications.

In the civil engineering field, UAVs have been used for many different applications [4]
such as safety monitoring, inspection tasks, or progress monitoring of the construction.
For safety monitoring applications, they are a powerful tool to capture aerial images
used to detect unsafe conditions and for monitoring the well-being of the workforce [5].
These applications have increased thanks to the introduction of different solutions that
improve the autonomy of the UAVs [6]. Using a tethering power system [7] allows a drone
to fly for days, making them a semi-permanent safety system. Furthermore, UAVs are
already in use for construction progress monitoring [8] and for both indoor [9] and outdoor
environments [10]. One example of construction monitoring using UAVs was shown in the
work presented by Wu et al. [11], where an UAV equipped with a camera is used for the
safety monitoring and analysis of foundation pit construction. In other cases, the UAVs are
equipped with LiDAR (Light Detection and Ranging) sensors [12] using the acquired point
cloud to monitor the construction process. In [13], Rebolj et al. introduced a method where
the information obtained from the point cloud was used with the BIM model to automate
progress monitoring.

UAVs are also a powerful tool to perform different kinds of structure inspections.
Some of these tasks are focused on detecting superficial pathologies such as cracks or rust
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using remote sensors [14]. In recent years, new UAV systems have been developed to
perform contact inspection tasks to detect internal pathologies in the structure using contact
NDT sensors such as ultrasonic sensors [15,16].

Taking all this into account, it can be deduced that in the future, new civil engineering
and construction applications will be created where drones will navigate in dynamic
scenarios, that is, spaces shared with other vehicles, machinery, humans, or objects in
movement. In this new scenario, new safety protocols and tools are going to be crucial to
avoid risks. Jeelani et al. [17] presented a safety assessment of the integration of UAVs in
construction environments. In this study, authors defined three different risks: physical
risks, attentional costs, and psychological impacts.

The present work focused on this first risk by developing an obstacle avoidance system
able to reduce or avoid the risk of collision between the UAV and objects or humans that get
in the way of the planned mission inside a building. Many different approaches have been
proposed in recent years on this subject. Some of the most common are based on geometric
relations [18,19], fuzzy logic [20,21], potential fields [22,23], and neural networks [24–26],
among others. However, most of them are only valid for the avoidance of static objects
in open air environments. Indoor scenarios are quite challenging due to the presence of
multiple obstacles that complicate the use of analytical tools and deep learning techniques.
Furthermore, the use of neural networks is clearly limited by the lack of training data
and avoidance protocols. Besides, another troublesome aspect is the presence of moving
obstacles such as persons. The avoidance algorithm must be able to predict their motion to
establish a path that maximizes safety and effectiveness.

In this article, a solution based on optimal control is presented for the dynamic calcu-
lation of paths that allow us to solve those conflicts in real time. The proposed algorithm
combines the information of the preregistered 3D model of the room with measurements
taken by onboard sensors. The current implementation aimed to be embedded in an UAV
with sensing devices such as a LiDAR or a stereoscopic camera, which are frequently
used in indoor navigation [27–29]. These sensors would allow us to detect the presence
of objects that are not in the room model. If an obstacle is detected, given the information
obtained from the sensors, the proposed algorithm makes a prediction of their motion and
recalculates the trajectory if the possibility of conflict appears.

Optimal control is used in many scientific and engineering applications such as the
calculation of space missions [30–33], aircraft trajectory optimization [34–36], and eco-
nomics [37,38] between many other applications. It involves the definition of a performance
index that measures the optimality of a given solution according to certain criteria. For the
case of this obstacle avoidance program, the objectives were to minimize both the deviation
from the critical path and the time of the maneuver. The behavior of the algorithm can also
be adjusted according to the characteristics of a given model of an UAV, prioritizing one of
these objectives.

A direct approach to the optimal control problem was implemented as it allows one to
obtain a robust and computationally inexpensive problem that can be solved by an onboard
computer. Direct approaches rely on the Karush–Kuhn–Tucker conditions (KKT) [39], a
generalization of the method of Lagrange multipliers that allows for the use of inequality
constraints. For the implementation, a direct collocation was selected for the state variables,
which were discretized in a time-grid. With the current formulation, a simple non-linear
programming problem (NLP) is obtained, which allows us to reduce the computation time
and be implemented in an onboard computer, as can be appreciated in the results.

