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Abstract: Wetlands play a critical role in maintaining stable and productive ecosystems, and they
continue to be at heightened risk from anthropogenic and natural degradation, especially along the
rapidly developing Atlantic Coastal Plain of North America. As such, strategies to develop up-to-date
and high-resolution wetland inventories and classifications remain highly relevant in the context of
accelerating sea-level rise and coastal changes. Historically, satellite and airborne remote sensing data
along with traditional field-based methods have been used for wetland delineation, yet, more recently,
the advent of Uncrewed Aerial Systems (UAS) platforms and sensors is opening new avenues of
performing rapid and accurate wetland classifications. To test the relative advantages and limitations
of UAS technologies for wetland mapping and classification, we developed wetland classification
models using UAS-collected multispectral and UAS-collected light detection and ranging (LiDAR)
data relative to airborne-derived LiDAR models of wetland types ranging from palustrine to estuarine.
The models were parameterized through a pixel-based random forest algorithm to evaluate model
performance systematically and establish variable importance for a suite of variables including
topographic, hydrologic, and vegetation-based indices. Based on our experimental results, the
average overall classification accuracy and kappa coefficients for the UAS LiDAR-derived models are
75.29% and 0.74, respectively, compared to 79.80% and 0.75 for the airborne LiDAR-derived models,
with significant differences in the spatial representation of final wetland classes. The resulting
classification maps for the UAS models capture more precise wetland delineations than those of
airborne models when trained with ground reference data collected at the same time as the UAS
flights. The similar accuracy between the airborne and UAS models suggest that the UAS LiDAR
is comparable to the airborne LiDAR. However, given poor revisit time of the airborne surveys
and the high spatial resolution and precision of the UAS data, UAS-collected LiDAR provides
excellent complementary data to statewide airborne missions or for specific applications that require
hyperspatial data. For more structurally complex wetland types (such as the palustrine scrub shrub),
UAS hyperspatial LiDAR data performs better and is much more advantageous to use in delineation
and classification models. The results of this study contribute towards enhancing wetland delineation
and classification models using data collected from multiple UAS platforms.

Keywords: uncrewed aerial systems; UAS; LiDAR; multispectral; coastal wetlands; random forest

1. Introduction

Coastal plain wetlands are low-gradient, low-lying areas of land characterized by hy-
drophilic vegetation, hydric soils, and remarkable levels of biodiversity that play important
roles in maintaining productive ecosystems [1–3]. Wetland ecosystems are home to diverse
wildlife and vegetation species and provide many societal benefits such as improved water
quality, flood and carbon storage, erosion shoreline and infrastructure protection, and
support for tourism, hunting, and fishing as local livelihood sources [4]. However, wetland
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extent and condition have been under increasing pressure from anthropogenic and natural
drivers in the last half-century [5,6]. Urbanization, agricultural development, and silvicul-
ture continue to be major human drivers of wetland loss today, in addition to climate change
stressors. Sea-level rise and increases in hurricane and storm intensity and frequency pose
serious risks to fragile coastal wetland ecosystems, through inundation, saltwater intrusion,
and the slow alteration of wetland types and composition, in particular [7]. Combined,
these factors resulted in significant wetland losses at an average rate of about 80,000 acres
per year between 2004 and 2009 in the United States alone [8]. The consequences of wetland
loss, both in terms of extent and functionality, manifest themselves directly and indirectly
on surrounding ecosystems and the organisms that rely on wetlands. Given that 43% of the
USA’s endangered and threatened species rely on wetlands for their survival, wetland loss
compounds ecosystem degradation and has important tropic chain repercussions [9].

Wetland delineations and classifications have been conducted numerous times since
as early as the 1700s as a means to inventory wetlands for many purposes, including
natural resource research and conservation management [10]. Wetland maps are used
for environmental impact and water quality assessments, hydrological and climatological
modeling, transportation planning, identification of conservation or ecological restoration
opportunities, and outreach and education to the general public [11]. Therefore, developing
a record of wetland extent, location, and type, especially in the context of coastal wetland
habitats, provides critical information for policy and decision making and contributes to
protecting fragile wetland ecological systems and overall coastal resilience.

Due to their importance and significant coastal wetland losses in the last half-century,
increasing attention has been paid to developing up-to-date and higher-accuracy wetland
classifications. However, wetland identification and delineations in the primarily forested
Coastal Plain region of the USA are labor-intensive, time-consuming, and costly. Most
coastal wetlands are dominated by thick forest cover and/or muddy ground unlike grass
or non-forested wetlands, making even locations that are not very remote difficult to access
and prone to physical degradation during fieldwork [12,13]. For example, in the state of
North Carolina (NC) alone, primarily forested coastal plain wetlands cover approximately
76.3% (3,100,703 acres) of total wetland areas [11], yet the most recent wetland cover
dataset for this area was completed as part of the National Wetlands Inventory (NWI)
between 2001–2010 (Figure 1). The estimated cost of field-based wetland delineation in
eastern NC ranges from $120–180 per acre and can take several weeks to complete for
a relatively small site (2000–3000-acres) (NC Department of Transportation (NC DoT)
personal communication, 1 September 2021). The extensive spatial scale of wetlands in NC
translates into increased cost and manpower required to conduct ground surveys, which
makes it very difficult to maintain regularly updated wetland maps, especially for purposes
of planning for new or updated transportation and construction projects. As such, wetland
delineations and classifications based on remotely sensed data are common in filling the
gaps between field delineations. We aimed to provide an assessment of the feasibility of
using UAS surveys to fill this gap and provide avenues for rapid wetland assessments with
lower reliance on field campaigns.

