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Abstract: We propose a neural network consensus strategy to solve the leader–follower problem for
multiple-rotorcraft unmanned aircraft systems (UASs), where the goal of this work was to improve
the learning based on a set of auxiliary variables and first-order filters to obtain the estimation error
of the neural weights and to introduce this error information in the update laws. The stability proof
was conducted based on Lyapunov’s theory, where we concluded that the formation errors and
neural weights’ estimation error were uniformly ultimately bounded. A set of simulation results
were conducted in the Gazebo environment to show the efficacy of the novel update laws for the
altitude and translational dynamics of a group of UASs. The results showed the benefits and insights
into the coordinated control for multiagent systems that considered the weights’ error information
compared with the consensus strategy based on classical σ-modification. A comparative study with
the performance index ITAE and ITSE showed that the tracking error was reduced by around 45%.

Keywords: multiagent system; neural network; unmanned aircraft systems; estimation error
information

1. Introduction

In the last couple of decades, exhaustive research and development began in the
field of unmanned aerial vehicles in search and rescue, surveillance, monitoring and
mapping the environment, and delivery and transportation tasks [1,2]. Moreover, it is
widely recognized both in nature and in robotic systems that the development of a task or
mission in a cooperative way offers different advantages, among which are a reduction in
time, a robustness or tolerance to failures since a member that presents problems can easily
be replaced by some other agent [3,4]. In this sense, consensus methods for multiagent
systems (MAS) have a extensive use in the field of intelligent autonomous vehicles, such
as unmanned aircraft systems vehicles (UASs), ground vehicles, and sea applications.
In [5], for UAV multiagent systems with external disturbances, a finite-time distributed-
formation-tracking strategy was used. The authors in [6] applied in sliding mode a consensus
algorithm to track the leader in multi-UAS systems and maintain the desired formation at
the same time.

With the aim of solving the problem of formation control, more attention was given
to the consensus control of multiagent systems, because of their extensive application
in several areas [7,8]. Mainly, consensus control is divided into two approaches [9,10],
the leaderless and the leader–follower consensus. Firstly, the consensus protocols were
designed for linear systems, ranging from first-order integrator systems to higher-order
integrator systems [11,12]. Because of the applicability of the consensus algorithm, further
developments were conducted. The consensus strategy has been developed for nonlinear
systems [10,13], with time-delay [14,15], with the input and actuator saturated [11,16], with
sliding-mode techniques [17,18], as well as regarding algorithms dealing with external

Drones 2022, 6, 300. https://doi.org/10.3390/drones6100300 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6100300
https://doi.org/10.3390/drones6100300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-3692-4008
https://orcid.org/0000-0003-1274-3496
https://orcid.org/0000-0002-5089-1791
https://orcid.org/0000-0001-8094-990X
https://doi.org/10.3390/drones6100300
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6100300?type=check_update&version=2


Drones 2022, 6, 300 2 of 22

uncertainties within systems with unknown dynamics [19]. With the development of com-
putational resources, strategies focused on machine learning have been proposed, where,
based on the observations of both the states in multiagent systems and the environment,
they have to improve both the performance and communication within the consensus
algorithm [20,21].

An extended survey of consensus algorithms can be founded in [22,23].
In recent years, in order to solve the problem of lumped disturbances, i.e., unmod-

elled dynamics and external disturbances, several neural network nonlinear consensus
approaches have been developed. Moreover, these protocols are efficient when the model
parameters change while the system is working, as is the case with UAVs performing lo-
gistics tasks [24]. In this sense, further research on consensus protocols based on neural
networks has been conducted in [25,26]. For nonlinear multiagent systems with uncertain-
ties, a leader–follower consensus with state and output feedback was presented in [27],
where the uncertain dynamics were approximated through neural networks. An adaptive
neural consensus strategy for nonaffine nonlinear multiagent systems with uncertainties,
unknown control directions, and subject to switching topologies was developed in [28],
where a radial basis neural network was used to approximate the unknown dynamics.
A neuronal dynamic surface control based on a predictor was developed for nonlinear
systems subject to uncertain dynamics in [29]; in contrast to existing methodologies where
the neural weights are updated with information from the tracking errors, a predictor was
used and the prediction errors were employed in the adaptation law for the neural weights.
In [30], a robust consensus strategy was developed for high-order nonlinear multiagent sys-
tems subject to unknown dynamics, affected by unknown actuator failures and unknown
control gains. In this approach, a backstepping was combined with a neural network to
ensure that the tracking error was restricted to a small region. In [31], an output-feedback
formation tracking control strategy with modeling uncertainties subject to communication
constraints was developed, where a radial basis neural network was used to identify the
unknown dynamic.

In the aforementioned works, a major limitation is that the only signal available
that reflects the difference between estimated parameters and the real parameters is the
tracking or prediction error signal. To increase the robustness of the adaptive laws, the neural
network consensus protocols were improved by introducing variants in the adaptive laws
for the neural weights, such as the modification −σ [32] and the modification −e [33].
However, these algorithms induced a longer convergence time and affected the response
of the tracking error. As stated in [34,35] for adaptive control systems, a fast and accurate
neural network weight estimation convergence is valuable for the stability and robustness
properties in closed-loop systems.

Since the optimal weights are unknown, the difference between the estimated weights
and the optimal weights is not available for measurement. Based on the previous observa-
tions, an adaptive estimation strategy for unknown parameters was first introduced in [36],
where, unlike conventional adaptation mechanisms, the adaptation of parameters included
information on the estimation error of the parameter to increase the convergence of the
tracking errors.

Motivated by the use of the parameter estimation error in the development of adaptive
laws, further research was conducted by the scientific community. The development of
robust adaptive controllers for the online estimation of the mass parameter for robotic
systems was reported in [37]. In [38,39], an adaptive parameter estimation strategy was
developed to estimate parameters in vehicle systems, mainly the road gradient and the
mass of the vehicle. Moreover, an adaptive control strategy was developed for vehicles’
active suspensions subject to unknown nonlinearities in [40]; in that approach, the authors
proposed an adaptive law based on the parameter estimation error. This novel parameter
estimation strategy was used in aerial systems as well. In [41], the inertia and mass parameters
of a quadrotor aerial vehicle were estimated by introducing the parameter estimation error.
Furthermore, following the same methodology, the inertia and mass parameters of a six-



Drones 2022, 6, 300 3 of 22

DOF spacecraft were estimated in [42]. Recently, in addition to being used to estimate
unknown parameters, this parameter estimation methodology was employed to estimate
the optimal weights for systems based on a neural network [43]. In [44], an adaptive control
strategy for robot manipulators was developed by combining a neural controller and a
robust controller. The proposed scheme guaranteed that the estimated weights converged
in finite time to the optimal weights. Furthermore, for robotic systems, in [45], a sliding
mode controller enhanced with a neural network was developed. In that approach, an
adaptive law for the neural weights was proposed, which was based on the estimation error.
For a dual-arm robot system with dynamic uncertainties, an adaptive command-filtered
control strategy was designed in [46]. Moreover, a radial basis neural network was used to
approximate the uncertainties of the system, where the information of the estimated error
was used in the adaptive law for the neural weights.