Previous works that have used optimal control theory to solve air conflicts in civil avi-
ation [34–36] optimized the trajectory of more than one aircraft and computed the required
control inputs to minimize fuel consumption and avoid losing the separation minima
among aircraft. Instead, apart from adapting the algorithm to the UAV characteristics,
only one vehicle was considered, and obstacles were defined as external entities instead
of being variables of the problem. Furthermore, a direct control over the state variables
was imposed as control inputs were not the main object of study in this work. This is a
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much simpler implementation that only computes the reference trajectory of one vehicle,
practically allowing the computation in real time and can be solved with a large-scale
optimization algorithm, the Interior Point OPTimizer scheme (IPOPT). Further information
can be found in the following reference on the implementation of this solver [40].

The main objective of this work was to develop a real time obstacle avoidance algo-
rithm to allow future UAV applications in the civil engineering and construction fields,
where these vehicles are going to have to navigate sharing space with humans and other
objects. First, the algorithm must be able to predict the trajectory of moving objects to antic-
ipate possible collisions during the navigation. Then, in the case of a collision prediction,
the system computes a modification of the scheduled path to avoid the conflict, optimizing
it in terms of deviation in time and position from the planned route.

The proposed algorithm departs from the results obtained in a previous work [41],
in which a 3D path planning algorithm for indoor navigation was developed using a
modification of the A* algorithm [42]. The previous work calculated the shortest path
between two points inside an indoor scenario, specifically designed to perform completely
autonomous contact inspection tasks with UAVs. For that, the scenario was pre-registered
using as the only input a point cloud recorded by different kinds of LiDAR scanners such
as terrestrial laser scanners (TLS) or mobile laser scanners (MLS). Each point cloud was
discretized into obstacles using a voxelization.

The rest of this manuscript is organized as follows. Section 2 presents the developed
methodology, going deep into the optimization problem. In Section 3, the results of different
study cases are presented and discussed. Finally, Section 4 presents the conclusions of the
proposed algorithm, and future works are introduced.

2. Methodology

For the implementation of the algorithm, different study cases were simulated in
indoor environments, generated from pre-processed point clouds of rooms from the Uni-
versity of Vigo. The UAV trajectory was simulated as well as the obstacle detection and
avoidance algorithm proposed in this manuscript. In the test scenario, the UAV flies on a
route defined by waypoints. The drone has sensors onboard that allow for the detection of
the presence of objects that are not in the original 3D model from the room.

A scheme of the implementation is presented in Figure 1 in the form of a decision tree.
The same procedure is applied when the UAV reaches a waypoint of the trajectory. First,
the drone takes samples of the room to detect whether there are any obstacles, and if so, it
registers its position during a certain period of time, otherwise, the scheduled trajectory
is followed. If a new obstacle is detected, a polynomial regression is performed, fitting
the measurements of the sensors, to forecast its future position. Furthermore, a security
distance is assigned as a function of the size and speed of the object. The position of this new
obstacle is introduced into the optimization program, which recomputes the new trajectory
profile considering its presence and using as the initial guess for the iterative method, the
scheduled trajectory. The process finishes once the UAV reaches the final waypoint of
the trajectory. As well as the trajectory of the UAV, the motion of these obstacles and the
sampling process of the sensors are simulated, as explained in Section 2.2.2.

2.1. Scenario Discretization

In this article, two scenarios are presented to show the capabilities of the proposed algo-
rithm in different environments, showing the adaptability to different types of
flight conditions.

• Hall of the School of Mining and Energy Engineering at University of Vigo. It is a scene
with many obstacles and a low ceiling, in which it is practically impossible to overfly
any obstacle (Figure 2a). This point cloud was captured with the MLS ZEB-REVO
laser scanner [43].

• MTI (Industrial Technology Module). It is an industrial warehouse of the University
of Vigo, a much wider room with a high ceiling (approximately 5 m high). Flying over
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obstacles will be tested in this room (Figure 2b). This point cloud was acquired with
the TLS Faro Focus 3D X330 laser scanner [44].
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The point clouds were postprocessed to obtain a discretized version of the room
environment suitable for the optimization scheme. First, they were segmented, clustering
the walls and the inner obstacles into individual clouds. Then, these clouds were fitted into
rectangular prisms defined by a central point and the dimensions of their sides (Figure 3).