Remote sensing technologies have often been used as a tool to tackle issues associ-
ated with traditional wetland surveys [12,14–17]. Remote sensing imagery, whether from
satellite, airborne sources, or, more recently, UAS, enables wetland researchers to access
data for areas that are physically inaccessible to surveyors and takes significantly less
time than an on-foot survey to collect Earth surface data with minimal disturbance to the
surveyed areas [18–20]. Studies show the effectiveness of combining multispectral and
LiDAR datasets for wetland classification [21,22]. While multispectral data can provide
spectral reflectance information to classify vegetation, soil, and manmade objects in an
image, LiDAR data can offer proxies for hydromorphology by measuring and detecting
subtle changes in elevation or vertical vegetation structural information. Hyperspatial UAS
data in particular can result in products with much enhanced spatial resolution and detail
given the much higher point densities resulting from surveys at lower flight altitudes using
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multiple laser beams [12,13]. Secondly, UAS LiDAR is timely, can be flown much more
rapidly than airborne missions, which take years to plan, and therefore the UAS LiDAR
can be planned and deployed very quickly and respond to natural and anthropogenic
events (floods, storm impact assessments, urban developments, etc.). Thirdly, hyperspatial
UAS LiDAR can provide modeling inputs that can further utilize high resolution canopy
height and closure metrics to refine vegetation classification models. Research shows
that the accuracy of land cover classifications improves when combining multispectral
and LiDAR data, in addition to any filed collected data [21,23]. However, to the authors’
knowledge, the fusion of hyperspatial LiDAR and multispectral data collected via UAS
platforms for wetland classification remains largely unexplored. Hyperspatial resolution
from UAS LiDAR is relatively new and enables more precise landscape features to be
quantified, especially when dense vegetation in present. Given the low-lying and minimal
topography variations of coastal wetlands, typical workflows and datasets to obtain hy-
drologic indices and drainage patterns tend to not work as effectively as they would in
areas of more defined terrain [23,24]. However, despite the usefulness of hyperspatial data
in detecting small-scale landscape features, data volumes can hamper the effectiveness of
traditional remote sensing classification techniques. Machine learning (ML) algorithms
are becoming commonplace as data volumes and dimensionality increase and specifically,
random forest models have proved useful in predicting costal wetland areas given their
ability to handle both continuous and categorical data and high dimensionality of data
with strong correlations among features [25,26].
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Figure 1. National Wetlands Inventory (NWI) source image year of acquisition/creation in North
Carolina, USA.

To determine the performance of UAS-collected LiDAR data relative to airborne,
large-area LiDAR collections, we tested wetland delineation and classification models
for coastal plain areas using UAS-collected multispectral and LiDAR derivatives through
pixel-based random forest algorithms (UAS hyperspatial LiDAR + UAS multispectral vs.
aircraft non-hyperspatial LiDAR + UAS multispectral model combinations). We addressed
the following specific research questions:

(1) How accurate are UAS-collected multispectral and hyperspatial LiDAR datasets
in predicting wetland presence (delineation) and type (classification) when compared to
airborne non-hyperspatial LiDAR data?

(2) What are the most important variables that predict wetland presence and type
along a range of estuarine to palustrine wetland types on the Atlantic Coastal Plain?

The main objectives of this study, therefore, were to build and demonstrate a method-
ology that uses UAS-collected passive and active remote sensing data along with airborne
active remote sensing LiDAR data for wetland classification. To answer the research
questions, two specific research objectives were defined:
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(1) Quantify and visualize the results of random forest models that predict wetland
types with LiDAR-derived topographic indices [23] and multispectral data and determine
the best fit model relative to field-collected wetland data.

(2) Determine the most important topographic and vegetation condition variables
that can be used for predicting wetland presence and types across a gradient of wetland
composition and types.

2. Materials and Methods
2.1. Study Sites

This study was undertaken in four Coastal Plain sites of southeastern North Carolina,
USA (Figure 2), to include various wetland types and topography. They are in the warm
oceanic climate/humid subtropical climate, based on the Köppen climate classification.
This region has hot summers, warm falls and springs, and cool winters. The summer
temperatures range from 26 ◦C to 37 ◦C (78 ◦F to 98 ◦F) in the hottest months, and the
winter months bring the temperature down to about 4 ◦C (39 ◦F). The study sites include
four wetland types based on the Cowardin system: estuarine intertidal emergent (E2EM),
palustrine forest (PFO), palustrine emergent (PEM), and palustrine scrub-shrub (PSS)
(Figure 2, Table 1) [27]. In this paper, we describe the wetland classes as the class codes as
shown in Table 1. Non-wetland areas are classified as water or non-wetland area.
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Table 1. Wetland types, NWI codes, and descriptions characteristic of the study area. Each wetland
type is described as the following class codes in the table.

Wetland Types Wetland Codes Descriptions

Estuarine Intertidal Emergent E2EM

The estuarine system consists of deep-water tidal habitats and adjacent tidal
wetlands that are usually semi-enclosed by land but have open access to the
open ocean. This system is characterized by the presence of intertidal and

emergent vegetation.

Palustrine Forest PFO The palustrine system includes inland, nontidal wetlands characterized by
the presence of forest.

Palustrine Emergent PEM The palustrine system includes inland, nontidal wetlands characterized by
the presence of emergent vegetation.

Palustrine Scrub-Shrub PSS The palustrine system includes inland, nontidal wetlands characterized by
the presence of scrub-shrub.

Site 1 (Maysville, Jones County, 77◦14′17′′ W, 34◦54′1′′ N) is mainly a palustrine
forested wetland with open upland grasslands, and the site sits more inland than any other
site, meaning this area is less influenced by tidal effects and hydrologically connected to
the estuary of the New River, but there is a small stream running through the study area
that is covered by a relatively dense canopy. Site 2 (Surf City, Pender County, 77◦33′15′′ W,
34◦26′24′′ N) is located next to Topsail Sound, where there is a strong tidal influence on
the northeast side of the area. The site has a mix of estuarine with low-water resistant
grass and a pine tree-dominated riverine wetland system (Pinus taeda and Pinus palustris).
Site 3 (Masonboro Island, New Hanover County, 77◦49′39′′ W, 34◦10′15′′ N) is on the island
located between the barrier island towns of Wrightsville Beach and Carolina Beach. The
variety of its topography includes subtidal soft bottoms, tidal flats, hard surfaces, salt
marshes, shrub thicket, maritime forest, dredge spoil areas, grasslands, ocean beaches, and
dunes. This island is the largest undisturbed barrier island along the southern part of North
Carolina [28]. Lastly, site 4 (River Road, New Hanover County, 77◦55′11′′ W, 34◦5′12′′ N)
runs parallel to the Cape Fear River, creating a tidally influenced environment with low
salinity called a palustrine wetland system, with riverine wetlands inland from the estuary.
The palustrine area is characterized by low-growing and water-resistant vegetation while
the riverine areas are dominated by thick pine tree forests. The National Wetland Inventory
(NWI) dataset was used to initially show wetland class distributions (Figure 1) and to
calculate the distributions of wetland classes of each site summarized in Table 2.

