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Abstract: The monitoring of underwater aquatic habitats and pipeline leakages and disaster pre-
vention are assisted by the construction of an underwater wireless sensor network (UWSN). The
deployment of underwater sensors consumes energy and causes delay when transferring the gathered
sensed data via multiple hops. The consumption of energy and delays are minimized by means of an
autonomous unmanned vehicle (AUV). This work addresses the idea of reducing energy and delay
by incorporating an AUVs-assisted, three-dimensional UWSN (3D-UWSN) called DEDG 3D-UWSN.
Energy in the sensor nodes is saved by clustering and scheduling; on the other hand, the delay is
minimized by the movement of the AUV and inter-cluster routing. In clustering, multi-objective
spotted hyena optimization (MO-SHO) is applied for the selection of the best sensor for the cluster
head, which is responsible for assigning sleep schedules for members. According to the total number
of members, an equal half of the members is provided with sleep slots based on the energy and hop
counts. The redundancy in the gathered data is eliminated by measuring the Hassanat distance.
Then, the moving AUV is able to predict its movement by the di-factor actor–critic path prediction
method. The mid-point among the four heads is determined so that the AUV can collect data from
four heads at a time. In cases where the waiting time of the CH is exceeded, three-step, inter-cluster
routing is executed. The three steps are the discovery of possible routes, ignoring the longest paths
and validating the filtered path with a fuzzy–LeNet method. In this 3D-UWSN, the sensed data are
not always normal, and, hence, a weighted method is presented to transfer emergency events by
selecting forwarders. This work is implemented on Network Simulator version 3.26 to test the results.
It achieves better efficiency in terms of data collection delay, end-to-end delay, AUV tour length,
network lifetime, number of alive nodes and energy consumption.

Keywords: autonomous unmanned vehicle; data gathering; emergency event; inter-cluster routing;
scheduling; underwater WSN

1. Introduction

An underwater wireless sensor network (UWSN) is an underwater environment
containing oceanographic sensors and vehicles. These sensors are low-powered devices
that are capable of sensing surroundings up to a particular distance, and they transmit the
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sensed data using acoustic signals. The sensor data are collected by the sink node, which is
located over the on-shore or above the water level, for further analysis. In this way, UWSNs
are supported for a variety of real-world applications, such as in aquatic habitat/health
surveillance, underwater pollution level estimation, fishing and others [1–4]. The sensed
data are transmitted to the other end sink for analysis. Here, the sensor nodes are equipped
with a limited amount of battery, which has to be saved in order to extend its lifetime.
Clustering is an efficient solution for saving energy as well as for gathering the sensed
data [5–7]. After creating clusters, a cluster head (CH) is selected, which is responsible
for collecting data from its members. The CH is selected by evaluating any one of its
potentialities, energy level, distance, node degree, moving speed, position, signal strength
and others. These computations are formulated into fitness function using a bio-inspired
optimization algorithm. Swarm optimization algorithms are involved in the process of
fitness estimation [8–11].

A UWSN becomes more flexible with the deployment of a moving autonomous
unmanned vehicle (AUV). The AUV either collects data from individual sensors or from
the CH. An AUV-aided UWSN mitigates energy consumption at the sensors by eliminating
transmission of sensed data that use longer paths with n-hops [12]. The use of a AUV
collects data directly from the sensors; this makes it possible to avoid the transfer of data
through a chain of several sensors in a succession. Decreasing the number of transmissions
efficiently balances the overall energy consumption and length of delay. Location prediction
and path planning of the AUV are challenging since they impact on network lifetime. The
route towards the AUV is selected for data transmission [13–17]. The trajectory of the
AUV is fixed in some cases in which the moving path is pre-defined by the sink. This
trajectory is also made dynamic by planning the movement of the AUV for data collection.
The routing in a UWSN is majorly concentrated on the minimization of the energy and
delay [18–20]. Network lifetime is improved by efficient path planning with evolutionary
algorithms [21,22].

Even though an AUV is appointed in a UWSN for data gathering, it is essential to
plan the path properly. If a single AUV is used, it is easier to carry out path planning,
but the coverage of the AUV over the entire network area still consumes more energy. So,
more than one AUV is employed for performing data gathering with the aim of improving
network lifetime. The challenges in an AUV-aided UWSN are illustrated below:

• Energy saving in underwater sensors is challenging because the nodes are equipped
with an amount of battery within which it can perform sensing and transmission;

• Delay in data transmission increases due to the involvement of multiple intermediate
hops and waiting time. Transmitting the data through multiple sensors in a relay
pattern, and also the sensor waiting time before the AUV’s arrival for data collection,
causes high delays;

• Dynamic topology in the network due to the movement of sensors in relation to the
ocean current changes over time.

In this paper, a 3D-UWSN architecture was designed with the objective of minimizing
energy consumption and transmission delay. In order to achieve this objective, the processes
of clustering, scheduling, AUV movement and inter-cluster routing were designed. The
energy was saved by optimal CH selection and assigning sleep slots. Then, the data
gathering delay was reduced by appropriate movement of AUV and inter-cluster routing.
The architecture was composed of two AUVs to serve two depths of sensor node.

1.1. Motivation

The motivation of this paper was overcoming the challenges in UWSNs, which was
also the key objective of this research. In a two-dimensional UWSN (2D-UWSN), sensor
nodes are able to be deployed in the spatial location, whereas, in an ocean environment,
it is essential to handle the monitoring at different depths. For this purpose, a 3D-UWSN
is launched in which underwater sensors are employed at different depths [23,24]. The
challenging issues created by 3D-UWSNs are the consumption of higher energy and the
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delay on sensor nodes due to data transmission. The gathering of sensed data is the
key task from which the environmental changes are analyzed. As a solution, a cluster is
constructed and then inter-cluster routing is performed with or without the participation
of an AUV [25,26]. An AUV moves in and around the network to gather data from sensors.
When using a single AUV, it takes quite a long waiting time for sensors to transmit their
sensed data, and so multiple AUVs are introduced [27]. The utilization of AUVs enables
efficient collection of data from specifically concerned sensor nodes and minimizes energy
consumption and delay for the following reasons:

• The collected sensor information is not transmitted via multiple hops; it is directly
sent to the AUV when it arrives near to the sensor. Therefore, the direct transmission
of sensed data also reduces the energy consumption of the sensors and the transmis-
sion delays;

• Data gathering from CHs also reduces the overall energy consumption of the sensors
and the gathering delay, since it is not required for all the sensors to forward their data
to the AUV or to wait in order to deliver the data;

• Planning of multiple AUV paths appropriately minimizes the tour length, which
reduces the delay in transmitting the data from sensors to sink;

• Allotment of sleep schedules for sensors enables the reduction of a considerable
amount of sensing energy.

The design of the 3D-UWSN was motivated towards the reduction of delay and
improvement of network lifetime with the incorporation of clustering, data gathering and
supportability of delay-aware event message transmission. Events are instances when
emergency information occurs; such information is more sensitive, and, hence, it needs
to be transmitted as early as possible to avoid heavier damages. Moving on with this
motivation, the major, problematic issues in this research were identified and resolved with
reinforcement learning, optimization algorithms and artificial intelligence methods. This
enabled us to achieve the objectives of this proposed research work, and the achievement is
discussed by comparing the designed system with previous AUV-assisted UWSN designs.