2.2. Optimal Control Problem Formulation

Optimal control involves the minimization of a cost function that is typically a function
of the state and control variables. In this implementation, a direct control over the state
variables was imposed, as this obstacle avoidance is meant to define a reference path profile,
but not the control inputs that are specific to each model of UAV and typically adjusted
by the flight controller. The current implementation is aimed to reduce the complexity of
the algorithm to allow for real time calculations. Therefore, the defined cost function only
depends on the state variables (Equation (1)). It is composed of two terms: the first one, the
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Mayer term, and the second one, the Lagrangian, which involves the computation of an
integral. The statement of a generic optimal control with no control inputs is as follows:

J
(

x, t0, t f

)
= E

[
x(t0), t0 , x

(
t f

)
, t f

]
+
∫ t f

t0

F[x(t), t]dt (1)

where x(t) denotes the set of state variables of the optimal control problem subject to:

Dynamic constraints :
.
x(t) = f (x(t), t)

Initial conditions : i(x(t0), t0) = 0
Final Conditions : e

(
x
(

t f

)
, t f

)
= 0

Algebraic path constraints : g(x(t), t) = 0

(2)
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To solve this time-continuous problem, a direct approach was implemented. The
trajectory in Cartesian coordinates is sampled in a discretized time-grid (Equation (3)). The
number of collocation points is a parameter that can be defined by the user, or adapted
dynamically, depending on the required spatial and temporal resolution. In this way,
the set of coordinates for the temporal steps can be grouped in the following arrays of
decision variables:

X = [X[1], X[2], . . . , X[nstep]] ; Y = [Y[1], Y[2], . . . , Y[nstep]] ;

Z = [Z[1], Z[2], . . . , Z[nstep]]
(3)

The temporal array is defined in an evenly spaced set of time steps as a function of the
time of execution of the maneuver t f (Equation (4)):

t =
[
0, ∆t, 2∆t . . . , t f

]
; ∆t =

t f

nstep− 1
(4)

The objective function is obtained through a discretization of Equation (1) in the time
steps of the grid. Regarding the Mayer term, a squared difference between the scheduled
time of flight and the calculated one was selected. The Lagrangian term is represented
by a summation that accounts for the squared deviation of the grid points with respect to
the linear reference trajectory (Equation (5)). Two parameters, a and b, are introduced to
tune the response of the algorithm. Higher values of a will prioritize faster trajectories,
maximizing the speed to reach the final waypoint at the scheduled time (t f scheduled). The
latter, b, controls the horizontal deviation from the nominal trajectory at the discretization
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points, as depicted in Figure 4. The larger the value of b, the straighter the trajectory will
be, regardless of the time of flight. A parametric study of the influence of this parameter
was performed to demonstrate the adaptation capabilities to different types of UAV:

J
(

X, Y, Z, t f

)
= a

(
t f − t f scheduled

)2
+

b
nstep

nstep

∑
t=1

((
Xinitial − X f inal

)(
Y[t] − Yf inal

)
−
(

Yinitial −Yf inal

)(
X[t] − X f inal

))2((
Xinitial − X f inal

)2
+
(

Yinitial −Yf inal

)2
) (5)

where (Xinitial , Yinitial),
(

X f inal , Yf inal

)
are the coordinates from the initial and final way-

point. These values, along with the corresponding height for the Z coordinate, are intro-
duced as constraints for the initial and final collocation point of the trajectory, as shown in
Figure 4.
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In the following sections, the discretized constraint Equation (2) that complete the
non-linear programming problem will be introduced.

2.2.1. Dynamic Constraints of the Vehicle

The first constraints of this problem are the performance capabilities of the vehicle.
Maximum speeds (Equation (6)) and accelerations (Equation (7)) must be limited to meet
the flight capabilities of a certain model of UAV. For simplicity and reduction in the compu-
tation time, in this formulation, instead of considering decision variables for acceleration
and speed, these dynamic constraints were introduced derived from first order forward
differences and second order central differences. This allows us to reduce the number of
variables of the problem and hence the times of computation:

∀t : (X[t + 1] − X[t])2 + (Y[t + 1] − Y[t])2 + (Z[t + 1] − Z[t])2 −V2
max∆t2 ≤ 0 (6)

∀t : (X[t + 1] − 2X[t] + X[t− 1])2 + (Y[t + 1] − 2Y[t] + Y[t− 1])2

+(Z[t + 1] − 2Z[t] + Z[t− 1])2 − a2
max∆t4 ≤ 0

(7)

2.2.2. Algebraic Constraints

The physical surroundings of the UAV are introduced to the algorithm as algebraic
constraints that represent those positions in which the UAV must not penetrate. This section
is divided into two subsections: (1) room scenario, which accounts from the obstacles pre-
recorded in the 3D point cloud; and (2) unrecorded and moving obstacles, those that
were not present in the acquired point cloud but detected by the onboard sensors during
the navigation.