Table 2. Wetland class distribution per site determined using the most recent NWI data. Each class
code is described as the following class codes; E2EM: estuarine intertidal emergent, PFO: palustrine
forest, PEM: palustrine emergent, and PSS: palustrine scrub-shrub.

Class Code Site 1 Site 2 Site 3 Site 4

E2EM - 28.00% 46.86% -
PFO 40.02% 62.04% - 9.00%
PEM - - - 55.65%
PSS - 0.58% - -

Water 0.80% 1.15% 27.17% 1.18%
Non-wetland 59.17% 8.23% 25.97% 34.17%

Total Acreage 43.80 78.28 109.98 54.34

2.2. Data Acquisition

Fieldwork was conducted between October of 2020 and January of 2021 (Table 3)
and consisted of same-day UAS multispectral and LiDAR missions supplemented by in
situ ground reference data used to train and validate classification models. Additionally,
statewide airborne LiDAR data were also used to compare the effectiveness of the UAS
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LiDAR data for wetland classification. The four respective datasets are described in detail
in the following four sections.

Table 3. Fieldwork was conducted between October 2020 and January 2021. UAS LiDAR point cloud
data, UAS high-resolution multispectral image data, and ground-based habitat reference data were
collected in the field at four sites.

Site Names Fieldwork Dates

Site 1: Maysville 22 January 2021

Site 2: Surf City 6 November 2020

Site 3: Masonboro 11 December 2020

Site 4: River Road 3 October 2020

2.2.1. UAS LiDAR Data

The Quanergy M8 LiDAR (manufactured by LiDAR USA) sensor carried by the
DJI Matrice Pro (M-600 Pro, manufactured by DJI, Beijing, China) was used to collect
hyperspatial LiDAR data (Figure 3). The Quanergy M8 Core is an eight-laser scanner with
a slightly larger range at 150 m (accuracy of 5 cm) (Table 4). It has a 360-degree horizontal
FOV and 20 vertical FOV and weighs 800 g. The Quanergy M8 is reported to collect up
to 420,000 points per second using time-of-flight (TOF) depth perception, and the point
density is between 350 and 400 points/m2 with the altitude and spacing settings. The M600
Pro is a six-armed rotocopter with an onboard A3 Pro flight controller system comprising
three inertial measurement units (IMUs) and three global navigation satellite system (GNSS)
units. IMUs and GNSS units work together to maintain a reliable and precise flight path and
to reduce the risk of system failure. This LiDAR system was acquired by PI Pricope under
the NC Department of Transportation Environmental Analysis Unit contract RP-2020-04 in
March 2020.
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Figure 3. The DJI Matrice 600 Pro (M-600 Pro, manufactured by DJI, Beijing, China) equipped with a
LiDAR USA Quanergy M8 LiDAR sensor was used in the study (photo by N. Pricope). The M600 Pro
is a six-armed rotocoptor with an onboard A3 Pro flight controller and Lightbridge 2 HD transmission
system capable of reaching a maximum speed of 65 kph in windless conditions.
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Table 4. UAS (Quanergy M8) and statewide airborne (QL2)-mounted LiDAR scanners and their
respective specifications. Hyperspatial LiDAR data were collected using the Quanergy sensor in the
field while Leica and Pegasus sensors collected LiDAR point clouds processed into the QL2 LiDAR.

Parameters Quanergy M8 Core Leica ALS70HP Pegasus HA500

Platform UAS Aircraft Aircraft

Wavelength 905 nm 1064 nm 1064 nm

Frame Rate 5–20 Hz 120–200 Hz 0–140 Hz

FOV (degree) Horizontal: 360◦,
Vertical: 20◦ (+3◦/−17◦) 0–75 0–75

Range [m] 1–150 200–3500 150–5000

Range accuracy [cm] <3 (1σ at 50 m) 7–16 <5–20

Returns 3 unlimited 4

Weight [kg] 0.9 59 65

Flight missions were designed in ArcGIS Pro (Figure 4) and implemented using an
automated flight planning application called DJI Ground Station Pro (https://www.dji.co
m/ground-station-pro) with a flight altitude of 55 m (180 ft), flight transect spacing of 76
m (250 ft), and flight speed of 12 m/s for all sites. Those parameters were set to ensure
adequate overlap between the flight lines given the range and horizontal and angular field
of view of the LiDAR scanner. The accuracy of the flight path is ensured by two systems
complementing each other: the inertial navigation system (INS) and GNSS built into the
Quanergy sensor and Matrice M8 drone, respectively. The INS, which is built into the
LiDAR sensor, computes a relative position from an initial starting point, while the Matrice
aircraft collects GNSS data from orbiting satellites to calculate the absolute position, time,
and velocity.
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Figure 4. Example flight mission design for Site 3 (Masonboro Island, NC, USA) showing the
area of interest for a collection, the LiDAR flight paths generated in ArcGIS Pro and uploaded to
Ground Station Pro, and the ground control points (GCPs) used for georeferencing. The fixed wing
multispectral flights covered the exact same area of interest and were implemented in eMotion 3.

https://www.dji.com/ground-station-pro
https://www.dji.com/ground-station-pro
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To ensure reliable and high-accuracy end products, each UAS LiDAR field survey
conducted also included the collection of GNSS data using on-the-ground Trimble units.
Ground control points (GCPs) were surveyed with the Observed control point method
to improve and test end-product accuracy using a Trimble R10 GNSS RTK system. An
average of twelve GCP targets was placed under each flight path for maximum point
density on the target surface [29,30]. The initial GCP coordinates were obtained by orbital
satellite information, and these coordinates had subsequent differential corrections at
centimeter-level accuracy using the North Carolina GNSS Real-Time Network (RTN). The
RTN received GNSS data from the North Carolina Continuously Operating Reference
Station (CORS) network of base stations to correct errors for each second of time. The
correction data were sent to the Trimble rover in the field via the Internet allowing us
to obtain centimeter-level positional accuracies of GCPs horizontally and vertically. In
addition to the GCP survey, a rapid static survey was conducted with a Trimble R8 GNSS
real-time kinematics (RTK) system to collect elevation data to test the accuracy of the
end product.