1.2. Contribution of the Paper

The major contributions of this paper are defined with respect to the key objectives
of improving network lifetime and reducing delay in a 3D-UWSN with the assistance of
AUVs. The contributions are the following:

• Clustering and optimal CH selection with multi-objective spotted hyena optimization
(MO-SHO), which formulates fitness using a sensor’s lifetime, degree and centrality.
The elected CH takes responsibility for allotting sleep slots and redundancy elimi-
nations on the sensor nodes by taking into consideration some parameters, such as
sensor’s energy and hop counts, to make an efficient decision on whether the sensor
status is to be executed while sleep, awake or idle, and the Hassanat distance metric is
used for similarity data measurement for redundancy elimination;

• The data gathering AUVs predict their position dynamically by executing di-factor
actor–critic path (DACP) prediction. The mid-point-oriented central position is deter-
mined to collect data from four CHs. The ability of the CH is identified by evaluating
buffer, data collection delay, received signal strength indicator (RSSI) and data size in
DACP prediction;

• A three-step (TS), inter-cluster routing method is executed only when the waiting time
for the AUV is exceeded. The TS method firstly discovers the route, secondly, filters long
routes and, lastly, validates the route. The fuzzy–LeNet method for route validation is
used for estimating energy consumption, fairness, synthesis speed and efficiency;

• Emergency event data are transmitted immediately without any delay by means of select-
ing a forwarder with heavier weights estimated by distance, load and residual energy.
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1.3. Outline of the Paper

This paper is organized into the following sections: Section 2 illustrates previous
research works on AUV-assisted UWSNs that minimize delay and energy consumption;
Section 3 keenly highlights the problem and the idea to overcome the identified, problematic
issue; Section 4 elaborates the proposed solutions and algorithm descriptions; Section 5
demonstrates the tested environment with comparative evaluation; and Section 6 gives the
conclusion of this research and extends it in future directions.

2. Literature Review

In this section, previous research papers are studied, and their limitations and demerits
are highlighted. The sensed environmental data are transmitted to the other end sink. For
this purpose, routing is performed to transmit data via intermediate sensors. Then, the
involvement of the AUV for data gathering is also detailed in this section.

2.1. Clustering and Data Forwarding

A data forwarding procedure using a Q-learning model was proposed [28]. Initially,
a beacon message was broadcast using a sink through which the sensor identifies its
neighbors. The neighbor node was updated with RSSI and angle of arrival. If the sink
node was not present within the sensor’s one-hop distance, then a forwarder was selected
using the Q-learning process according to the transmission probability. The increase in
the number of forwarders drained energy in the source sensor as well as in the forwarder.
In [29], a UWSN was modeled as disjoint concentric coronas in six partitions. Here, a source
sensor node selected intermediate sensors from every wedge and then, using the path, their
sensed data reached the sink node. However, this work balanced energy consumption with
the formation of a corona for a large-scale environment, which was tedious.

A depth-based routing mechanism named the energy-balanced, efficient and reliable
routing (EBER2) protocol was developed in [30]. A forwarder was selected using three
constraints: weighted depth difference, potential forwarder node (PFN) and residual energy.
The data transmitting nodes determined distance and selected the nearest sink to deliver
the data. The sensor nodes nearer to the sink drained more energy due to the transmission
of the sensed data from the nodes in the network. A self-organizing and scalable routing
protocol (SOSRP) was operated with the computation of hop count and distance [31]. In
this protocol, the neighbors were discovered by exchanging messages and then hop count;
distance was estimated for path prediction. The path with the shortest hop count was used
for data transmission. In this work, the selected nodes performed poorly in relation to
energy consumption, and, hence, the stability of the path was not hardy.

An energy-efficient multipath routing (E2MR) was developed in this paper, which
selected a forwarding node from the constructed priority table [32]. By exchanging control
packets, the priority table was constructed with the entities of residual energy, distance
and priority value. The priority value was computed based on the energy and the depth
of the sensor. Here, the node with higher priority value was selected as a forwarding
node. Routing was performed effectively with the construction of a cluster that eventually
minimized energy consumption. A multi-layer, cluster-based, energy-efficient (MLCEE)
protocol was proposed, in which the CH was selected by computing the Bayesian probabil-
ity and residual energy of the particular node [33]. After the construction of the clusters,
the members were allotted with time division multiple access (TDMA) time slots [34]. The
CH selected a forwarding node by determining residual energy, hop and probability as a
fitness value.

A QoS-aware, evolutionary, cluster-based routing protocol (QERP) was presented
in a 3D environment [35]. The operators involved in the genetic algorithm (GA) were
crossover and mutation operators. The key constraints that were taken into account were
identity, energy and RSSI. This GA was time consuming, and, also, it was tedious when
multiple sensor nodes participated. An adaptive node clustering technique was developed
for a smart ocean UWSN known as SOSNET [36]. The moth–flame optimization (MFO)
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algorithm was applied for optimal performance of routing. The CH was selected by
estimating transmission range, residual energy, node density and load balance factor. The
fitness value for the optimization algorithm was computed using residual energy, distance
with the neighbors, load balancing factor and weight value. The MFO algorithm was slow
in convergence, which failed in routing. Therefore, the routing of sensed data packets was
required to be faster and effective with the reduction of delay and energy consumption of
sensors. Delay in the selection of route also increased the delay in data transmission.

2.2. Data Gathering by AUV Path Planning

As mentioned above, the UWSN environment is involved in a variety of applications.
Pipeline monitoring was addressed with a UWSN using an AUV [37]. The sensed data
were collected by AUV and then forwarded to the surface sink. The AUV followed a
linear sensor network segment model to gather the data sequentially. If the sensed data
were emergency data, then the AUV skipped the entire intermediate sensor and reached
the event-sensed sensor to gather its data. Therefore, the emergency data were provided
with higher priority; however, the use of a single AUV was not sufficient to support a
large-scale network, and also it increased waiting time for delivery of data. Data gathering
was presented with an evolutionary algorithm for the path planning of an AUV [38]. The
PSO was used in estimating the optimal waypoint at which the data have to be collected.
This PSO algorithm was slow in convergence, which took more time in optimal selection.

A hybrid optimization algorithm was designed for predicting an optimal solution for
AUV tours [39]. The work proposed an integrated, quantum-behaved PSO with improved
ant colony optimization (ACO) to predict a shorter tour path. Initially, the lowest number
of waypoints was generated, and the points to be visited were selected using the algorithm.
The shortest path was chosen using ACO algorithm, which extended the network lifetime
by reducing the trajectory length. The conventional problem in this ACO is that it is slower
in convergence. Heuristic, adaptive sink sensor set selection (HAS4) was designed to
enrich network lifetime [40]. This HAS4 was developed for centralized and distributed
environments in which the sensor lifetime plays a key role. Sensor lifetime was the only
metric computed and sorted among all the sensor nodes and then a set of sensors was
selected, which the AUV visited to collect data. The AUV tour selected sensor nodes by
minimum lifetime, which tended to increase the tour length.

A swarm hyper-heuristic algorithm (SHH) was associated with local path planning
and global path planning [41]. The global path was identified using an A* algorithm, and
the local path prediction was subsequently performed using time, obstacles and AUV
motion. In general, this A* algorithm involves multiple computations that increase the
complexity of planning the path of AUVs. A prediction-based delay optimization data
collection algorithm (PDO-DC) was presented to mitigate the collection delay [42]. The
clusters were created and then they were updated; further, an AUV path was predicted.
According to this work, the data collected at CH had to request that the AUV collect the
gathered data. Data collection performed in this way certainly increased the traveling
length, and also more than one CH could request at a time. By analyzing the existing works,
the major demerits in UWSNs used for routing and data gathering were identified and
resolved with particular solutions.