• Room scenario

As previously mentioned, the walls and obstacles were discretized using rectangular
prisms. The numerical scheme has a set of prohibited space regions in which the UAV
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must not penetrate to avoid collisions with objects placed in the navigation area. These
are defined given the centers and dimensions of the sides of the prisms (Equation (8)). For
every point of the trajectory, the following equation shall be fulfilled:

∀t :
min

j in obs

(
max

(
abs
(
X[t] − xj

)
aj + dcl

,
abs
(
Y[t] − yj

)
bj + dcl

,
abs
(
Z[t] − zj

)
cj + dcl

))
− 1 ≤ 0 (8)

A modified version of the norm infinity was employed to model the rectangular
geometry of the obstacles, as illustrated in Figure 5. The parameters aj, bj, and cj represent
the half of the side of each dimension of the prism j and (xj, yj, zj), the Cartesian coordinates
of the centers whereas dcl is a security distance associated with uncertainties. To reduce
the order of magnitude of the gradient vector and Hessian matrix of the problem, logical
evaluation was performed to identify the closest obstacle to the trajectory. This allowed
us to considerably reduce the number of constraints of the problem. Instead of having N
constraints for each time step (given by the total number of prisms of the room, N), the
problem is reduced to a single constraint and a logical evaluation.
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The floor and ceiling of the building were not included in the discretization of the
room. Instead, the range of allowable flight heights (Equation (9)) is restricted to a certain
range given by:

∀t : 0 ≤ Z[t] ≤ hmax (9)

• Unrecorded and moving obstacles

As aforementioned, the UAV records the position and size of the obstacles of the room
prior to the initialization of the avoid maneuver. It takes samples during a certain period
of time and then, the algorithm performs a polynomial regression. In this manuscript,
the trajectory of the obstacles and size was simulated. To represent the errors on the
measurements, a Gaussian noise of typical deviation σ was added to the simulated trajectory
of the obstacle. A decision tree methodology was developed to select the order of the
polynomial. A high order one would overfit the measurements from the sensors, whereas
a low order one would not correctly represent the motion of the obstacle. A scheme was
implemented based on the residuals of the regression. This is initialized fitting the data
to a zero-order polynomial (constant). As depicted in Figure 6, the residuals can then be
calculated. If the maximum residual is higher than three times the typical deviation of
the Gaussian distribution, the order of the polynomial is increased until the stop criteria
is satisfied.
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Finally, after applying the regression, the position of the obstacle in each time step
(Equation (10)) is defined as a function of the regression coefficients, the time step ∆t, and
the step number:

Xobs[t] = n
i=0 ∑ cxi(t∆t)i ; Yobs[t] = n

i=0 ∑ cyi(t∆t)i ; Zobs[t]
= n

i=0 ∑ czi(t∆t)i (10)

Given the position of the central point of the obstacle, a new set of constraints can
be defined for every time step of the discretization (Equation (11)). The distance from the
UAV to the obstacle should not be lower than a given value d2

sa f ety and can be adjusted
dynamically depending on the size and speed of the obstacle.

∀t : (Xobs[t] − X[t])2 + (Yobs[t] − Y[t])2 + (Zobs[t] − Z[t])2 ≤ d2
sa f ety (11)

3. Results and Discussion
3.1. Study Cases

Once the algorithm was developed, several tests were designed to study the behavior
of the algorithm in different situations. The original route defined by waypoints was
generated using the procedures described in [41], as depicted in Figure 7. A generic UAV
with a maximum acceleration of 1 m/s2 and speed limited to 2 m/s was used for the
simulations. Regarding the safety distance to the obstacles, a value of 1 m was used. Note
that all the mentioned quantities are not intended to represent any commercial model of
UAV, but are only test values to study the capabilities of the algorithm.

The first four test cases were simulated in the Hall of the School of Mining and Energy
Engineering from the University of Vigo, a room with a low ceiling that does not allow
for the vertical avoidance of obstacles. The equations of motion were constrained only to
horizontal displacements. The UAV started the mission in waypoint 1, stopped at waypoint
2 to detect and evaluate the motion of the moving obstacle, and finally, recalculated a new
avoidance trajectory to reach point 3 without causing a collision.