2.2.2. UAS Multispectral Data

Multispectral imagery (green, red, red-edge, and near-infrared) was collected using a
Parrot Sequoia+ sensor (1.2 megapixels for the multispectral bands) on the same date as
the UAS LiDAR survey. The sensor was carried by a SenseFly eBee Plus fixed-wing UAS
with an on-board RTK receiver (Table 5). We used the eMotion flight planning software
for all phases of flight planning and implementation. The same areas of interest for each
LiDAR collection were used for the multispectral data collections.

Table 5. The characteristics of the multispectral Parrot Sequoia sensor aboard a SenseFly eBee Plus
RTK UAS.

Parrot Sequoia+

Multispectral Bands

Green (550 nm ± 40 nm)
Red (660 nm ± 40 nm)

Red edge (735 nm ± 10 nm)
Near-infrared (790 nm ± 40 nm)

Single-band resolution 1.2 MP
1280 × 960 px (4:3)

Single-Band FOV
HFOV: 62◦

VFOV: 49◦

DFOV: 74◦

Multispectral imagery was collected at a 60% lateral and 80% longitudinal overlap.
The ground sampling distance (GSD), based on a flight altitude of 119 m (400 ft) above
mean sea level for all flights, was approximately 13.0 cm/pixel for the final reflectance data.
All reflectance data were calibrated in the field before each flight using a Parrot calibration
target. Additionally, the same GCPs were used for both LiDAR and multispectral surveys.

2.2.3. Field Sampling

Wetland habitat data were collected in the field as ground reference data. The data
were used for training models and testing the model accuracies. Habitat reference data
consisted of point data with wetland classes and their locational information. To minimize
the human bias in selecting the locations of reference data, random sample locations were
generated before the fieldwork. The NWI dataset was used as reference data to map
the distribution of wetland classes in each study site. Locations of habitat points were
generated using the Create Random Points tool in ArcGIS Pro. Our goal was to have
15 reference points for each wetland class and 50 points for the non-wetland areas to ensure
appropriate class representation. Because non-wetland areas were generally more accessible
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and included multiple types of land cover such as upland grass, artificial surfaces, and
open water, more habitat points were collected in these classes than wetland classes.

Habitat points were collected in the field (on the same day as the UAS surveys) using a
Trimble R10 GNSS RTK System using the Topo points method. Habitat points were collected
as close to the randomly generated points as possible, and each point was recorded with
a wetland class that was ground-verified. However, many of the planned points were
physically impossible to access because of topography, vegetation cover, or inundation
level during data collection. Therefore, the rest of the habitat points were created using
visual inspections of wetland classes using 2020 National Agriculture Imagery Program
(NAIP) imagery. The NAIP imagery is open-source data and can be downloaded from
the Geospatial Data Gateway of the United States Department of Agriculture (USDA) at
https://datagateway.nrcs.usda.gov/GDGHome_DirectDownLoad.aspx. The 2020 true
color NAIP imagery was the best option for this project because the LiDAR and habitat
points were collected in the same year or one year later (2020 and 2021). The remaining
planned habitat points were overlaid with the true color 2020 NAIP imagery in ArcGIS Pro,
and wetland classes were defined for the original planned sampling points, including a
confidence level.

2.2.4. Airborne LiDAR Data

The second LiDAR dataset used for this research to compare the performance of
hyperspatial LiDAR data (UAS Quanergy LiDAR) was the North Carolina Quality Level 2
(QL2) LiDAR data. The main difference between the two LiDAR datasets, aside from the
method of collection, is the point density. While the point density of Quanergy LiDAR is 350
to 400 points/m2, that of QL2 LiDAR is only 2 points/m2 on average. The North Carolina
Risk Management Office provides the QL2 data that are publicly available from the Spatial
Data Download portal at https://sdd.nc.gov/. The QL2 LiDAR data was collected between
January 30 and March 13 of 2014. Three airborne sensors were used for the airborne LiDAR
surveys: two Leica ALS70HP and an Optech Pegasus HA500 (Table 4). All data were
collected during leaf-off conditions, and coastal areas were surveyed during the low tide
conditions. The reported accuracy for QL2 data in the study area has a root-mean-square
error of z (RMSEz) for vegetated and non-vegetated areas at 9.0 cm and 6.9 cm, respectively.
Even though the QL2 is six to seven years older than the 2020 and 2021 Quanergy LiDAR
data, it was the only LiDAR dataset available to use as a reference as of December 2021.

2.3. Data Processing

The data processing and analysis consisted of three phases: (1) data preprocessing,
(2) derivation of topogeomorphic and vegetation indices, and (3) model configuration and
coding (Figure 5), detailed sequentially below. It should be noted that the NAD 1983 State
Plane North Carolina FIPS 3200 (meters) projected coordinate system and NAV88 Geoid
12A were used for all datasets and map products throughout this research.

2.3.1. Preprocessing

Initial preprocessing involved using raw LiDAR and multispectral data in conjunction
with other field-collected data (such as static data and/or GCPs) to georeference and
project the point clouds. Preprocessing Quanergy LiDAR data consisted of three phases:
(1) resolving kinematic corrections for aircraft position data using aircraft GPS and static
ground data, (2) calculating the laser point position, and (3) removing noise and assessing
vertical accuracy. First, the LiDAR datasets were referenced to static and aircraft GNSS
data, collected by the Trimble system and a GPS receiver in the Matrice 600, respectively,
during the LiDAR collection. The static data were downloaded from the Trimble receiver,
transformed into a Receiver Independent Exchange Format (RINEX) file, and processed
using Online Positioning User Service (OPUS) solution at https://geodesy.noaa.gov/O
PUS/ to increase the precision of the base station data. Inertial Explorer (NovAtel Inertial
Explorer®) was used to process the LiDAR data with the static data, GNSS from aircraft, and

https://datagateway.nrcs.usda.gov/GDGHome_DirectDownLoad.aspx
https://sdd.nc.gov/
https://geodesy.noaa.gov/OPUS/
https://geodesy.noaa.gov/OPUS/
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INS data from the LiDAR sensor. GNSS and INS processing was conducted using tightly
coupled correction to accurately estimate the drone’s velocity, position, and orientation.
After the correction, the final trajectory was exported to a text file.
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first, and all the input data were processed into one raster stack for random forest analysis. Final
maps, model evaluations, and variable importance plots were produced from the RF models in R.