3. Problem Description

To date, 3D-UWSN architecture has largely been designed for efficient data gathering
and routing with the aim of extending network lifetime by saving energy at deployed
sensor nodes. Still, these contributions resulted in a few problematic issues, which are
discussed in this section. In a UWSN, the AUV plays a significant role in collecting data
from the network. Energy saving is modeled with clustering and sleep–wakeup scheduling
called the AUV-assisted, energy-efficient clustering (AEC) mechanism [43]. The AUV
selects the CH on its first traversal and collects data during its second traversal. The awake
time for nodes is based on the sensing interval, guard delay, transmission of data packet
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time and transmission of acknowledgment packet time. CH selection is poor due to the
estimation only including energy. Here, the time to wakeup of sensors is predicted from
the delay and transmission time, which are the key parameters used to forward the data,
since it is essential to measure energy for allotting sleep slots.

Clustering-based data collection using an AUV is designed to balance the energy
consumption [44,45]. In a location prediction-based data collection scheme (ALP), the AUV
selects to visit a node with a smaller collection delay. According to the collection delay,
the trajectory path of the AUV is constructed. Then, a bipartite K-means-based clustered
network uses an AUV for data collection and prefers data collection based on the residual
energy and distance of the node. The target nodes are selected one after the other, i.e., the
AUV has the ability to collect data from multiple nodes, but, here, the data from CHs are
collected one at a time, which increases the delay in data delivery. Increase in the trajectory
length increases the data collection delay; also, the deployment of a single AUV increases
tour length.

Two AUVs are presented for data gathering with an enhanced lawn mower pattern
path (ELMPP) [46]. The path planning follows straight line segments and turning line seg-
ments. Further, the relay node is established by a communication link with the prediction of
the RSSI value. The same sensor is selected as a relay, which tends to drain more energy at
the relay nodes, and the RSSI is capable of determining the strength of the communication
link but not the strength of the node. The common problems existing in prior research
works are:

• In a UWSN, using a single AUV for data collection cannot collect data in a large-
scale environment, which increases delay, and also it fails to deliver emergency data
promptly. Pre-defined path planning of a single AUV causes a longer waiting time for
the nodes before the AUV reaches a nearer position;

• In a UWSN, continuous sensing of the environment consumes more energy, and
transmission in multiple hops towards the sink also consumes more energy across all
the nodes in the network, which reduces network lifetime.

The above-stated problems were overcome in the proposed research by the design of
cluster-based delay and energy-aware data gathering in a 3D-UWSN.

4. Proposed 3D-UWSN Design

The 3D-UWSN is a network model designed for efficient data gathering and immediate
transmission of event messages. Events are the emergency accidents that happen in the
underwater environment, and they are detected by the sensors. This kind of sensed
information is sensitive, and it needs to be forwarded faster to allow for corresponding
countermeasures. The proposed network design is operated through the processes of
clustering, routing and data gathering by different algorithms. This section is composed of
the network model, clustering, AUV movement for data gathering, inter-cluster routing
and event message delivery.

4.1. Network Model

The proposed DEDG 3D-UWSN is constructed to monitor the underwater marine
environment. A 3D-UWSN absorbs its surroundings by collecting data and transmitting
the information. This 3D-UWSN is constructed as xi × yi × zi, i.e., the coordinates (xi, yi, zi)
of the network area in 3D. This 3D structure is divided into two levels, L1 and L2, based on
the depths of the ocean. L1 and L2 are assumed to cover shallow ocean and deep ocean,
respectively. In this network, N and M numbers of sensor nodes are employed in L1 and
L2, respectively. L1 is composed of l number of sensors as L1 = {s1, s2, s3, . . . , sl}, and L2 is
composed of m number of sensors as L2 = {s1, s2, s3, . . . , sm}.

The deployed sensors are capable of performing underwater environment sensing
tasks and transmitting the collected information to their neighboring sensors or the sink
node through the deployed AUVs. The sensors are equipped with acoustic transceivers,
namely, a vertical and horizontal transceiver to allow communication between them and the
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AUV. The sensing model of the sensor nodes is a spherical ball with radius Rs. The sensing
is performed within this radius. We assume that these sensors are sea-bottom anchored
and are considered quasi-stationary due to the ocean current and energy constrained; each
sensor node has its unique identifier, and the sensors are homogeneous in terms of initial
energy and communication range. The location of the sensors is known. The AUV moves
above level 1 and level 2 and collects data.

We assume that the AUVs start from their source places, dive to the CHs (each elected
cluster head that gathers the data from its cluster members) and collect data from all the
CHs successively, then arrive at the sink node. The AUVs act as temporary sinks. The
AUVs are equipped with both an acoustic modem and a radio transmitter to communicate
with the sensor nodes and the sink node, respectively. The AUVs’ initial velocity is known,
and the velocity is not constant during the AUVs’ movement path; the energy of the AUVs
is unlimited. A single sink node is equipped with both acoustic transceivers to handle
multiple, parallel communications with the sensor nodes and also a long-range RF and
satellite transmitters to communicate with the AUVs in order to receive the collected data
and also to transmit data to the on-shore station. The data are gathering by the AUVs from
the CHs; here, the two AUVs are appointed as AV1 and AV2, respectively. AV1 collects data
from L1 CHs and AV2 from L2 CHs. A super node acts as gateway GW in between the L1
and L2, which is responsible for selecting the inter-cluster route when the waiting time in
the CHs is exceeded. The designed DEDG 3D-UWSN architecture is depicted in Figure 1.
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This DEDG 3D-UWSN supports the processes of clustering, scheduling, movement
prediction of AUVs, inter-cluster routing and event message delivery. The energy con-
sumption in the underwater sensor depends on the performance of the following processes:
sensing, transmitting, receiving and idle. The sensor nodes are capable of sending and
receiving 1-bit data within the network. In the DEDG 3D-UWSN, the sensor nodes are
clustered, and an optimal CH is selected. The CH is responsible for gathering sensed data
from the active members in the cluster. The moving AUV collects data from four CHs at a
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time. This ensures the minimization of data gathering delay from the CHs at each level.
The CHs are selected with the MO-SHO algorithm, which takes into account the node
parameters. Every CH waits for a certain time period until the waiting time for the arrival
of the AUV. The AUV moves above level 1 and level 2 and collects data. If the waiting time
is exceeded, then the gateway helps in selecting an inter-cluster routing path towards the
sink. CHs are appointed with a threshold waiting time in order to reduce the time delay
that can be caused in cases where the AUV arrival time exceeds the waiting time. Another
option is selected through the intervention of a gateway that helps to select an inter-cluster
routing path to forward the data towards the AUV to the sink.

4.2. Clustering

In this proposed research DEDG 3D-UWSN, the sensor nodes are clustered into
several clusters, and an optimal CH is selected in each cluster using an MO-SHO algorithm
according to some key parameters. Initially, the CHs are selected, and the sensors within
their coverage are added as cluster members (CMs). These sensors are affiliated to that
CH and form a cluster. The selection of the CHs is made in relay; a CH is selected for a
period of time until another sensor is selected as the next CH in turn. The selection of CHs
is therefore made alternately. The cluster heads are responsible for managing the nodes
within the cluster; therefore, the clustering with optimal head selection reduces the energy
consumption in data gathering.