• Static obstacle: The first maneuver to be tested is a single static obstacle placed in the
middle of the scheduled trajectory.

• Perpendicular moving obstacle: In this case, the object is moving perpendicularly to the
obstacle at a constant speed of 1 m/s, intercepting the UAV in a point of the trajectory.
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• Colinear moving obstacle: The obstacle moves in the opposite direction to the UAV at a
constant speed of 1 m/s.

• Oblique moving obstacle: A similar scenario to the one presented in the previous cases,
but with a different incidence angle.
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Two additional cases were simulated in the MTI building to demonstrate other types
of maneuvers such as vertical avoidance and obstacles following curved accelerated trajec-
tories (Figure 8). In these test cases, the obstacle was detected between the first and second
waypoint, and in an equivalent way as for the previous scenarios, the avoidance maneuver
can be calculated:

• Vertical avoidance: In this test case, a simple colinear obstacle is simulated. Vertical
avoidance is a feasible maneuver as the height of the ceiling of the MTI building is
around 5 m.

• Curved accelerated obstacle trajectory: An accelerated parabolic obstacle trajectory to
demonstrate the capabilities of the proposed method to avoid obstacles with complex
trajectories. The obstacle moves at a constant speed in the x direction and has a
constant acceleration in the y component.
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3.2. Avoidance Maneuvers

In this section, the results obtained from the application of the developed algorithm to
the study cases introduced in the previous section are shown and analyzed.

3.2.1. Static Obstacle

Figure 9 depicts the recalculated path for the first test case scenario. As can be
appreciated, between waypoints 1 and 2, the UAV deviated from the original path to avoid
the obstacle. In this test case, the parametric study of parameters a and b was not performed
as for static obstacles, with the fastest route being the shortest one.

Drones 2022, 6, x FOR PEER REVIEW 10 of 16 
 

Two additional cases were simulated in the MTI building to demonstrate other types 
of maneuvers such as vertical avoidance and obstacles following curved accelerated tra-
jectories (Figure 8). In these test cases, the obstacle was detected between the first and 
second waypoint, and in an equivalent way as for the previous scenarios, the avoidance 
maneuver can be calculated: 
• Vertical avoidance: In this test case, a simple colinear obstacle is simulated. Vertical 

avoidance is a feasible maneuver as the height of the ceiling of the MTI building is 
around 5 m. 

• Curved accelerated obstacle trajectory: An accelerated parabolic obstacle trajectory to 
demonstrate the capabilities of the proposed method to avoid obstacles with complex 
trajectories. The obstacle moves at a constant speed in the x direction and has a con-
stant acceleration in the y component. 

  
(a) (b) 

Figure 8. Collision scenarios. (a) Vertical avoidance. (b) Curved-accelerated obstacle trajectory. 

3.2. Avoidance Maneuvers 
In this section, the results obtained from the application of the developed algorithm 

to the study cases introduced in the previous section are shown and analyzed. 

3.2.1. Static Obstacle 
Figure 9 depicts the recalculated path for the first test case scenario. As can be appre-

ciated, between waypoints 1 and 2, the UAV deviated from the original path to avoid the 
obstacle. In this test case, the parametric study of parameters a and b was not performed 
as for static obstacles, with the fastest route being the shortest one. 

 
Figure 9. Recomputed trajectory.

3.2.2. Obstacle Moving Perpendicularly toward the UAV

Figure 10 represents the different approaches in this avoiding maneuver when using
different settings of parameters a and b. For b equal to 0, the algorithm prioritizes the time
of flight and creates a path at the maximum allowable speed of the UAV, for that, it takes
a certain deviation from the original trajectory to maintain the safety distance from the
obstacle. When increasing the value of b, the trajectory becomes straighter, and the UAV
reduces its velocity and allows the other obstacle to cross the intersection. For larger values
of b, the trajectory would practically be a straight line.
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3.2.3. Obstacle following a Colinear Trajectory toward the UAV

In the third test case, the behavior of the different settings of the algorithm is practically
the same as the obstacle is heading directly to the UAV. As depicted in Figure 11, the
algorithm generates an arc to avoid the frontal collision with the moving obstacle.
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3.2.4. Obstacle following an Oblique Trajectory toward the UAV