Next, ScanLook Point Cloud Export (Scanlook PC) (Fagerman Technologies INC.,
Somerville, AL, USA) was used to generate point clouds from the trajectory file and geo-
referenced the point cloud data to GCPs. Basic spatial and distance filtering settings were
set to remove noise before point clouds were generated. Unconstrained and constrained
point clouds were generated in this process. Point clouds without corresponding GCPs
are hereby designated as “unconstrained” and were not able to be georeferenced. Georef-
erenced point clouds are hereby designated as “constrained”. Some LiDAR point clouds
did not necessarily get georeferenced with GCPs or used for data analysis because they
already had several centimeters of vertical accuracies by themselves. Multiple sets of point
cloud files were compressed and exported into a laz format (zipped format of las), as they
have tremendous data sizes. Finally, additional data processing was performed to remove
leftover noise and conduct vertical accuracy assessments. CloudCompare v2.10.2 was
used to merge all laz point cloud files and remove obvious noise (made by reflection from
birds, for example) for both unconstrained and constrained point clouds. CloudCompare is
an open-source 3D point cloud and mesh-processing software available for download at
https://www.danielgm.net/cc/. These noise removal methods were also applied to the
QL2 LiDAR data. GlobalMapper v21.1 was used to calculate vertical accuracy using a Lidar
Quality Control tool that compares known RTK ground surveyed points to the closest laser
returns in LiDAR data. Both unconstrained and constrained point clouds were assessed,
and one with lower RMSEz was for the following data analysis (constrained data is used
most of the time). The calculation uses inverse distance weighting (IDW) of the control
points to calculate the expected elevation value of nearby LiDAR points. RMSEz values of
all collected LiDAR data for this study were less than 5 cm (Table S1).

https://www.danielgm.net/cc/
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Preprocessing of multispectral imagery consisted of two parts: post-processed kine-
matic (PPK) correction and image processing. PPK is a post-flight processing technique
that corrects the ground (base station) and UAV record of raw GNSS logs into an accurate
positioning track. Base station data were downloaded from Continuously Operating Refer-
ence Station (CORS) at https://www.ngs.noaa.gov/UFCORS/. Flight logs (bb3) and flight
imagery (TIF) were transferred from the eBee system. Again, eMotion was used to perform
PPK on the multispectral imagery using the three mentioned datasets (CORS base station,
flight log, and collected imagery). After performing PPK, the resulting multispectral images
were positioned correctly in their corresponding locations. Then, Pix4D v.4.0.21 was used
for image processing. Imagery (green, red, red-edge, and near-infrared in tiff) with correct
geotags were processed using radiometric calibration target images, which allows for the
software to correct image reflectance value considering the illumination conditions at the
date, time, and location of the image. During initial processing, Pix4Dmapper computes
keypoints on the images to stitch each image together. Following the initial processing,
the same GCPs used for LiDAR preprocessing were used to georeference the multispec-
tral imagery with an average spatial accuracy of 10–27 cm. The resulting outputs were
4 different reflectance raster layers (green, red, red edge, and near-infrared) in TIF format.

2.3.2. Topographic Indices

Topographic indices, including hydrogeomorphological indices, provide important
information about the underlying topography and landscape morphology that is likely
to support wetland ecosystems, such as the average ground elevation above mean sea
level, the existence of topographic depressions, curvatures and slopes that can support
standing water, or the direction and potential for flow accumulation to take place [23,24].
To derive topographic data for our study sites from the LiDAR datasets, the full point
clouds were filtered for ground-level point clouds (Table 6). The ground-level point cloud
extraction was performed using a Cloth Simulation Filter plugin in CloudCompare [31].
The Cloth Simulation Filter begins by inverting the original, full point cloud. Then, a
digital “cloth” is draped over the surface from above. Each point that the cloth touches
is considered a ground point and is included in the ground-level point cloud. Next, both
the full and ground point clouds were brought into ArcGIS Pro to interpolate into grids.
The ArcGIS Point File Information tool was run for point clouds. This tool is used to
calculate improved point spacings and was used to determine an appropriate spatial
resolution for generating terrain raster layers from point clouds. We multiplied the point
spacing for each file by four to estimate the appropriate pixel resolutions. Both ground
and full point clouds were interpolated to the appropriate grid size using inverse distance
weighted (IDW), resulting in digital elevation model (DEM) and digital surface model
(DSM), respectively. The rasterized DEM for each LiDAR collection (UAS and airborne)
was used to generate nine topographic raster layers (smoothed DEM, hydro-condition
DEM, aspect, slope, curvature, plan curvature, profile curvature, flow direction, and flow
accumulation), all of which were derived using tools in ArcGIS Pro (Table 6 and Figure S1).
We used the Perona–Malik smoothing method to smooth the DEMs because the Perona–
Malik smoothing resulted in considerable removal of scattered wetland predictions and
false positives surrounding developed areas and represented natural drainage patterns, as
demonstrated by increased wetland predictions within true wetland extents [24]. In order
to stay consistent with current wetlands prediction workflows used in North Carolina [23],
for the topographic variables that include slope and curvature calculations, we used the D8
flow method with a 3 × 3 square moving window.

https://www.ngs.noaa.gov/UFCORS/
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Table 6. Names and description of the predictor and response variables derived from the LiDAR and
multispectral data.

Data Input Definition

DSM Max height elevation (including vegetation and artificial objects) in meters

DEM Ground elevation (vegetation and artificial objects removed) in meters

Smoothed DEM
Smoothing is used to smooth DEMs to remove the elevation changes that are too small to indicate
features of interest (i.e., microtopographic noise), which are ubiquitous in high-resolution DEMs.

Smoothing method: Perona–Malik [24]

Hydro-condition DEM
(Hydro DEM) Hydro-conditioning resolves topographic depressions before modeling flow paths

Aspect Compass direction of the steepest downhill gradient

Slope The steepness at each cell of a raster surface

Curvature The slope of the slope

Plan Curvature Curvature on horizontal (x) direction

Profile Curvature Curvature on vertical (y) direction

Flow Direction The direction of flow from every pixel in the raster

Flow Accumulation Accumulated flow is the accumulated weight of all cells flowing into each downslope cell in the
output raster

NDVI It quantifies photosynthetically active vegetation (Equation (1)). The values range from −1 to 1.