Main Contributions

We propose a robust, adaptive-consensus cooperative strategy for a group of quadro-
tor aerial vehicles with lumped disturbances (i.e., partially unknown nonlinearities and
external disturbances). In order to compensate for the lumped disturbances, a radial basis
neural network is introduced in the consensus protocol. To calculate the information of
the weights’ estimation error, a set of first-order intermediate variables are computed.
Finally, the adaptive laws for the neural network weights incorporate the information of
the estimation error. The main contributions of this research work are listed below:

• The development of a leader–follower consensus algorithm enhanced with a radial
basis neural network for multiagent quadrotor unmanned aircraft systems subject to
lumped disturbances is presented.

• The algorithm used to update the weights of the neural network is based on a first-
order filter and auxiliary matrices to obtain the weight error information and use it in
the adaptation law. To the best our knowledge, the consensus algorithms with neural
network compensation reported until now have not taken into account the weight
error information in the adaptation law.

• A stability proof based on Lyapunov’s theory is developed for the consensus algo-
rithm and neural network compensation developed, where the uniformly ultimate
boundedness of the (i) formation errors and (ii) neural weights’ estimation errors,
is guaranteed.

• Simulation experiments for multiagent UAV systems are performed over the ROS
platform [47] and ROS-based Gazebo environment.

The document is organized as follows: Some preliminaries and the dynamic model
for the UAV are reviewed in Section 2. The consensus control strategy is introduced in
Section 3. Section 4 provides the simulation results with examples in Gazebo, and Section 5
concludes this paper.

2. Preliminaries and Dynamic Model of the UAV

In this section, we introduce the graph theory necessary for the development of the
consensus control strategy. After that, the general mathematical model for the quadrotor
vehicle is presented. However, the quadrotor aerial vehicle simulated in Gazebo has an
internal controller for the rotational dynamics. Simulations are conducted to identify the
dynamics of the internal controller and finally a mathematical model that includes the
internal controller dynamics is presented.

2.1. Graph Theory

Formally, the agents and a leader in a multiagent system are simply nodes, denoted
by N, and the connectivity/structure among the agents is define by a communication
graph G = {�,z} where � = {n1, . . . , nN} is a node set and z = {(ni, nj) ∈ �×� is an
edge set composed by the elements (ni, nj) that represent the communication link with
i as the origin node and j as the final node. The so-called adjacency matrix is defined as
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A = (aij) ∈ RN×N , where the element aij of A is selected as aij = 1 if node ni is connected
to node nj and aij = 0 if is disconnected. A very important and practical feature is the
degree of each node, which is simply the number of nodes that it is connected to; the
in-degree matrix is D = diag(di) ∈ RN×N , it provides a single value of each node, with
di = ∑j∈Ni

aij. It is also used for the computation of the most important graph operator, the
graph’s Laplacian L = (lij) ∈ RN×N , defined as L = D −A. If aij = aji , for i, j = 1, . . . , N,
then the communication graph G is defined as an undirected graph. If there is a path
connecting every pair of nodes, then an undirected graph is connected. Furthermore, the
leader’s adjacency matrix is defined as A0 = diag(ai0) ∈ RN×N , where ai0 > 0 implies
that agent ith has access to the state of the leader agent and ai0 = 0 in another case. If the
undirected graph is connected and at least one of diagonal entries of the leader’s adjacency
matrix is not zero, then the matrix H defined as H = L+A0 ∈ RN×N is symmetric and
positive definite [48].

2.2. Dynamic Model of the Quadrotor UAV

A brief description of the mathematical model is shown below [49,50]. In Figure 1,
we observe a three-dimensional UAV, where ΓB = [XB, YB, ZB] represents the body-fixed
frame located in the center of gravity of the vehicle. The inertial frame is represented
by ΓI = [XI , YI , ZI ], and the position vector for the aerial vehicle in the inertial frame is
denoted as ξ = (x, y, z) ∈ ΓI . In this work, the rotation matrix used is given by

R(η) =

cψcθ cψsθsφ− sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

 (1)

where R(η) : ΓI → ΓB and R(η) ∈ SO(3). ψ, θ, and φ are referred to as the Euler angles
representing yaw, pitch, and roll, respectively. Moreover s(·) and c(·) stand for sin(·) and
cos(·), respectively.

Figure 1. Structure of a quadrotor aerial vehicle with the body frame and inertial frame.

Let ξ̇ and η̇ be defined as the linear and angular velocities of the three-dimensional ve-
hicle expressed in the inertial frame. Moreover, the linear and angular velocities represented
in the body-fixed frame are denoted by ξ̇b and η̇b, respectively. Then, η = [φ θ ψ]T ∈ ΓI
represents the vector of Euler angles, and η̇b = [p q r]T , as the body angular velocities
are related to η̇ = Wη̇b, where the matrix W is defined as
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W =

1 sφ tan θ cφ tan θ
0 cφ −sφ

0 sφ
cθ

cφ
cθ

 (2)

Using the Newton–Euler equations, we can represent the equations of motion of the
UAV in the body frame as follows

mξ̈ = R(η)vzF−mgvz (3a)

J(η)η̈ = τ − C(η, η̇)η̇ (3b)

Here, J(η) = W>IW acts as the inertia matrix, where I = diag(Ix, Iy, Iz) and C(η, η̇)η̇ =(
J̇− ∂(η̇>b J)