A similar behavior to Section 3.2.2 is shown in this test case. Higher values of b imply
a straighter trajectory, whereas smaller ones maximize the flight speed of the UAV, as
shown in Figure 12b, at the time in which the obstacle passes the intersection, the distance
travelled is less for b equal to 10.
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3.2.5. Vertical Avoidance

In this test, the same results were obtained for the different algorithm configurations.
The UAV flew over the obstacle to maintain the safety distance, as shown in Figure 13.
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3.2.6. Curved Accelerated Trajectory

For this last trajectory, different results were obtained depending on the algorithm
configuration. If b equals 0, the UAV horizontally avoids the obstacle to decrease the flight
time. By increasing the value of b, a vertical arc is obtained to minimize lateral deviation
(Figure 14). Intermediate maneuvers could be obtained by properly setting the value of b.
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3.3. Computation Time

Table 1 presents the calculation time of the maneuvers for different numbers of colloca-
tion points. All the computations were performed in a laptop using an AMD Ryzen 5 3500U
processor. The calculation time may vary depending on the complexity of the maneuver,
but generally quite satisfactory results were obtained using inexpensive equipment. In
the case of 50 points, the average spacing between points in the evaluated maneuvers was
less than 20 cm, a quite acceptable resolution for this type of trajectory. Judging by the
results, the solution can be considered as a real time obstacle avoidance algorithm, since
for 50 collocation points, the average calculation time was 0.118 s, so with a maximum
movement speed of 1 m/s, the UAV will be displaced 11.8 cm. It is 10 times less than
the security distance selected, that is 1 m. Given the calculation times, it would even be
possible to recalculate the path if a deviation from the expected path of the moving obstacle
is detected. The calculation time would be even less since the IPOPT algorithm would have
a good initial guess value given by the previously calculated route.

Table 1. Time of computation (s).

Scenario 25 Discretization
Points

50 Discretization
Points

100 Discretization
Points

Fixed obstacle 0.07 0.09 0.25

Perpendicular
obstacle 0.08 0.13 0.42

Colinear obstacle 0.06 0.10 0.25

Oblique obstacle 0.08 0.11 0.38

Vertical avoidance 0.08 0.15 0.57

Curved accelerated
obstacle trajectory 0.10 0.13 0.42

The obtained computation times were considerably smaller than other conflict reso-
lution algorithms based on optimal control. For instance, in [34], the computation time,
according to the authors (using 50 discretization points for each aircraft) was 474 s and
in [35], it was around 50 s. As aforementioned, the key objective of this work was to lighten
up the algorithm as much as possible, and control inputs were not calculated as they did in
previous works. Besides the problem, dimensionality was considerably reduced through
logical evaluations, and the room obstacles were represented through a single constraint
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as explained in the Methodology section. These two factors were the main factors that
allowed us to reduce computation time.

4. Conclusions

This article presents an obstacle avoidance algorithm developed for the autonomous
navigation of UAVs in indoor building environments. The main aim of this work was to
provide a methodology to avoid fixed and moving obstacles that were not considered in
the trajectory planning, enabling these vehicles to perform autonomous missions in shared
spaces with humans or other machinery.

The developed algorithm reached the following goals:

• The algorithm can avoid fixed and moving obstacles.
• The calculated trajectories are optimal in terms of deviation in time and position from

the planned route.
• UAV performance limitations are considered in the obstacle avoidance protocols.
• Room model was successfully included in the avoidance algorithm.
• Computation times are affordable for real-time implementation.

In future works, this collision avoidance algorithm could be implemented in a Soft-
ware in the Loop simulation. The dynamics of the UAV could be simulated as well as
the motion of the obstacles. Besides, it is intended to introduce a real-time trajectory cal-
culation program that allows correcting the UAV’s path if the detected obstacles modify
its movement with respect to the estimated trajectory. In the current implementation, the
main objective was to minimize the time of flight and deviation from the original trajectory.
However, other objectives such as minimizing power consumption could be introduced
in the objective function, and more elaboration can be conducted in future works from
this aspect. Furthermore, another possibility could be extending the algorithm to control
more than one UAV by introducing more control variables, representing the position of
each drone. This possibility could be implemented to control a swarm of UAVs that would
be typically operated for inspection tasks in a building environment. Additionally, the
algorithm will be improved, making it run faster using parallel programming techniques.
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