Multi-Objective Spotted Hyena Optimization (MO-SHO) Algorithm

Spotted hyenas are wild animals that usually live and hunt in groups and rely on
a network of trusted friends with the ability to recognize the location of the prey. MO-
SHO is a meta-heuristic algorithm modeled by analyzing the social hunting behavior of
spotted hyenas. MO-SHO imitates the cohesive clusters between trusted spotted hyenas
which are helpful for efficient co-operation and maximize the fitness. In this research, the
hunting technique and the social relations of spotted hyenas are mathematically modeled
to design the MO-SHO and perform optimization. To define the behavior of spotted hyenas
mathematically, we suppose that the best search agents (the best hyenas hunters) are
whichever have optimum knowledge of the location of the prey. The other search agents
(other hyena followers) make a cluster towards the best search agent and save the best
solutions obtained to update their positions.

The MO-SHO algorithm (Algorithm 1) is used for clustering with optimal head selec-
tion that reduces the energy consumption in data gathering.

The mathematical model of the MO-SHO behavior is formulated as [47]:

→
dH =

∣∣∣∣→C1 ×
→
Pb(t)−

→
PH(t)

∣∣∣∣ (1)

→
PH(t + 1) =

→
PT(t)−

→
C2 ×

→
dH (2)

The distance between the hyena is
→
dH at t iteration. The terms

→
C1 and

→
C2 are the vector

coefficients,
→
PH represents the current position of the hyena and the

→
Pb vector defines the

best position. The best positions of the hyenas are given as:

NH = Sol
(→

Ph1 ,
→
Ph1+1,

→
Ph1+2, . . . ,

(→
Ph1 +

→
r
))

(3)

NH is the total number of hyenas,
→
r indicates the random vector whose values are

[0.5, 1] and their solutions are represented as sol, which is the best positions of the hyenas.
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Hyenas are the search agents that are the sensors from which the best is chosen. The
last-stored, best solution is given as:

→
PH(t + 1) =

→
GH
NH

(4)

Here,
→
GH represents the group of optimal solutions that is obtained based on the

position of the best hyenas. In fitness, the node degree is defined as the total number of
neighbors connected with the particular node. The node degree Nd for the sensor in L1 is
mathematically formulated by:

Nd =
∑l

1
(
sI , sj

)
(sl − 1)

(5)

sl is the total number of sensors that exists in L1, and I and j are the two sensor nodes
which are 1 if the sensors are linked; otherwise they are 0. Then, the node lifetime is
expressed as:

NL =
RE
ED

(6)

The node lifetime NL is computed from the residual energy of the sensor nodes RE to
that of the energy drain rate ED. Along with Nd and NL, the sensor’s closeness centrality
Ncc for the L1 sensor is determined as:

Ncc =

[
∑l

1 d
(
si, sj

)
(sl − 1)

]−1

(7)

The distance between sensors is represented as d
(
si, sj

)
; this closeness centrality de-

fines the closeness of the particular sensor node to their neighboring nodes. The hyenas
are the sensor nodes whose individual fitness is estimated, and their position is updated
accordingly. The fitness for level-1 sensor nodes is given as:

F(L1) = { f1, f2, . . . fl} (8)

f1 =
(

Nd(1), NL(1), Ncc(1)

)
(9)

The fitness-based determination for each sensor is significant for selecting the best
one within the search space. A node with higher stability, i.e., longer lifetime and higher
connectivity with neighboring nodes, is the major criterion for selecting the best CH. The
MO-SHO optimization pseudo code for selecting CHs in L1 is depicted. Similarly, the CHs
are selected for the sensors in L2. The selected CHs are responsible for collecting the sensed
data and assigning scheduling slots. After the election of the CH, it adds the members which
are present to its coverage, and it executes member-balanced scheduling (Algorithm 2).

In scheduling sleep and wakeup times, slots are assigned for equal halves of the
sensors in the cluster. During wakeup mode, the sensor nodes perform sensing as well as
data transmission, whereas, in sleep mode, they never perform any process. The nodes
are assigned to sleep mode based on their energy and the number of hops with the CH.
The nodes in sleep mode are enabled to mitigate the consumption of energy. When C1
is a cluster that has a k number of cluster members, k

2 sensors are in sleep mode, and
the remaining are in awake mode. The energy and number of hops for each member are
determined, since they are the most significant constraints that are essential for allotting
sleep slots for the sensors.
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Algorithm 1 Pseudo Code: MO-SHO Algorithm

Input: Number of Hyenas as Sensors
Output: Best Hyena as CH
1. begin
2. initialize L1 = {s1, s2, s3, . . . ., sl}, /* l = 1, 2, . . . i */
3. for (i = 1; i ≤ i; i ++)
do

4. initialize parameters
→
C1,

→
C2, NH , H /*start optimization*/

5. estimate fitness for each i /*using Equations (5)–(7)*/
6. find best i /*using multiple objective*/
7. while (I < IMax) do /*I is the total iterations*/
for i
update position /*using Equation (4)*/
end for

8. update parameters
→
C1,

→
C2, NH , H

9. if (i goes beyond search space)
Compute fitness for each i

Update best solution and
→
GH

I = I + 1
End while
10. return best hyena /*selected best CH*/
11. end /*terminate optimization*/

Algorithm 2 Pseudo Code: Member-Balanced Scheduling

Input: total cluster members k
Output: Scheduled time slots
1. begin
2. initialize k = {s1, s2, s3, . . . .} /*sensors in a cluster*/
3. for each k
3. find RE and Hpc /*energy and hop count*/
4. list RE and Hpc for each k
5.if (RE < RETh&& Hpc < Hpc(Th)) /*comparison with threshold*/
{
assign sleep mode
else
assign wakeup mode
}
end if
6. end

The pseudo code for the member-balanced scheduling is illustrated in sequential steps.
As per this scheduling, not all the sensors are put in sleep mode, since all the nodes in sleep
mode fail to gather event data if any occur. To avoid this limitation, member-balanced
scheduling is performed, in which the node’s energy and hop count are determined and
then they are split into two equal categories to act in sleep mode and wakeup mode. The
sensor in wakeup mode senses the environment and delivers the data to the CH. The data
gathered by the CH are sent to the AUV present on their level.

4.3. Data Redundancy Elimination

Data redundancy might occur when inconsistent data duplicates are retransmitted
from the sensor nodes; therefore, the existence of duplicate or unnecessary data should be
resolved because it can be costly in terms of energy and time consumption. During data
gathering by the CH in each cluster, the amount of data can sometimes be large due to the
redundant data combined from different sensing nodes in the neighborhood. Thus, the
data gathered need to be processed before being transmitted in order to detect and remove
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redundancy, which can impact the communication traffic and energy consumption of the
network in a negative way. We propose an algorithm to measure similarity between the
data collected (relative to specific event monitoring) so that an aggregator sensor sends a
minimum amount of information and eliminates the duplicate data in a way that means
the the latter can deduce the source information of sensing neighbor nodes.