2∂η

)
η̇b represents the Coriolis term, vz =

[
0 0 1

]> is a unitary vector along

the z-axis in the inertial reference frame, F is the thrust force applied to the aerial vehicle,
and τ ∈ R3 denotes the roll, pitch, and yaw moments. The multirotor UAV model given
previously is a highly coupled nonlinear system. Under some assumptions, it is possible
to redefine the above model. Now, to simplify the moments τ, the auxiliary vector τ̃ is
defined as follows

τ̃ =

u2/Ix
u3/Iy
u4/Iz

 = I−1W−1(−IẆη̇ −Wη̇ × IWη̇ + τ
)

(4)

Using (3) and (4), the UAV dynamical model can be represented by

ẍ =
u1

m
(cos ψ sin θ cos φ + sin ψ sin φ) (5a)

ÿ =
u1

m
(sin ψ sin θ cos φ− cos ψ sin φ) (5b)

z̈ =
u1

m
(cos θ cos φ)− g (5c)

θ̈ =
u2

Ix
(5d)

φ̈ =
u3

Iy
(5e)

ψ̈ =
u4

Iz
(5f)

where m ∈ R represents the mass of the aerial vehicle and g ∈ R is the force due to the
gravity, and u1 = ∑4

i=1 Ti is the thrust, which is generated by the rotors of the vehicle. For
simplicity, the generalized torques are obtained asu2

u3
u4

 =

 −lT1 − lT2 + lT3 + lT4
−lT1 + lT2 + lT3 − lT4

−CMT1 + CMT2 − CMT3 + CMT4

 (6)

where CM is a constant defined from the rotor characteristics and l is the distance from the
center of mass of the vehicle to the center of the rotor.

2.3. Modeling UAV Multirotor in Gazebo

The quadrotor available in Gazebo considers the presence of a low-level attitude
controller provided by the PX4 autopilot. The internal controller stabilizes the angular
dynamics for the roll, pitch, and yaw angles as well as the altitude in the z-axis direction. In a
effort to consider the dynamics of the internal controller, we assumed that those dynamics
were represented by the following differential equations
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z̈ =− a1ż− a2z + a3uz (7a)

θ̈ =− b1θ̇ − b2θ + b3uθ (7b)

φ̈ =− c1φ̇− c2φ + c3uφ (7c)

ψ̈ =− d1ψ̇− d2ψ + d3uψ (7d)

where uz, uθ , uφ, and uψ denotes the control inputs to the quadrotor aerial vehicle. In order
to identify the parameters ai, bi, ci, and di of Equation (7), a set of simulations was conducted
in Gazebo by using step functions as control inputs and recording the input–output data.
With the collected data, we used the System Identification Toolbox of MATLAB, which
estimated the parameters of the dynamic model (7) by using the least squares method.
Table 1 summarizes the parameters obtained.

Table 1. Parameters identified for the dynamics of the internal controller.

a1 = 0.1862 b1 = 25.353 c1 = 22.747 d1 = 9.769
a2 = 0.1093 b2 = 179.523 c2 = 170.635 d2 = 29.289
a3 = 1.2737 b3 = 177.246 c3 = 167.685 d3 = 29.283

The model was further validated by comparing the results obtained through simu-
lations in Matlab with the data obtained from Gazebo. We can observe in Figure 2a the
output from the experimental test for the z dynamics using as control input step function
and the result for the transfer function. This procedure was similar within the attitude
dynamics, where the control inputs of the Iris drone were related with the Euler angles as
shown in Figures 2b and 3a,b.
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Figure 2. Experiments for the dynamics in Gazebo. (a) Response and identification for the dynamics
of z within the Gazebo environment. (b) Response and identification for the dynamics of θ within the
Gazebo environment.

From Equations (5c) and (7a), we could obtain for the control signal u1 the following

u1 =
m(−a1ż− a2z + a3uz + g)

cos θ cos φ
(8)

Substituting (8) in (5a) and (5b) and combining with the dynamics identified, we obtained
a complete model that took into account the dynamics of the internal controller, and was
given as
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ẍ = f (z, uz)(cos ψ tan θ +
sin ψ

cos θ
tan φ) (9a)

ÿ = f (z, uz)(sin ψ tan θ − cos ψ

cos θ
tan φ) (9b)

z̈ = −a1ż− a2z + a3uz (9c)

θ̈ = −b1θ̇ − b2θ + b3uθ (9d)

φ̈ = −c1φ̇− c2φ + c3uφ (9e)

ψ̈ = −d1ψ̇− d2ψ + d3uψ (9f)

where f (z, uz) = (−a1ż− a2z + a3uz + g).
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Figure 3. Experiments for attitude dynamics in Gazebo. (a) Response and identification for the
dynamics of φ within the Gazebo environment; (b) Response and identification for the dynamics of ψ

within the Gazebo environment.

3. Control Strategy Development

In this section, we introduce the development of the consensus cooperative strategy
for the multiagent system. In view of the underactuated property of the quadrotor vehicle,
we rewrite the mathematical model of the quadrotor vehicle presented in Equation (9).
After that, the consensus strategy for the translational dynamics of the team of quadrotor
aerial vehicles is developed.

3.1. Mathematical Model for the Consensus Development

Before the development of the consensus control strategy for the multiagent quadrotor
system, we rewrite Equation (9) to obtain a general equation to be used in the development
of the consensus control strategy. From (9a) and (9b), we can define the virtual control
inputs ux and uy as follows[

ux
uy

]
= (−a1ż− a2z + a3uz + g)

[
tan θ

tan φ
cos θ

− tan φ
cos θ tan θ

][
cos ψ
sin ψ

]
(10)

where ux and uy can be translated to the desired roll and pitch angles. Therefore, in this
matrix representation, we can obtain the desired references angles φd and θd that enable the
system to follow the desired positions xd and yd; the desired angles are given as

φd = arctan
[
(ux cos ψ + uy sin ψ)

f (z, uz)

]
(11a)

θd = arctan
[
−
(ux sin ψ + uy cos ψ) cos φd

f (z, uz)

]
(11b)
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We assume that the Euler angles (roll, pitch, and yaw) are bounded in the following ranges:
(−π/2 < θ < π/2), (−π/2 < φ < π/2) and (−π < ψ < π), respectively.

With the definitions of ux and uy, the dynamics of translation for each quadrotor
vehicle are given by

ẍ = ux (12a)

ÿ = uy (12b)

z̈ = −a1ż− a2z + a3uz (12c)

The control inputs ux, uy, and uz are computed for each vehicle through the consensus
control strategy developed in Section 3.2. Once ux and uy are calculated, the desired angles
φd and θd are obtained by using (11). Moreover, we assume that the yaw reference angle is
set to zero (ψd = 0). Finally, the desired angles φd, θd and ψd are the inputs for the internal
controller of each aerial vehicle in the ROS environment.