NDRE It quantifies levels of chlorophyll content. High values indicate photosynthetically active plants, with
bare soil having low values (Equation (2)). The values range from −1 to 1.

NDWI It estimates the leaf water content at canopy level (Equation (3)). The values range from −1 to 1.

Habitat Type It contains the wetland type that was verified either in the field or through on-screen analysis. This
variable is used as a response.

2.3.3. Vegetation Indices and Response Variables

Vegetation indices calculated using electro–optical remote sensing data collected in
multiple spectral bands are routinely used to infer biophysical characteristics of plant com-
munities, including biomass amounts, photosynthetically active vegetation, or chlorophyll
concentrations, and are useful in separating among types of wetlands [21].
Two vegetation indices, Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Red Edge Index (NDRE), and one moisture index, Normalized Difference Water
Index (NDWI), were computed using multispectral imagery in the Pix4d raster calculator
tool (Equations (1)–(3)) (Table 6).

NDVI =
(NIR− Red)
(NIR + Red)

(1)

NDRE =
(NIR− Red Edge)
(NIR + Red Edge)

(2)

NDWI =
(Green− NIR)
(Green + NIR)

(3)

Habitat points were used for reference data. The habitat point data incorporate
NWI wetland subclass information, which needed to be merged by wetland classes first
(generalized wetland groups). The original NWI data contained an attribute of wetland
subclasses, some of which were grouped to simplify wetland categories (Figure S2). The
vector data habitat point data were rasterized using the Polygon to Raster and Point to
Raster tools in ArcGIS Pro (Table 6).
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2.4. Classification Analysis
2.4.1. Stack Raster

To run a pixel-based classification analysis, all the prepared raster layers need to be
perfectly aligned on top of each other. Therefore, raster layers of predictor and response
variables were resampled and stacked into one multidimensional raster, and two raster
stacks were made (Table 6 and Figure 6). One contained the Quanergy LiDAR, multispectral,
and habitat points variables, and the other the QL2 LiDAR, multispectral, and habitat
points variables. Two raster stacks with different pixel resolutions were created, as the
pixel size was set to the largest pixel size of the original data, respectively, the UAS
and airborne LiDAR data. The Composite Bands tool in ArcGIS Pro was used to stack
the individual raster datasets into one raster data stack to be processed in the statistical
modeling software R.
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Figure 6. Composition of the two raster stacks used in the wetland prediction model: one for the
hyperspatial Quanergy data and another for the QL2 airborne LiDAR data. The vegetation indices
were derived from the UAS-collected multispectral data for both sets of models.

2.4.2. Random Forest Classification

We constructed pixel-based random forest classifiers to predict the spatial distribution
of wetland types using wetland habitat points for the training and testing datasets. Each
resulting model was evaluated using overall accuracy, the standard deviation of accuracies
from the sub-folds, kappa coefficient, and map visualization. Additionally, a variable
importance plot was produced to show each variable’s contribution to the random forest
classification. We constructed the random forest models with h2o packages in R [32,33].
Two important parameters for random forest models are the number of decision trees to
grow (ntree) and the number of variables randomly sampled as candidates at each tree node
(mtry). Ntree was set to a default number of 500 and mtry was set to the same number as
the number of the input predictors since there were only fourteen predictors total. A 5-fold
cross-validation (CV) method was adopted in this study. CV is a widely used resampling
method because it assesses the general performance and stability of predictive models and
prevents overfitting [34].

2.5. Post-Processing

Post-processing consisted of generating performance metrics and prediction maps.
Three model performance metrics were: averaged overall accuracy, the standard deviation
of accuracies, kappa coefficient and respective class specificity (the true negative rate is the
proportion of areas that are not wetlands out of all areas) and sensitivity (the true positive
rate, which measures how often a model correctly generates a positive result for areas that
are wetlands). Since the overall accuracy was computed by averaging five model accuracies
from the 5 sub-folds, the standard deviation of accuracies was calculated to evaluate the
overall model consistency. The resulting prediction model was transformed into a raster
format and visualized using ArcGIS Pro.



Drones 2022, 6, 268 14 of 23

3. Results
3.1. Wetland Classification Model

We assessed two models for the variable combinations presented above at each of the
four surveyed locations. Figure 7 shows the resulting model performance metrics including
overall accuracy (OA), the standard deviation of the OA (SD), and kappa coefficient (k)
for each site by model type (UAS vs. airborne). All overall accuracies were above 60%
and all kappa values were above 0.6, which shows that all the classifications performed
satisfactorily. The highest accuracies were at Maysville and Surf City (both above 80%)
and lowest at Masonboro and River Road sites. River Road performed the worst and also
has the most complex wetland habitats that ranged from estuarine at the mouth to a mix
of freshwater forested wetlands further upstream. The averages of the OA and K for the
airborne models were 79.80% and 0.75, which was slightly higher than those of UAS models
of 75.29% and 0.74 respectively. In addition, the average standard deviation was higher for
the airborne models compared to the UAS at three out of the four sites tested except for
Site 1 at Maysville (Figure S3). Specific metrics for class-level sensitivity and specificity are
reported in Table S2.
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3.2. Classification Maps

We used the resulting models to create the wetland classification maps for each site
(Figure S4). Figure 8 shows the total of eight resulting wetland maps: maps on the left side
(Figure 9A,C,G,E) represent UAS models, and maps on the right side (Figure 8B,D,F,H)
show the final classification output for airborne models. Since the UAS models were
parameterized with hyperspatial LiDAR data, UAS model maps show more precise and
detailed topography than the airborne model maps.

For Site 1 at Maysville NC, both the UAS (Figure 8A) and airborne (Figure 8B) models
misclassified the water/hydrologic feature areas under the thick forest, with no actual
detection of a water class. This was likely largely due to the fact that the water feature was
mostly covered by the tree canopy during the survey, and LiDAR returns over water are
null. Even though the UAS model could not classify the area as water class, it shows a clear
delineation of the creek outline compared to the airborne model.
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Figure 8. The resulting classification maps, UAS models on the left and airborne models on the right.
The maps represent wetland models of the UAS (A) and airborne (B) for Site 1 (Maysville), the UAS
(C) and airborne (D) for Site 2 (Surf City), the UAS (E) and airborne (F) for Site 3 (Masonboro Island),
and the UAS (G) and airborne (H) for Site 4 (River Road).
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At Masonboro island (Site 2), flown during low tide conditions to capture the largest
spatial extent of emergent wetland (saltmarsh) vegetation, the UAS-derived model shows a
better delineation of the emergent wetlands than the airborne model map due to the spatial
resolution differences (Figure 8C,D), despite the fact that the airborne model had higher
OA than the UAS model. The UAS model identified detailed water extents, including
the drainage channels and back-barrier features. However, both models underestimated
non-wetland areas (mostly beach and beach dunes) at this location, despite the fact that
the dunes are largely vegetated and should theoretically be therefore picked up in the
multispectral data (although vegetation was largely senescent in the month of December).