Before transmitting the data, redundancy is minimized by evaluating the similarity
between the sensor measurements. The Hassanat distance measure is mathematically
formulated as [48]:

HasD
(
si, sj

)
=

k

∑
1

D
(
si, sj

)
(10)

D
(
si, sj

)
=


1−

1 + min
(
si, sj

)
1 + max

(
si, sj

) , min
(
si, sj

)
≥ 0

1−
1 + min

(
si, sj

)
+
∣∣min

(
si, sj

)∣∣
1 + max

(
si, sj

)
+
∣∣min

(
si, sj

)∣∣ , min
(
si, sj

)
< 0

(11)

These distance values are in the range [0, 1]; a larger value denotes that the data from
the two sensors are similar, and, hence, one set of data is eliminated. In this way, the data
redundancy is reduced, which also minimizes the amount of gathered data, which, in turn,
reduces the energy consumption in data transmission. The CH delivers the collected data
only after eliminating the redundancy.

4.4. Data Gathering

Data gathering is the key process in a UWSN performed by an AUV. The data from
cluster members are collected by the CH and then delivered to the AUV. The CH is
appointed with a waiting time for the arrival of AUV. Once the sensors’ data are transmitted
and stored at the level of each CH in the different clusters, and in order to minimize the
CH energy consumption due to data overload and the data collection delay that can be
caused due to a long waiting time for the AUV arrival, this operation must be performed
according to pre-defined CH waiting time deadlines. If this waiting time is exceeded, then
the CH requests for a route to the gateway and performs inter-cluster routing. A gateway
is used as a communication and organization entity with nodes that aim to forward the
data between the CHs in different clusters through an optimal, selected route designed in
the inter-cluster routing process. Searching for a route with limited knowledge of other
CHs tends to consume more energy and cause a delay, so the gateway is employed. A
three-step, inter-cluster routing method is incorporated based on the three steps: route
discovery, longer route elimination and validation of filtered routes. The gateway, having
the knowledge of all the CHs in L1 and L2, constructs an undirected graph from which the
route is selected towards the AUV. The undirected graph G = (S, e) represents the set of
CH sensor nodes S and their edges e. All the possible routes are extracted from G and then
the routes with a longer distance and higher hop counts are eliminated. This filtration is
performed to ensure faster transmission of data. The increase in distance and hop counts
tends to increase end-to-end delay, and, hence, the routes are eliminated in the second step.

Then, a route is selected from the filtered route after validation by the fuzzy–LeNet
method. The route validation is handled based on the computation of average energy
consumption, fairness, synthesis speed and node efficiency. LeNet is a convolution neural
network (CNN) that is combined with fuzzy for accurate results in route validation. The
LeNet is composed of a convolutional block and fully connected block. The convolutions
block is fed with the input parameters, i.e., a node’s average energy consumption, fair-
ness, synthesis speed and node efficiency, based on which, fuzzy membership functions
are created.

The LeNet is developed with seven layers: three convolutional layers, two pooling
layers, one fully connected layer and one output layer. In the pooling layer, the input
parameters computed are crisp values which are converted into the fuzzy set for processing
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into the fuzzy membership function. In the fully connected layer, each neuron is connected
to all the neurons that are present in the next layer. The input for the fully connected layer
is the individual parameters of each sensor, which are converted into a single-vector value
using the membership function. Then, the output from the fully connected layer is the
probability values of each route. The input for the fuzzy–LeNet is the filtered route in
which the CHs in the route are computed with the above, discussed parameters. Figure 2
depicts the model of the proposed fuzzy–LeNet for inter-cluster route validation.
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The average energy consumption of the sensor node is formulated based on its packet
transmission with other sensor nodes. The average energy consumption (AEC) of a node is
given as:

AEC =
ECTo
Rp

(12)

Of the terms used above, ECTo and Rp are the total energy consumption and received
number of packets. The route fairness (RFs) is mathematically formulated based on Jain’s
fairness index, which is represented as:

RFs =

(
∑nCH

i=1 tpi

)2

nCH
(

∑nCH
i=1 tp2

i

) (13)

This fairness index is formulated for a route in which the number of CHs in a route is
nCH, and their throughput is tpi. The throughput for each CH in the route is involved in
fairness prediction. Then, the synthesis speed of the AUV near the CH is predicted using:

Ssp = |cos
(

β + arccos
( Vf

VAUV
.cosβ

))
.VAUV/cosβ| (14)

β = arccos

 Vc.Vf

|Vc|.
∣∣∣Vf

∣∣∣
 (15)

Here, β is the angle that exists between the CH and the heave velocity Vf , the initial
velocity of AUV is represented as VAUV and Vc is the vector between the AUV and the CH.
Simply, the synthesis speed is defined as the summation of the heave velocity and the initial
velocity of the AUV. Then, node efficiency is determined from the following equation:

Ne = 100 ∗
Tp − RTp

Tp
(16)
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Tp and RTp are the transmitted number of packets and retransmitted number of
packets, respectively. When computing these four parameters for each CH in the route,
the convolutional layer is handled and then the values are converted into a fuzzy set
in the pooling layer. As a result, the validated best route is preferred for inter-cluster
data transmission.

The fuzzy membership functions are modeled as shown in Table 1, with which the
route is validated. A set of 16 rules is defined by taking into account the four constraints.
The route with higher energy, fairness and efficiency and lower speed of AUV is predicted
to be the best route in the validation.

Table 1. Fuzzy membership functions.

AEC RFs Ssp Ne Output

0.5–1 0.5–1 0.5–1 0.5–1 Medium
0.5–1 0.5–1 0.5–1 0–0.5 Low
0.5–1 0.5–1 0–0.5 0.5–1 High
0.5–1 0.5–1 0–0.5 0–0.5 Medium
0.5–1 0–0.5 0.5–1 0.5–1 Low
0.5–1 0–0.5 0.5–1 0–0.5 Very low
0.5–1 0–0.5 0–0.5 0.5–1 Low
0.5–1 0–0.5 0–0.5 0–0.5 Very low
0–0.5 0.5–1 0.5–1 0.5–1 Very low
0–0.5 0.5–1 0.5–1 0–0.5 Very low
0–0.5 0.5–1 0–0.5 0.5–1 Medium
0–0.5 0.5–1 0–0.5 0–0.5 Very low
0–0.5 0–0.5 0.5–1 0.5–1 Low
0–0.5 0–0.5 0.5–1 0–0.5 Low
0–0.5 0–0.5 0–0.5 0.5–1 Low
0–0.5 0–0.5 0–0.5 0–0.5 Very low

0–0.5 indicates low, and 0.5–1 indicates high

A potential CH forwarder is appointed as suitable if its energy consumption is lower
with a high node efficiency in data transmission and higher route fairness and a lower
speed of AUV in the area of a CH, because the CHs included in the route are those that
exceed the waiting time for the AUV arrival.