3.2. Consensus Control Strategy

Now, the consensus cooperative strategy enhanced by a radial basis neural network
is developed. First, it is developed for the altitude subsystem given in Equation (12c).
For the horizontal plane, given by Equations (12a) and (12b), it is worth mentioning that
the development of the cooperative strategy follows the same structure as that for the
altitude subsystem.

3.2.1. Consensus Control Strategy for Altitude Dynamics

The control strategy designed assumes that the aforementioned low-level altitude
controller has as its input a velocity command given by uz. Therefore, we need to define
the altitude controller such that it converges to the altitude desired and it has the capability
to counteract the unknown disturbances. For this reason, we need to begin with the vertical
dynamics given in (12c), which can be rewritten for each agent as

żi = Azzi + Bz(uzi + dzi ), i = 1, · · · , N, (13)

where zi = [z1i z2i ]
>, Az =

[
0 1
−a2 −a1

]
, Bz =

[
0
a3

]
, and dzi denotes external uncertain-

ties. Moreover, we introduce the leader’s dynamics as follows

ż0 = Azz0 + Bzr(z0, t) (14)

where r(z0, t) is a bounded input for the leader agent. The following assumption is stated
in order to deal with the external disturbances dzi

Assumption 1. The matched uncertainty diz for the altitude dynamics defined in (13) is approxi-
mated by a radial basis neural network as

dzi = W∗>zi
Ψzi (zi) + εzi ∀zi ∈ D (15)

where W∗zi
∈ Rs is an unknown constant optimal weight vector. Ψzi (·) : Rn → Rs represents

a vector function as Ψzi (zi) = [Ψ1i (zi), Ψ2i (zi), . . . , Ψsi (zi)]
T where Ψi(x) is a radial basis

activation function, which can be represented as: if Ψi(x) = exp(− ||x−c||2
2b2 ), i = 1, 2, . . . , N ,

where the center and width of the Gaussian functions are represented by c ∈ Rr and b, respectively.
Moreover, the activation function satisfies ||Ψzi || ≤ ΨMi with ΨMi > 0, the approximation error
εzi fulfills |εzi | ≤ ε+zi

where ε+zi
> 0, and D ⊂ Rn is a sufficiently large domain [29].

Now, we define the tracking error for each follower agent as δzi = zi − z0, whose time
derivative is along (13), (14), and using the approximation (15), we obtain
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δ̇zi = Azzi + Bz(uzi + W∗>zi
Ψi(zi) + εzi )− Azz0 − Bzr

= Azδzi + Bz(uzi + W∗>zi
Ψi(zi) + εzi − r)

(16)

With the aim to develop the adaptation procedure for the neural weights Ŵzi , inspired
by the approach presented in for single systems, a set of first-order filters is introduced. It is
worth mentioning that with this approach, we can use information about the weight error
W̃zi , in contrast to classical adaptation mechanisms. To conduct this strategy, the tracking
error dynamics (16) are parameterized as

δ̇zi = Azδzi + Bzuzi + BzΨi(zi)
TW∗zi

+ Bz(εzi − r)

= ϕzi (δzi , uzi ) + Φzi W
∗
zi
+ εzi

(17)

where
ϕzi (δzi , uzi ) = Azδzi + Bzuzi , Φzi = BzΨi(zi)

T , εzi = Bz(εzi − r), (18)

with ϕzi (δzi , uzi ) ∈ R2 and Φzi ∈ R2×s is defined as the “regressor” matrix.
In this sense, the filtered variables δzi f ,ϕzi f and Φzi f are defined as

kδ̇zi f + δzi f = δzi , δzi f (0) = 0

kΦ̇zi f + Φzi f = Φzi , Φzi f (0) = 0

kϕ̇zi f + ϕzi f = ϕzi , ϕzi f (0) = 0

kε̇zi f + εzi f = εzi , εzi f (0) = 0

(19)

where k > 0 is a filter parameter. In order to obtain from (17) and (19) that

δ̇zi f =
δzi − δzi f

k
− ϕzi f = Φzi f W∗zi

+ εzi f . (20)

let us define two auxiliary matrices Pzi ∈ Rs×s and Qzi ∈ Rs as

Ṗzi = −lPzi + ΦT
zi f Φzi f , Pzi (0) = 0

Q̇zi = −lQzi + ΦT
z f [

δzi − δzi f

k
− ϕzi f ], Qzi (0) = 0

(21)

where the positive scalar l is a parameter to be designed. The solution of (21) is derived as

Pzi =
∫ t

0
e−l(t−r)ΦT

zi f (r)Φzi f (r)dr

Qzi =
∫ t

0
e−l(t−r)ΦT

zi f (r)

[
δzi (r)− δzi f (r)

k
− ϕzi f (r)

]
dr

(22)

Lemma 1. The auxiliary matrix Pzi defined in (22) is positive definite, λmin(Pzi ) > σΦ > 0, if
the regressor Φzi presented in (18) fulfills the PE condition [45]. A function Φzi satisfies the PE
condition if there exist positive constants T and γ satisfying the condition

∫ t+T
t Φzi (r)

TΦzi (r)dr ≥
γI, ∀t ≥ 0.

Notice that from (20) and (22), we can rewrite Qzi as

Qzi = Pzi W
∗
zi
− $zi (23)
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where $zi = −
∫ t

0 e−l(t−r)Φzi f (r)εzi f (r)dr ∈ Rs. As εzi and the regressor Φzi are bounded,
we obtain that the filtered variables Φzi f and εzi f are also bounded. Therefore, $zi is
bounded by ε+zi f > 0.

Based on the solutions of Pzi and Qzi , we define an auxiliary vector Hzi as:

Hzi = Pzi Ŵzi −Qzi (24)

Then, based on (22) and the parameter estimation error W̃zi = W∗zi
− Ŵzi , we can verify that

Hzi = Pzi Ŵzi −Qzi

= Pzi Ŵzi − Pzi W
∗
zi
+ $zi

= −Pzi W̃zi + $zi .