The two models for site 3 (Surf City) show drastic differences between the UAS and
airborne data in terms of class distribution and spatial resolution. This site is characterized
primarily by estuarine emergent wetlands (E2EM) in almost equal proportion to water and
non-wetland classes and has experienced large changes in land cover since the acquisition
of the airborne LiDAR data. Although a PSS class was not classified in the UAS model
(Figure 8E), the map shows the different kinds of wetland delineated. The airborne model
(Figure 8F) overgeneralized the outputs with the classification map of just water and non-
wetland classes, where there should be E2EM and PFO classes as indicated by both the
NWI data and our ground reference data.
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Figure 9. The resulting scaled variable importance plots. Site 1 (Maysville), UAS model (A) and the
airborne model (B). For Site 1, UAS model (A) and the airborne model (B). Site 2 (Masonboro), UAS
model (C) and the airborne model (D). Site 3 (Surf City), UAS model (E) and the airborne model (F).
Site 4 (River Road, Wilmington, NC), UAS model (G) and the airborne model (H).

Finally, both models for Site 4 (River Road, Wilmington, NC, USA) show well-
delineated classification maps and good overall and class accuracies. Due to the lower
resolution of the airborne model map (Figure 8H), the map shows less precise wetland
delineation extents than the UAS model map (Figure 9G). Although the UAS model shows
higher overall accuracy and more detailed class boundaries, they overestimated the extent
of the palustrine forested (PFO) class around the non-wetland area.

3.3. Variable Importance Classification

The scaled variable importance plots for all sites considered the role of all fourteen
predictor variables and show that, among the topographic and vegetation index predictors
considered in predicting forested wetlands, the LiDAR-derived topographic derivatives are
ranked highest (Figure 9, left panels for the UAS models and right panels for the airborne
models). For Site 1 (Maysville, NC, USA) for instance, both variable importance plots
show the same top five variables: Smoothed DEM, DEM, Hydro DEM, NDVI, and NDWI.
Slightly different combinations of those same top five variables are also top predictors for
the UAS and airborne models at the estuarine island site (site 2 at Masonboro Island). Flow
accumulation and flow direction are the least important variables for all the models for
predicting wetland type and location in this low-lying gradient of wetlands characterized
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by small topographic variations, and are therefore not critical variables to include in future
wetland classification models in this region.

4. Discussion
4.1. Model Performance

The main goal of this research was to ascertain the effectiveness of using hyperspatial
UAS-collected LiDAR and multispectral data for coastal mapping and delineations. We lay
out a clear methodology for data collection and reproducible pre-processing workflows
using best practices similar to those presented in Guan et al. 2022, but we significantly
extend this work by presenting UAS LiDAR collection and processing workflows identified
as the next frontier in UAS research for coastal mapping and monitoring [35]. We contribute
to extending the science and application of UAS data in mapping and monitoring coastal
environments by providing detailed guidance on mission planning and implementation to
optimally acquire vegetation data [36,37].

We then quantitatively compare model performance metrics (overall accuracies, stan-
dard deviation of accuracies from the sub-folds, kappa coefficients, and respective class
sensitivities and specificities) and model prediction maps created by the hyperspatial UAS
LiDAR (Quanergy M8) and the non-hyperspatial airborne LiDAR (QL2) and the UAS-
collected multispectral data to determine the relative performance of these datasets for
wetland delineation and classification. We summarize our findings into two main categories
that we discuss below. As expected, we determine that models derived from hyperspa-
tial UAS-collected LiDAR and multispectral datasets showed better performance than
those parameterized with airborne-collected LiDAR data, despite the temporal discrepancy
between the QL2 LiDAR and ground reference habitat field data, especially in terms of
the accuracy of map precision (wetland delineation). Yet, both UAS and airborne-LiDAR
parameterized models show comparative classification accuracies, and UAS LiDAR is
most useful when temporally flexible mapping is needed. This applied to all four study
sites included in this analysis except for Site 1 at Maysville, where we were only able
to collect a relatively small number of habitat ground reference training data, but which
is handled well be our ML classifier [38,39]. Using the habitat sampling data for model
training and validation allowed us to produce classification maps with high precision from
the UAS models; however, adding more habitat sample data would improve not only
the classification maps but also the overall accuracies and the standard deviation. The
difference in class-level specificity and sensitivity and the quality of the prediction maps
depend on the LiDAR dataset used and the spatial resolution of the map. The average pixel
size of UAS models and airborne models for all the sites was on average 0.3 m and 6.3 m,
respectively (Table S1). Thus, the results of our prediction maps showed more precise
wetland class extents given the hyperspatial nature and temporally congruent nature of the
UAS LiDAR data (2020–2021) relative to the airborne missions, and that sampling several
distinct locations can provide useful data across sites [40].

An important contribution we make in line with emerging trends identified in Morgan
et al. 2022 [36] is the application of fused multi-source UAS data to map distinct vegetation
types that are inherently difficult to map in the absence of 3-dimensional data, such as
forested and shrub scrub wetland types that characterize much of the US Coastal Plains.
To map each type of wetland, the airborne and UAS LiDAR performed equally well for
E2EM (estuarine intertidal emergent), PFO (palustrine forested), and PEM (palustrine
emergent), but the UAS LiDAR was superior for the PSS (palustrine scrub shrub) wetland
type (Table 7). This shows that for more structurally complex wetland types (PSS), UAS
hyperspatial LiDAR data is much more advantageous given the multiple laser returns that
can help map the vertical structure of these wetland types that are so common throughout
the southeastern USA. Therefore, given that the main drawbacks of airborne LiDAR are
poor temporal revisit and comparatively poorer spatial resolutions, the UAS LiDAR has
proved to be highly accurate for wetland classification and useful on an as-needed basis,
such as a post event or emergency, or further in combination with other active remote
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sensing datasets [41]. Hyperspatial UAS data can be utilized as ancillary or complementary
datasets when conducting wetland research as they provide important information to fill
gaps between habitat data collection and airborne or even satellite-based collections [36].