This inter-cluster routing is performed in some instances, since the movement of AUV
is optimally performed with DACP prediction. This DACP is an intelligent reinforcement
learning algorithm that identifies the path by estimating the current ability of the CHs
with two factors. A CH, along with its three other one-hop neighboring CHs, is taken for
evaluation, and so the data can be collected from these four CHs at one time. This DACP is
suitable for performing continuous control tasks, and it concurrently learns the policies.
The first and second factor, F1 and F2, are estimated as:

F1 = (B f , (CT + VT + WT)) (17)

F2 = (Ss, Ds) (18)

The buffer of the CHs is represented as B f , computation time as CT , visiting time as
VT , waiting time as WT , RSSI as Ss and data size as Ds. Using the di-factors, a state value
function and soft Q-function are represented as Vψ(St) and Qθ(At). The default parameters
involved in the network are ψ, θ and φ; here, the policy in the actor–critic network is given
as πφ(At

∣∣St) . The states St are defined from the estimated factors F1 and F2 of the CH. The
state-value function is formulated as:

Vψ(St) = EAt∼π [Q(St, At)− logπ(St
∣∣At)] (19)
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The π is the policy; here, including an approximate into the state value is not required
due to the formulation of the soft-value function. This soft-value function is trained and
then the gradient is estimated. Further, the objective is formulated as:

Jπ(φ) = ESt∼D,εt∼ℵ
[
logπφ

(
fφ(εt; St)

∣∣St
)
−Qθ

(
St, fφ(εt; St)

)]
(20)

εt is the given input noise vector, πφ is defined from fφ and D is the sample states
and actions that are present in the prior iterations. From this, the approximate gradient
∇̂φ Jπ(φ) is expressed as:

∇̂φ Jπ(φ) = ∇φlogπφ(At|St) +
(
∇At logπφ(At|St)−∇At Q(St, At)

)
∇φ fφ(εt; St (21)

The DACP predicts whether the AUV needs to move towards the next position of the
CHs. After detecting the location from which the data have to be collected from the four
CHs, the mid-point between them is determined and so the AUV can collect data from all
the four CHs. The mid-points m1 and m2 of the two adjacent CHs are determined, and
their mean value is the final position to which the AUV moves. When the CHa and CHb
are adjacent to each other, the CHi and CHj are adjacent to each other so their mid-points
m1 and m2 are expressed as:

m1 =

( x1(a) + x2(b)

2
,

y1(a) + y2(b)

2
,

z1(a) + z2(b)

2

)
(22)

m2 =

( x1(i) + x2(j)

2
,

y1(i) + y2(j)

2
,

z1(i) + z2(j)

2

)
(23)

In this 3D-UWSN, the coordinates of CHa and CHb are
(x1(a), y1(a), z1(a)) and

(
x2(b), y2(b), z2(b)

)
; similarly, for CHI and CHj, the coordinates

are (x1(i), y1(i), z1(i)) and
(

x2(j), y2(j), z2(j)

)
. Further, the moving position is predicted by:

Mean =
m1 + m2

2
(24)

The prediction of the mean value for the movement of the AUV leads to the collection
of data from the four CHs at a time that limits the data collection delay, and, hence, the
AUV reaches the CHs within the waiting time.

The data collected from the members are delivered to the AUV during the time of
arrival. Based on the predicted mid-point, the AUV is exactly positioned in between the
four CHs at a one-hop distance and collects the data as shown in Figure 3. If the AUV’s
arrival to the next position is delayed, then the collected data are transmitted by the CH via
inter-cluster routing.
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4.5. Emergency Event Transmission

The 3D-UWSN is an environment in which the sensors give current, collected data that
can either be critical or non-critical. In the case of a critical, sensed message, the occurrence of
the event is predicted, and, hence, it is forwarded by selecting a forwarder using the weighted
method. The weighted value for neighboring CHs is computed and then a higher-weighted
CH is selected to forward the emergency event message. The constraints that are taken
into account are distance, load and residual energy. The Euclidean distance is presented to
determine the distance between the two CHs, and it is expressed for CHi and CHj:

D(CHi ,CHj)
=

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (25)

The sensor nodes are deployed in 3D space, and so the coordinates of the CHs CHi and
CHj are indicated as (x1, y1, z1) and (x2, y2, z2). Along with this distance, the remaining
energy RE and the load at the CH LCHi is determined as a weight value WCHi .

WCHi =
(

w1 ∗ D(CHi ,CHj)

)
+ (w2 ∗ RE) +

(
w3 ∗ LCHi

)
(26)

From the estimated weight, the forwarder is selected, and the data are transmitted.
The load depends on the available packets that are yet to be transmitted from the CH. Here,
the weights w1 + w2 + w3 = 1 are constant. Once the CH with high weight is selected as
forwarder, then the emergency event is forwarded and reaches the AUV.

5. Performance Evaluation

In this section, the testing environment of the proposed DEDG 3D-UWSN is studied
along with the results achieved by previous research works. This section is divided into three
parts: simulation environment, comparative analysis and research highlights. The better
efficiency of the proposed system is elaborated with graphical justification in this section.

5.1. Simulation Environment

This 3D-UWSN was implemented in Network Simulation Ns3.26, which is suitable
for designing a 3D-UWSN. AquaSim is one of the most important modules in Ns3 for
simulating the underwater sensor environment, and it is supplemented by other modules
for network model creation. However, this is a simulation environment; it supports with
important network modules that enable the creation of a real-world environmental setup.
The simulation parameters are not limited in any way. The simulation was carried out
using Ubuntu 14.04 LTS with a 32-bit CPU.

The parameters that were used in the DEDG 3D-UWSN simulation are illustrated in
Table 2. These are the significant specifications, but these parameters were not limited. The
Ns3.26 was installed onto an Ubuntu 14.04 operating system, which was supported on a
32-bit system. Ns3.26 simulator is flexible for designing a 3D-UWSN with the processes of
clustering, scheduling, inter-cluster routing, event transmission and the movement of the AUV.
As discussed in previous section, each process was handled as per the designed algorithms.

According to the simulation environment, the process in this research was performed
as shown in Figure 4. As per the simulation, once the data arecollected from all the CHs in
a level, then the simulation is completed. Meanwhile, the performance of this simulation
setup is evaluated in terms of performance metrics.
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Table 2. Simulation setup in Ns3.

Parameter Specification

3D-UWSN entities

Simulation area 1000 × 1000 × 1000
Number of underwater sensors 100

Number of sensors in level I 50
Number of sensors in level II 50

Number of AUVs 2
Number of gateways 1

Number of surface sinks 1
Number of clusters in each level 5–7

Simulation time 300 s

Modules used

AquaSim, Antenna, Config
Store, CSMA, LTE, AODV,
Mesh, Mobility, DSR, Flow

Monitor and Internet

Underwater sensor
parameters

Packet size 512 kb
Total number of packets 200

Packet time interval 100 ms
Data rate 10–20 Mbps

Initial energy per sensor 100 J
Transmission range 400 m
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The Ns3 simulation environment was programmed in C++ language, and Python
was used for compiling the designed DEDG 3D-UWSN. The result obtained in Ns3 was
executed, and the visualization is shown in Figure 5. In this network, the proposed
algorithms were applied, and the results were evaluated.
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As shown in Figure 6, the proposed DEDG 3D-UWSN design is suitable for a variety
of real-world applications; here, specifically, it is demonstrated for an underwater pipeline
monitoring system. The underwater pipelines are monitored by the deployed underwater
sensors. The mobile AUV collects data from the sensors and delivers it to the surface
sink. In case of any leakage in the pipeline, it is measured by the sensors and immediately
reported to the AUV for faster recovery. Since this work supports normal data collection
with limited delay and energy consumption, it is applicable for other applications.
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5.2. Comparative Analysis

The comparative analysis was incorporated with the key objective of minimization of
energy and delay in the network. Energy consumption and delay are the two challenging
constraints in sensor nodes that are required to be as low as possible during the transmission
of data. In a UWSN, the common processes performed by the sensor are sensing and
transmitting the sensed data to the AUV and then to the sink. Here, the data collecting
AUV is not subjected to limited energy, and, hence, it moves in and around the network to
collect the data from sensors.