(25)

To guarantee the stability of the tracking error δzi , we design the following distributed
control law with augmented adaptive control term

uzi = czKzezi − ŴT
zi

Ψzi (zi), (26)

where Ŵzi is an estimate of the unknown weights W∗zi
, the scalar cz is a coupling gain, and

ezi is a neighborhood error represented as

ezi = ∑
j∈N

aij(zi − zj) + ai0(zi − z0), (27)

Define Kz ∈ R1×2 as Kz = −BT
z Mz, where Mz is the solution of the Riccati inequality

defined as
AT

z Mz + Mz Az + Nz −MzBzBT
z Mz ≤ 0, (28)

Notice that Mz and Nz ∈ R2×2 are positive definite matrices. If the consensus control law
(26) is substituted into (16), we arrive at

δ̇zi = Azδzi + Bz(czKzezi − ŴT
zi

Ψzi (zi) + W∗>zi
Ψzi (zi) + εzi − r)

= Azδzi + Bz(czKzezi + W̃>zi
Ψzi (zi) + εzi − r).

(29)

It should be noted from (25) that the information about the weights’ estimation error
W̃zi is contained in Hzi . Then, the adaptation law, for the weights of the ith follower agent
in the altitude dynamics is proposed as

˙̂Wzi = Γzi (Ψzi (zi)eT
zi

MzBz − kzi Hzi ). (30)

where Γzi and kzi are positive constants. Then, we state the theorem for the consensus
cooperative control for the altitude dynamics of the quadrotor multiagent system as follows.

Theorem 1. Consider the altitude dynamics for the ith follower agent given in Equation (13). If
the regressor Φzi defined in (18) fulfills the PE condition, the cooperative control strategy uzi is
proposed as in Equation (26), the gain Kz is obtained from solving the Riccati Equation (28), the
coupling gain cz fulfills condition (58), and the neural weights are updated by the adaptive law given
by Equation (30), where the auxiliary matrix Hzi is defined in Equation (24). Then, the altitude
tracking error δzi and the estimation error of the neural weights W̃zi for the ith agent converge to a
bounded region defined by (66).

Proof. The proof of this Theorem is presented in Section 6.

3.2.2. Consensus Control Strategy for Position Control in the Horizontal Plane

To obtain the consensus control strategy for the X–Y plane, it is necessary to carry
out the development of a consensus strategy for each axis. In this sense, we present the
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development for the X axis and notice that for the Y axis the procedure is similar. Consider
the dynamics for the X axis presented in Equation (12a), which is rewritten as

ẋi = Axxi + Bx(uxi + dxi ) (31)

where xi =
[
x1i x2i

]>, Ax =

[
0 1
0 0

]
, Bx =

[
0
1

]
, and dxi denotes the external uncertainties.

Moreover, the leader dynamics are given as

ẋ0 = Axx0 + Bxrx(x0, t). (32)

Let us define the tracking errors for the ith agent in the X axis as δxi = xi − x0. The
distributed control strategy is proposed as

uxi = cxKxexi − ŴT
xi

Ψxi (xi), (33)

where cx is a scalar coupling gain, Ŵxi is an estimate of the unknown weights W∗xi
, and the

neighborhood synchronization error in the X axis is defined as

exi = ∑
j∈N

aij(xi − xj) + ai0(xi − x0) (34)

Similar to Equation (30), the updated law for the weights of the neural network is
given by

˙̂Wxi = Γxi (Ψxi (xi)eT
xi

MxBx − kx Hxi ), (35)

where we can observe that the knowledge of the estimation error of the neural weights is
incorporated in the term Hxi , which is defined as

Hxi = Pxi Ŵxi −Qxi (36)

The auxiliary filtered matrices Pxi and Qxi are defined as in (21). The filtered variables δxi f ,
ϕxi f , and Φxi f are defined as in Equations (18) and (19). For the purpose of guaranteeing
the convergence of the tracking errors δxi and the weights’ estimation error W̃xi , Theorem 1
can be applied for the consensus control strategy in the X and Y axes.

4. Simulation Results

The simulation results for the robust cooperative control strategy developed are
presented in this section. First, we introduce the simulation environment, where the
required steps to carry out the simulations trials in ROS and Gazebo are summarized in
Algorithm 1. After that, we present two simulations scenarios. The first one is for the
altitude control of a team of four quadrotor aerial vehicles, with a comparative study with
a classical distributed control and adaptive distributed control. In the second one, the
simulation results for the translational cooperative control in the plane X–Y are presented.

4.1. Simulation Environment

In this section, we present the implementation of the algorithm within the Gazebo
robotics simulator, it allows the testing of the behavior of multirotor vehicles without the
need to use physical systems, due to the complexity of the tests and the fact it requires a
greater number of components due to the number of vehicles that we defined as follower
agents in this simulator. The environment can be constituted from the tools and packages
developed by PX4 [51] , which supports the connection with an embedded computer
through a standardized protocol called Mavlink. We can observe that in the following
Algorithm 1, we have to set the windy environment with the gazebo plugin that introduces
external disturbances, followed by the number of agents to be used, then the topics and
services are created for each vehicle. The Algorithm 1 summarizes the program developed.
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Algorithm 1 Algorithm to set the multiagent system tests.
Step 1 Download and install the PX4-Autopilot package from its repository.
Step 2 Compile and run the iris model in the “empty” world to Gazebo.
Step 3 Add the path to source the environment.
Step 4 Run the launch file multi_uav_mavros_sitl.launch. ; /* Modify the number of

agents and use the windy.world file */

Step 5 Define the communication matrix and set the initial states and the bounded
reference for the virtual leader agent.

Step 6 Define the execution time: exec_time = 90 seconds.
Step 7 Run the main node.
Step 8 if time ≤ 10 then

Set the agents in the initial states ; /* Use the internal simple PID control law. */

if time > 10 & time ≤ exec_time then
Compute the neighbor error and send the information to each agent
program;

Get the input control signal and the approximation function from the
neural network;

Publish the robust neural network consensus;
Save the states and control signals for each UAV agent in a .csv file;

end
else

Set the autolanding mode for all UAV agents
end

4.2. Simulation Scenarios

In these simulation results, we considered the configuration of the multiagent system
with N = 4 multirotor vehicles. Each aircraft had a mass m = 1.5 kg and the communication
graphs utilized in the simulations are represented in Figure 4.

Figure 4. Communication graph proposed for the multiagent systems.