Table 7. Class sensitivity and specificity metrics for all models across the different types of wetland
systems captured in our surveys (QL2+MS indicates models parameterized with the airborne LiDAR
and UAS multispectral data while Quanergy + MS denotes models parameterized with the UAS
LiDAR and multispectral).

WETLAND
TYPE

CLASSIFICATION
METHOD SENSITIVITY SPECIFICITY SITE

E2EM MS 88% 84% Surf City
MS 86% 90% Masonboro
QL2 94% 97% Surf City
QL2 93% 94% Masonboro

Quanergy 94% 95% Surf City
Quanergy 92% 95% Masonboro
QL2 + MS 96% 98% Surf City
QL2 + MS 94% 95% Masonboro

Quanergy + MS 95% 95% Surf City
Quanergy + MS 94% 96% Masonboro

PFO MS 52% 85% Maysville
MS 86% 77% Surf City
QL2 66% 98% RR
QL2 95% 93% Maysville
QL2 97% 88% Surf City

Quanergy 41% 98% RR
Quanergy 94% 92% Maysville
Quanergy 95% 80% Surf City
QL2 + MS 68% 98% RR
QL2 + MS 96% 94% Maysville
QL2 + MS 98% 89% Surf City

Quanergy + MS 42% 98% RR
Quanergy + MS 95% 93% Maysville
Quanergy + MS 95% 82% Surf City

PEM MS 94% 48% RR
QL2 97% 87% RR

Quanergy 96% 73% RR
QL2 + MS 97% 88% RR

Quanergy + MS 96% 75% RR
PSS MS 80% 100% Surf City

QL2 52% 100% Surf City
Quanergy 80% 100% Surf City
QL2 + MS 80% 100% Surf City

Quanergy + MS 87% 100% Surf City

Overall, we show that for more structurally complex wetland types (such as the
palustrine scrub shrub), UAS hyperspatial LiDAR data performs better and is much more
advantageous to use in delineation and classification models given the multiple laser
returns that can help map the vertical structure of these wetland types.

The second research objective was to find out the important variables that help classify
the Coastal Plain wetlands and that capture the characteristics of the study areas. Elevation
variables (DSM, DEM, smoothed DEM, and hydro-condition DEM) and vegetation indices
(NDVI, NDRE, and NDWI) were consistently ranked within the top five, similar to work
by Wen and Hughes 2020 [26]. Hydrogeomorphological variables such as flow direction
and flow accumulation were ranked the least important, primarily due to the fact that
the D8 flow calculation method is less effective in flat coastal environments, necessitating
the development of alternative hydrologic variables [42,43]. High spatial resolution UAS-
derived vegetation indices such as NDVI (or NDWI where surface water is present) are
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likewise the most important predictors of wetland type and condition. This finding is in
line with wetland remote sensing literature that has found that, when it comes to optical
bands that can be used for wetland classification, the red-edge and near-infrared bands
perform best [38].

4.2. Challenges, Limitations, and Future Directions

In order to produce comparisons of the UAS and QL2 LiDAR data for creating topo-
graphic derivatives, we tested out a tessellation approach to generalize the data into smaller
areas for direct comparisons and to reduce the computational intensity of pixel-based ran-
dom forest models. One of the main challenges of working with hyperspatial LiDAR data
is the computational load produced by pixel-based classification approaches despite the
relatively small spatial extents of our study sites. This challenge was successfully addressed
by using an R package dedicated to working with big data [26].

The main limitation of this research is the size and availability of training and val-
idation data, which was made difficult by the topography, ground cover, and general
impenetrability of the areas we surveyed. Collecting or creating additional habitat sam-
pling data that is more evenly distributed across the various wetland classes would help
ensure more balanced representation across study areas [39]. Additionally, separating
non-wetland areas from one all-encompassing class into grass, bare, or tree-dominated
classes would further improve model performance and increase class separability [37].
Additionally, additional predictor variables can be tested, including vertical canopy infor-
mation such as a topographic position index or canopy height or density models [21,23].
More complex topographic indices, such as a topographic wetness index, soil-topographic
wetness index, or a depth-to-water index, can also be tested for coastal plain low-gradient
regions where more standard topo-hydrologic variables (flow direction or flow accumula-
tion) performed very poorly [23,43]. Lastly, different machine learning classifications can
be tested to compare the model performance, such as ensemble methods that introduce
boosting and more adaptive learning algorithms [26].

5. Conclusion

This study evaluated the potential of hyperspatial UAS-collected LiDAR data relative
to airborne-collected LiDAR data integrated with multispectral and in situ habitat samples
to map and predict the extent, location, and wetland types along a North Carolina Coastal
Plains ecosystem gradient. We document not only efficient and reproducible data collection
and processing workflows for LiDAR data acquisition from a UAS, but also a transfer-
able approach to create wetland random forest delineation and classification models that
outperform NWI delineations.

We conclude that UAS-based remote sensing technologies can produce very powerful
datasets that are useful for wetland research. This work offers a starting point for the
enhancement of wetland delineation and classification models focused on forested wetlands
that were previously difficult to map prior to UAS-based LiDAR datasets being available.
By providing a direct comparison of the UAS LiDAR data relative to airborne data, despite
the temporal and point density differences, we show that UAS-collected LiDAR is reliable
and can continue to be explored and used in coastal research. Further work should continue
to investigate the capabilities of hyperspatial LiDAR data in classifying forested wetlands
using different predictors and improved response variables optimized for low-gradient
coastal systems.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/drones6100268/s1, Table S1: The RMSEz values of all collected
LiDAR data, Figure S1: A workflow diagram, Figure S2: Figures of wetland categories, Figure S3: The
standard deviation of the overall accuracy for each site (for each of the 5-fold cross-validated models),
Table S2: Specific metrics for class-level sensitivity and specificity and Figure S4: Three-dimensional
visualizations of the four sites are provided as Supplementary Material.
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