The efficient solution of using an AUV for data collection is concentrated in the UWSN
environment to ensure limited energy consumption when gathering data. Table 3 discusses
the prior research work in which the underwater sensor data were collected from nodes
in the network. The existence of demerits in each work is illustrated, and it is resolved in
this proposed work, which depicts on output result. The comparative parameters that are
taken in account are based on the significance of the network lifetime and the delay that
exists during data transmission and data gathering. The better efficiency of this proposed
system was estimated and compared with the previous research works on UWSNs that
concentrated on data gathering with AUVs.

Table 3. Comparison on AUV-based data gathering.

Work Process and # of AUVs Demerits

[43] AEC mechanism
1. AUV

• CH is selected in each virtual sector by using energy; cases which consider only
this metric have the possibility to select a node as head with a smaller degree
and located at farthest distance. This degrades the data gathering efficiency;

• Inappropriate criteria (delay and transmission time) for scheduling.

[44] ALP
1. AUV

• Use of pre-defined spiral path increases AUV’s tour length, which eventually
increases data collection delay;

• Single AUV increases waiting time at sensors, which leads to drop in sensed
information due to its capacity limitation.

[45] Bipartite K-means
1. AUV

• The cluster construction time is large since, initially, the clustering is performed
with random centers and then, again, the cluster centers are reselected based
on the distance metric;

• The path prediction of an AUV is based on the determination of the shortest
data collection time; however, use of a single AUV increases traveling distance,
which eventually extends delay. In case of an event message, it fails to deliver
the message promptly.

[46] ELMPP
2. AUVs

• More energy consumption in the relay node due to frequent selection of the
same sensor as relay. This happens because the fixed path in the AUV is based
on line segments;

• RSSI is measured to select relay, which is not efficient since RSSI gives only the
strength of the communication link but not the strength of the node.

The previous works on UWSNs dealt with AUVs that move underwater to collect
sensed data from the sensors. In previous works, the sensed data were directly collected
from individual sensor nodes or from the CHs. The supportability for event message
transmission in the UWSNs was not considered in previous works, as shown in Table 4.
The processes of clustering, scheduling and AUV path prediction are performed for data
gathering. The main goal of this UWSN was to gather data with limited energy consump-
tion and delay. The possible solutions that were involved to prolong network lifetime and
minimize delay are:

• To develop clusters in the network reduces energy consumption, since the data is
collected by a CH, and it delivers to the AUV;

• The assignment of sleep slots for sensor nodes enables the reduction of energy con-
sumption in sensors due to the nil processing for certain time period;

• Appropriate path planning of AUV minimizes waiting time in CHs, and that reduces
the delay in gathering.
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Table 4. Comparison with existing works.

Work Clustering Scheduling AUV Path Prediction Emergency Event
Transmission

[43] X X X ×
[44] × × X ×
[45] X × X ×
[46] × × X ×

DEDG 3D-UWSN X X X X

X—discussed, ×—not discussed

The efficiency of the proposed DEDG 3D-UWSN was evaluated by measuring the
network lifetime in terms of energy consumption and number of alive sensors. Then, the
data gathering efficiency was depicted by the estimation of packet delivery ratio, end-to-end
delay, collection delay and tour length.

5.2.1. Efficiency of Network Lifetime

The energy efficiency of the proposed DEDG 3D-UWSN was compared with previous
works on AEC, ALP, bipartite K-means and ELMPP processes. In ALP and ELMPP, the
clustering is not performed, and, hence, each node delivers its data individually to the
AUV. Even though scheduling is present in AEC, it is not defined based on the energy
constraint of the sensor node. The existence of these limitations degrades the network
lifetime. The energy consumption increases due to longer waiting time, multiple hops
in data transmission, continuous sensing and elimination of energy-aware constraints.
Figure 7 illustrates the comparison with previous works relating to energy consumption,
and the results show the DEDG 3D-UWSN has lower energy consumption than the other,
previous works.
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The reduction in energy consumption tends to increase the number of alive sensor
nodes in the network. In the DEDG 3D-UWSN, the energy consumption is minimized;
thereby, it increases the number of alive sensors and extends network lifetime, providing
the following solutions:

• Clustering with optimal CH selection enhances the stability of the CH, and this
minimizes frequent selection of the CH as well as cluster formation. Without the
knowledge of neighboring nodes, the cluster cannot be constructed, which requires
exchange of hello packets with the neighboring nodes, which consumes energy;



Drones 2022, 6, 283 20 of 26

• Scheduling the sensor with sleep slots based on their current energy status is the major
reason for keeping the sensor alive for multiple rounds;

• The route selected by the CH itself consumes energy, and, hence, a gateway is used for
predicting a route that reduces energy consumption.

The number of alive nodes is illustrated in Figure 8, which shows that ALP has
the worst performance, and DEDG 3D-UWSN has the best performance among all the
works. As per this comparison, the increase in simulation time also increases the amount
of transmission by the sensor nodes. In total, 100 sensors participated in the network, of
which 91 nodes were active after 300 s, whereas only 75 nodes were active in AEC. Other
works relating to ALP, bipartite K-means and ELMPP were able to maintain 60–75 sensors
at the end of simulation.

Drones 2022, 6, 283 21 of 28 
 

 
Figure 8. Comparison of alive nodes. 

The number of dead nodes is lower in the DEDG 3D-UWSN than in the other works, 
as shown in Table 5. From this table, it can be seen that bipartite K-means has a lower 
number of dead nodes than the proposed work, and this is due to the performance of the 
clustering algorithm. However, the cluster construction in bipartite K-means consumes 
time, it constructs a cluster and then the data are gathered. 

Table 5. Comparison of dead sensors. 

Simulation 
Time 

# of Dead Sensor Nodes  
AEC ALP Bipartite K-Means ELMPP DEDG 3D-UWSN 

100 13 24 15 18 3 
200 19 32 19 22 5 
300 25 40 23 26 9 

Network lifetime was evaluated with respect to the number of sensors, and the re-
sults are shown in Figure 9. The higher network lifetime reflects the efficiency of the pro-
posed DEDG 3D-UWSN. As an average, the previous works relating to ALP, ELMPP and 
bipartite graph achieved 80–88% network lifetime, whereas 97% was reached in the DEDG 
3D-UWSN. Therefore, the processes performed in this work are efficient, and, hence, there 
is improvement in the network lifetime. 

Figure 8. Comparison of alive nodes.

The number of dead nodes is lower in the DEDG 3D-UWSN than in the other works,
as shown in Table 5. From this table, it can be seen that bipartite K-means has a lower
number of dead nodes than the proposed work, and this is due to the performance of the
clustering algorithm. However, the cluster construction in bipartite K-means consumes
time, it constructs a cluster and then the data are gathered.

Table 5. Comparison of dead sensors.