For the communication graph of Figure 4, the adjacency and in-degree matrices were
defined as

A =


0 1 1 0
1 0 0 0
1 0 0 0
0 0 1 0

, D =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (37)

Moreover, the Laplacian and leader’s adjacency matrices were defined as

A0 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, L =


2 −1 −1 0
−1 1 0 0
−1 0 1 0
0 0 −1 1

 (38)
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In order to show the performance of our proposed approach, we present a comparative
analysis with two other consensus control strategies presented in the literature.

• Classical nominal distributed control. In this approach, a static control strategy is
used, given by

uzi = czKzezi , (39)

which uses only the coupling gain cz, the feedback gain Kz, and the neighborhood
error ezi [52].

• Adaptive neural network consensus control. In this strategy, a radial basis neural
network is employed to compensate the lumped disturbances. The consensus cooperative
strategy and the update law for the neural weights are presented below, where the
weights are updated using the conventional method [53]

uzi = czKzezi − ŴT
zi

Ψzi (zi)

˙̂Wzi = Γzi (Ψzi (zi)eT
zi

MzBz − kzi Ŵzi )
(40)

In comparison with our approach, notice that for the neural weights, the adaptation
law (40) includes the estimation of the weights given by the term Ŵzi .

4.2.1. Altitude Control

The mathematical model for the altitude dynamic of the ith agent can be written
as follows

żi =

[
0 1

−0.1093 −0.1862

]
zi +

[
0

1.2737

]
(uzi + dzi ) (41)

For the leader agent, we selected a bounded input given as r(t) = 6− 3 cos
( t

3.5
)
.

Table 2 presents the parameters used for this simulation scenario, including the control
gains, the gains of the robust estimator, and the gains for updating the neural weights.

Table 2. Parameters and initial conditions used in the simulation results.

Parameter Value Parameter Value

cz 2.7 kwz 0.17
Kz [−0.75 − 0.35] z1(0) [3.0 0.0]>

λ 13 z2(0) [2.7 0.0]>

Γ 0.13 z3(0) [2.5 0.0]>

k f z 0.3 z4(0) [3.7 0.0]>

A radial-based neural network was used, where the output of this neural network is
given in Equation (15). The neural network proposed had 25 neurons, where the centers of
the neural weights were chosen as

cenz =
⌈ 2 2 2 2 2 3.5 3.5 3.5 3.5 3.5 5 5 5 5 5 7.5 7.5 7.5 7.5 7.5 9 9 9 9 9
−0.6 −0.3 0 0.3 0.6 −0.6 −0.3 0 0.3 0.6 −0.6 −0.3 0 0.3 0.6 −0.6 −0.3 0 0.3 0.6 −0.6 −0.3 0 0.3 0.6

⌉
(42)

with b = 0.7 as the width of the hidden neuron. Furthermore, the initial weights of the
network were selected randomly.

As we can see in Figure 5, a classic controller was used that was stationary so the
tracking error performed by the agents was constant at 20 and 60 s. Furthermore, in
the zoomed rectangle, we can see that the vehicles oscillated more in comparison to the
reference virtual agent. In the second scenario in Figure 6, we can see the effects of the
adaptive term as the tracking error began to decrease. However, the update law to estimate
the parameters generated oscillations, specifically in the lower part, at 40 and 80 s. The
robust estimator was introduced in the third scenario and we can observe in Figure 7 how
the tracking error converged and the oscillations were reduced. In this work, to verify
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the effectiveness of the strategy proposed, we used two performance indices based on the
tracking error between each one of the follower agents and the leader agent.

Figure 5. Consensus with a traditional nominal distributed controller for 4 agents zn tracking a
virtual leader z0.

Figure 6. Consensus with adaptive term for 4 agents zn tracking a virtual leader z0.
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Figure 7. Consensus with our algorithm proposed for 4 agents zn tracking a virtual leader z0.

The indices used were the integral-time absolute error (ITAE) and integral-time square
error (ITSE). The performance values are shown in Table 3 where as can be seen, the values in
each index decrease and improve in our approach compared with the other methods.

Table 3. Table of comparison of the error-integral performance indexes.

Performance Index List

Controller UAV ITAE ITSE

Classical nominal distributed control

Agent 1 0.568 0.141

Agent 2 0.567 0.139

Agent 3 0.575 0.143

Agent 4 0.598 0.157

Classical nominal distributed control with adaptive term

Agent 1 0.465 0.083

Agent 2 0.463 0.081

Agent 3 0.467 0.085

Agent 4 0.494 0.091

Our proposed algorithm

Agent 1 0.259 0.025

Agent 2 0.251 0.023

Agent 3 0.263 0.027

Agent 4 0.267 0.029
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4.2.2. Translational Cooperative Control

The dynamic model in the horizontal plane formed by the X and Y axes can be written
as follows:

ẋi =

[
0 1
0 0

]
xi +

[
0
1

]
(uxi + dxi )

ẏi =

[
0 1
0 0

]
yi +

[
0
1

]
(uyi + dyi )

(43)

It is worth mentioning that from the consensus control signals uxi and uyi , the desired
reference angles φdi

and θdi
were obtained and used as control inputs for the quadrotor vehicles.

In order to follow a circular trajectory, the reference for the leader agent in the X and
Y axes were given as

rx(t) = (−3 cos
(

tπ
20

)
+ 3)− 3

ry(t) = −3 sin
( π

20
t
) (44)

The number of neurons was similar to the neural network for the height dynamics
and the width b = 0.7, and the centers of the neural weights were

cenx =
⌈ −6 −6 −6 −6 −6 −3 −3 −3 −3 −3 0 0 0 0 0 3 3 3 3 3 6 6 6 6 6
−0.6 −0.3 0 0.3 0.6 −0.6 −0.3 0 0.3 0.6 −0.6 −0.3 0 0.3 0.6 −0.6 −0.3 0 0.3 0.6 −0.6 −0.3 0 0.3 0.6

⌉
(45)

The parameters and the initial conditions changed the effect, when analyzing the
performance of the proposed algorithm as we can observe in Table 4. Note that the
centroids and parameters described in Table 4 for the X-axis dynamics were the same for
the Y-axis dynamics of the system.

Table 4. Parameters and initial conditions used in the horizontal example.

Parameter Value Parameter Value

cx 30 Γx 0.3
Kx [−0.2 − 0.01] λx 13

k f (x) 0.3 kw(x) 2.9
x1(0) [0.0 0.0]> x3(0) [0.0 0.0]>

x2(0) [−9.0 0.0]> x4(0) [−9.0 0.0]>

y1(0) [−3.0 0.0]> y3(0) [3.0 0.0]>

y2(0) [−3.0 0.0]> y4(0) [3.0 0.0]>

In Figure 8, we present the results of the simulations with the conditions mentioned
above. The reference of the virtual leader agent was a circular path in the X–Y plane
centered on [0, 0] and the circular references for each vehicle maintained an offset of their
centers of ±6 m. Last, in Figure 8a,b, we can observe the performance of the position of
the UAVs in the X and Y axes, respectively, where we can see two vehicles following the
circular trajectory in their respective offsets despite having a wind disturbance dx,y = 1 m

s
with a positive direction on the horizontal plane X-Y. In Figure 9, we show the point of
view of the trajectory of the follower agents, where we can observe how the tracking error
converges; a video showing the simulations in the Gazebo environment was shared at
https://youtu.be/i6Qp5MMB2Ws (accessed in 22 June 2022).

https://youtu.be/i6Qp5MMB2Ws
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Figure 8. Time development of the positions of the follower agents tracking the circular path.
(a) Consensus performance in the X-axis. (b) Consensus performance in the Y-axis.
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Figure 9. Consensus performance in horizontal plane X–Y.

5. Conclusions

A consensus protocol with a robust neural network estimator for the unknown ele-
ments and flock motion was proposed for multi-UAV systems to reduce the tracking error
subject to unknown external perturbations and unmodeled dynamics. The closed-loop
stability for the whole system was verified through Lyapunov’s theory, arriving at a result
of a uniformly ultimately bounded stability, guaranteeing that the estimation and tracking
errors were bounded. The consensus strategy and the update law for the neuronal weights
for each vehicle were obtained through the stability proof as well. In addition, the proposed
consensus protocol combined with the neural network allowed us to estimate and compen-
sate the unmodeled dynamics and external perturbations. To demonstrate the performance
of the proposed method, simulations were carried out in a virtual environment, where the
method was also compared against a nominal distributed controller as well as against a
consensus protocol in combination with an adaptive strategy where a traditional estimation
method was used and was verified with two performance indexes to measure the tracking
error of the multiagent system. The simulation results showed that the update of the
neuronal weights with the first-order filters and auxiliary matrices was more robust against
unmodeled dynamics, parameter uncertainties, and external disturbances. Future lines
of research will consider the implementation of the cooperative strategy developed with
multiple vehicles to observe the performance in real time and under external disturbances.
Moreover, the strategy proposed can be extended to deal with transportation tasks with
multiple vehicles.



Drones 2022, 6, 300 18 of 22

6. Stability Proof

Proof. In order to conduct the stability proof, we define the following variables, δz =
[δT

z1
, . . . , δT

zN
]T ∈ R2N , ez = [eT

z1
, . . . , eT

zN
]T ∈ R2N , εz = [εz1 , . . . , εzN ]

T ∈ RN , Ψz =

[ΨT
z1
(x1), . . . , ΨT

zN
(xN)]

T ∈ RNs , W̃z = diag(W̃zi ) ∈ RNs×N , and rz = [rz, . . . , rz]
T ∈ RN .

From the previous definitions and the tracking error dynamics for the ith agent given in
Equation (16), the dynamics of the global tracking error δz can be written as

δ̇z =
(

IN ⊗ Az + czH⊗ BzKz

)
δz +

(
IN ⊗ Bz

)(
W̃T

zi
Ψz(z) + εz − rz

)
. (46)

Now, consider the candidate Lyapunov function defined as

Vz =
1
2

δT
z

(
H⊗Mz

)
δz +

1
2

tr
{

W̃T
z Γ−1

z W̃z

}
(47)

where Γz = diag(Γ̄zi ) ∈ RNs×Ns, Γ̄zi = Γzi Ix×s ∈ Rs×s, and Γzi > 0, i = 1, . . . , N. The time
derivative of Vz along trajectories of (46) is obtained as

V̇z =δT
z

(
H⊗Mz

)[
(IN ⊗ Az + czH⊗ BzKz)δz + (IN ⊗ Bz)(W̃T

z Ψz(z) + εz − rz)
]

+ tr
{

W̃T
z Γ−1

z
˙̃Wz

} (48)

which can be rewritten as

V̇z =
1
2

δT
z

[
H⊗

(
Mz Az + AT

z Mz
)
− 2czH2 ⊗

(
MzBzBT

z Mz
)]

δz

+ δT
z

(
H⊗MzBz

)(
W̃T

z Ψz(z) + εz − rz

)
+ tr

{
W̃TΓ−1 ˙̃W

} (49)

From the trace properties, we can obtain the following

V̇z =
1
2

δT
z

[
H⊗

(
Mz Az + AT

z Mz
)
− 2czH2 ⊗

(
MzBzBT

z Mz
)]

δz + δT
z

(
H⊗MzBz

)(
εz − rz

)
+ tr

{
W̃T

z Ψz(z)δT
z (H⊗MzBz)− W̃z

TΓ−1
z

˙̂Wz

} (50)

Notice that the adaptation law for the weights of the ith agent presented in Equation (30),
can be rewritten in a global form as

˙̂Wz =Γz

[
Ψz(z)δT

z (H⊗MzBz)− kz Hz

]
(51)

where kz = diag(k̄zi ) ∈ RNs×Ns, k̄zi = kzi Is×s ∈ Rs×s, and kzi are positive constants,
and Hz = diag(Hzi ) ∈ RNs×N with Hzi defined in Equation (25). Substituting the global
adaptation law (51) in the derivative of the Lyapunov function (52), we obtain

V̇z =
1
2

δT
z

[
H⊗

(
Mz Az + AT

z Mz
)
− 2czH2 ⊗

(
MzBzBT

z Mz
)]

δz + δT
z

(
H⊗MzBz

)(
εz − rz

)
+ tr

{
W̃T

z kz Hz

} (52)

Defining Pz = diag(Pzi ) ∈ RNs×Ns, Qz = diag(Qzi ) ∈ RNs×N , and $z = diag($zi ) ∈
RNs×N , we can express Hz as

Hz =PzŴz −Qz

=− PzW̃z + $z.
(53)

Then, substituting Hz in Equation (52), we obtain the following
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V̇z =
1
2