Simulation Time
# of Dead Sensor Nodes

AEC ALP Bipartite K-Means ELMPP DEDG 3D-UWSN

100 13 24 15 18 3
200 19 32 19 22 5
300 25 40 23 26 9

Network lifetime was evaluated with respect to the number of sensors, and the results
are shown in Figure 9. The higher network lifetime reflects the efficiency of the proposed
DEDG 3D-UWSN. As an average, the previous works relating to ALP, ELMPP and bipartite
graph achieved 80–88% network lifetime, whereas 97% was reached in the DEDG 3D-
UWSN. Therefore, the processes performed in this work are efficient, and, hence, there is
improvement in the network lifetime.
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5.2.2. Efficiency of Data Gathering

The efficiency of data gathering is the key idea that is addressed by the AUV. The AUV
is enabled to predict the path and gather data from the employed sensors. The effectiveness
of data gathering is estimated in terms of packet delivery ratio, end-to-end delay and
collection delay. Packet delivery ratio is a significant metric that determines the success of
data transmission via the selected route.

Figure 10 indicates that the DEDG 3D-UWSN increases packet delivery ratio when
compared with previous research works. This is due to the prediction of a route after
validation by a gateway, and, hence, no packet is dropped or lost. The selection of neighbors
in the route is required to be appropriate for the data transmission, else the packet delivery
ratio is degraded. The previous ALP, bipartite K-means and ELMPP processes achieved
83%, 91% and 86%, respectively. Comparatively, AEC reached 95%, and DEDG 3D-UWSN
reached 98% of packet delivery ratio. On the other hand, delay was also measured, since
the data were gathered by the appointed AUV. The end-to-end delay defines the time taken
to transmit the collected data from a CH to the AUV via intermediate hops. The collection
delay depends on the time taken by the AUV to collect data from the set of sensors.
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The performances of end-to-end delay and collection delay are illustrated in
Figures 11 and 12, respectively. End-to-end delay is measured with respect to the number of
hop counts and the collection delay with respect to the increase in the number of sensors in
the network. The result shows that both delays were lower than in the previous works. This
reduction is due to the efficient path prediction in the AUV and the inter-cluster routing,
which validates the route using fuzzy–LeNet. In previous works, the AUV’s path was
planned and based on the data collected from sensors. The AUV collected sensed data only
from a single sensor at a time, whereas, in the DEDG 3D-UWSN, the data are collected
from four CHs at a time. Due to this, the AUV is enabled to collect data in the path faster,
which reduces collection delay. In contrast, ELMPP has the highest collection delay, since it
collects data from relay one after the other. The absence of clustering is also reflected in the
increases in collection delay, since the data sensed by the sensor have to wait a longer time
for the arrival of the AUV to collect their data.
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The AUV tour length also impacts and increases the collection delay. If the tour length
is longer, then the data collected by the sensor node have to hold on the packets until the
AUV approaches near the sensor. Only the appropriate planning of the path in the AUV
can minimize the tour length.

In the previous works, the authors also discussed the assignment of a pre-defined path
for data collection. Table 6 illustrates the comparison of the tour length of the AUV in each
work. The tour length was reduced by 30–50 min in the proposed method compared to the
AEC method. From this comparative analysis, the better efficiency of the proposed DEDG
3D-UWSN is illustrated, and the improvement in performance is due to the process handled
in this work. The processes of clustering and scheduling aim to save energy in sensor nodes,
and data gathering is performed with an AUV, the path of which is predicted effectively.

Table 6. AUV tour length.

# of Sensors
Tour Length (m)

AEC ALP Bipartite K-Means ELMPP DEDG 3D-UWSN

20 350 450 390 420 320
40 400 490 420 450 350
60 420 530 470 490 370
80 470 570 520 540 420
100 500 630 580 600 450

5.3. DEDG 3D-UWSN Highlights

The designed DEDG 3D-UWSN was developed to effectively collect data from the
network nodes with the aim of improving network lifetime and reducing delay in transmis-
sion. The idea of this work was to present support for both normal data gathering, as well
as emergency event transmission. The major process handled in this DEDG 3D-UWSN is
depicted in Table 7. This shows that the process, along with the resulting improvement that
is achieved by our simulation, is theoretically justified.

Table 7. Process involved in DEDG 3D-UWSN.

Process Resulting Improvement

Clustering Reduces energy consumption in data gathering from the CHs

Optimal CH selection Reduces energy consumption by mitigating unnecessary selection of CH which
needs to exchange node information

Sleep–wakeup scheduling Saves energy of the sensor, and also all the data are sensed

Data gathering Reduces energy consumption since the AUV is positioned one hop from the CH
Reduced collection delay by collecting data from four CHs at a time

As discussed in earlier sections, the proposed DEDG 3D-UWSN performs data gath-
ering with the assistance of two AUVs in the network and achieves prolonged network
lifetime and minimizes delay in data collection. Here, we provide the major research
highlights of this DEDG 3D-UWSN:

• The 3D-UWSN with two AUVs incorporated was designed with the aim of achieving
delay-aware data gathering by optimal positioning of AUVs and by using inter-cluster
routing in case of exceeded waiting time. To assist a large-scale network and faster
data gathering, two AUVs are employed. Incorporation of sleep time for sensor nodes
reduces energy consumption;

• The optimal selection of CH using MO-SHO ensures prolonged sustainment of CH,
and the reduction of redundant data improves delivery time. Then, data gathering
of the AUV from for CHs at optimal position reduces delay. Here, fuzzy–LeNet was
used, which performs faster and results in an appropriate solution;
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• In conditions with delayed arrival of the AUV, the gathered data are transmitted to
the AUV via an inter-cluster route. This is performed in order to make free space in
CHs to gather upcoming sensed information from CHs.

The sensors not only sense normal data; they also sense critical emergency data which
are sent immediately by selecting a forwarder which sequentially reaches the AUV and
then the surface sink

6. Conclusions

This paper developed a proposed DEDG 3D-UWSN with the aim of improving the
network lifetime and reducing the delay. The key processes handled in this work to address
this aim were: clustering with MO-SHO for optimal CH selection; member-balanced
scheduling to allot sleep slots; three-step, inter-cluster routing with fuzzy–LeNet; DACP
prediction in AUVs; and event message transmission. Initially, the 3D-UWSN environment
is categorized into two levels relating to the depth of the ocean. The sensors in each level
are clustered, and an optimal CH is selected by estimating the fitness with node’s lifetime,
degree and centrality. The optimal selection of CH results in the sustainability of the CH
for a longer time, and it reduces the energy consumption for frequent CH selection. An
equal number of members in the cluster is assigned to sleep mode and wakeup mode by
energy consumption and the number of hops from the CH. The CH also reduces redundant
data by measuring the Hassanat distance and eliminates similar data before forwarding
it to the AUV. According to this proposed work, the CHs wait for a particular waiting
time unless the AUV reaches a CH, then they request the gateway for an inter-cluster
path. For path selection, the gateway identifies all the possible routes, then ignores longer
routes, and, further, the filtered routes are validated using fuzzy–LeNet by considering
energy consumption, fairness, synthesis speed and efficiency. This inter-cluster routing
occurs in rare cases, since the movement of the AUV is predicted by two factors. These
CH parameters are fed into DACP prediction followed by the estimation of the mid-point
and then the AUV moves to collect data from the four CHs. Therefore, this reduces delay
in data collection. This work also supports the transmission of event messages using
a weighted method which selects a forwarder towards the AUV. The proposed DEDG
3D-UWSN showed better results in terms of energy efficiency and delay when compared
with previous works.

In future, this DEDG 3D-UWSN architecture is planned to be extended with network
partitioning for further reduction of the energy consumption of sensors nodes. additionally,
this environment will be tested in any specific application that exists for UWSNs.
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