δT
z

[
H⊗

(
Mz Az + AT

z Mz
)
− 2czH2 ⊗

(
MzBzBT

z Mz
)]

δz + δT
z

(
H⊗MzBz

)(
εz − rz

)
− tr

{
W̃T

z kzPzW̃ + W̃T
z kz$z

} (54)

From Young’s inequality, for the second term in (54), we have

V̇z =
1
2

δT
z

[
H⊗

(
Mz Az + AT

z Mz
)
− 2czH2 ⊗

(
MzBzBT

z Mz
)]

δz

+
1
2

δT
z

(
H⊗MzBz

)(
H> ⊗ B>z Mz

)
δz − tr

{
W̃T

z kzPzW̃ + W̃T
z kz$z

}
+

1
2

(
εz − rz

)>(
εz − rz

)
=

1
2

δT
z

[
H⊗

(
Mz Az + AT

z Mz
)
− (2cz + 1)H2 ⊗

(
MzBzBT

z Mz
)]

δz

− tr
{

W̃T
z kzPzW̃z + W̃T

z kz$z

}
+

1
2

(
εz − rz

)>(
εz − rz

)
(55)

In order to simplify, we use a unitary matrix U such that UTHU = Λz = diag(λz1 , . . . ,
λzN ), where λzi are the eigenvalues of matrix H, which is positive definite. Let us intro-
duce a state transformation given as ξz = (UT ⊗ In)δz with ξz = [ξT

z1
, . . . , ξT

zN
]T . Then,

introducing the state transformation in Equation (55), we obtain

V̇z =
1
2

ξT
z

[
Λ⊗

(
Mz Az + AT

z Mz
)
− (2cz + 1)Λ2 ⊗

(
MzBzBT

z Mz
)]

ξz

− tr
{

W̃T
z kzPzW̃z + W̃T

z kz$z

}
+

1
2

(
εz − rz

)>(
εz − rz

) (56)

which is rewritten in an expanded form as

V̇z =
1
2

N

∑
i=1

λzi ξ
>
zi

[
Mz Az + AT

z Mz − (2cz + 1)λzi MzBzBT
z Mz + Nz

]
ξzi −

1
2

N

∑
i=1

λzi ξ
>
zi

Nzξzi

−
N

∑
i=1

kzi W̃
T
zi

Pzi W̃zi −
N

∑
i=1

kzi W̃
T
zi

$zi +
1
2

(
εz − rz

)>(
εz − rz

)
≤1

2

N

∑
i=1

λzi ξ
>
zi

[
Mz Az + AT

z Mz − (2cz + 1)min(λzi )MzBzBT
z Mz + Nz

]
ξzi

− 1
2

min
i=1,...,N

(λzi )
N

∑
i=1

ξ>zi
Nzξzi −

N

∑
i=1

kzi W̃
T
zi

Pzi W̃zi −
N

∑
i=1

kzi W̃
T
zi

$zi + ε+z

(57)

where 1
2‖ εz − rz ‖2 ≤ ε+z with ε+z a positive scalar. Let us define the coupling gain cz as

cz ≥
1

2 min
i=1,...,N

(λzi )
− 1

2
, (58)

such that (2cz + 1)min(λzi ) ≥ 1. Since the part (Az, Bz) is stabilizable, then the existence
of the solution matrix Mz is guaranteed, such that

Mz Az + AT
z Mz + Nz − (2cz + 1)min(λzi )MzBzBT

z Mz ≤ Mz Az + AT
z Mz + Nz −MzBzBT

z Mz ≤ 0. (59)

Then, from Equation (59), we can rewrite (57) as

V̇z ≤ −
1
2

min
i=1,...,N

(λzi )
N

∑
i=1

ξ>zi
Nzξzi −

N

∑
i=1

kzi W̃
T
zi

Pzi W̃zi −
N

∑
i=1

kzi W̃
T
zi

$zi + ε+z (60)
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From Lemma 1, the matrices Pzi are positive definite. Then, defining λ
min

(Pzi ) as the mini-

mum eigenvalue of Pzi , i = 1, . . . , N, we obtain

V̇z ≤ −
1
2

min
i=1,...,N

(λzi )
N

∑
i=1

ξ>zi
Nzξzi − k+z λ

min
(Pzi )

N

∑
i=1

W̃T
zi

W̃zi −
N

∑
i=1

kzi W̃
T
zi

$zi + ε+z (61)

Removing the summations and grouping the terms, we obtain

V̇z ≤ −
1
2

min
i=1,...,N

(λzi )ξ
>
z (IN ⊗ Nz)ξz − k+z λ

min
(Pw)tr

{
W̃>z W̃z

}
+
∣∣∣tr{W̃T

z kz$z

}∣∣∣+ ε+z , (62)

From the definition of ξz, we obtain by the Cauchy–Schwartz inequality and (62) the
following

V̇z ≤ −
1
2

min
i=1,...,N

(λzi )δ
>
z (IN ⊗ Nz)δz − k+z λ

min
(Pzi )

∥∥W̃
∥∥2

F + k+zF
$+z
∥∥W̃
∥∥

F + ε+z (63)

where k+zF
= ‖ kz ‖F, ‖ $z ‖F ≤ $+zF

with $+zF
a positive constant. By Young’s inequality

ab ≤ a2

2η + ηb2

2 with η > 0, we obtain

V̇z ≤ − 1
2 min

i=1,...,N
(λzi )λmin(Nz)‖δz‖2 −

(
k+z λ

min
(Pzi )− 1

2ηz

)∥∥W̃
∥∥2

F +
ηz

(
k+zF

$z

)2

2 + ε+z

≤ −αzVz + βz

(64)

where

αz = min

 λmin(H)λmin(Nz)

λmax(H)λmax(Mz)
,

2
(

k+z λ
min

(Pzi )− 1
2ηz

)
σmax

(
Γ−1

z

)
, βz =

ηz(k+zF
$z)2

2
+ ε+z (65)

Considering the extended Lyapunov theory, it is possible to conclude that δz and W̃ are
uniformly ultimately bounded, and converge to a small compact set given by

Ωz :=

δz, W̃
∣∣ ‖δz‖ ≤

√
2

λmin(H)λmin(Mz)

βz

αz
,
∥∥W̃
∥∥ ≤√√√√ 2

σmin

(
Γ−1

z

) βz

αz

 (66)

Therefore, the tracking errors δzi for the ith agent are uniformly ultimately bounded.
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