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Abstract: Due to the quadrotor’s underactuated nature, suspended payload dynamics, parametric
uncertainties, and external disturbances, designing a controller for tracking the desired trajectories
for a quadrotor that carries a suspended payload is a challenging task. Furthermore, one of the
most significant disadvantages of designing a controller for nonlinear systems is the infinite-time
convergence to the desired trajectory. In this paper, a finite-time neuro-sliding mode controller
(FTNSMC) for a quadrotor with a suspended payload that is subject to parametric uncertainties and
external disturbances is designed. By constructing a finite-time sliding mode controller, the quadrotor
can follow the reference trajectories in finite time. Furthermore, despite time-varying nonlinear
dynamics, parametric uncertainties, and external disturbances, a neural network structure is added
to the controller to effectively reduce chattering phenomena caused by high switching gains, and
significantly reduce the size of the control signals. Following the completion of the controller design,
the system’s stability is demonstrated using the Lyapunov stability criterion. Extensive numerical
simulations with various scenarios are run to demonstrate the effectiveness of the proposed controller.

Keywords: finite-time stability; neural network; quadrotor UAV; sliding mode control

1. Introduction

Unmanned system research is expanding quickly as a result of recent technology
developments that have led to lower costs and smaller equipment [1]. The most popular of
these technologies is unmanned aerial vehicles (UAVs), which have a larger range of civil
and military applications [2,3]. The quadrotor is a type of UAV that shows great potential
and is recognized as an ideal UAV by most research studies because of features such as
simple construction, excellent maneuverability, and low cost [4]. Studies on UAVs and load-
carrying applications are quickly expanding as a result of their widespread deployment.
Due to its great maneuverability, ability to take off and land vertically, and capacity to
carry payloads almost as heavy as its own body weight, the quadrotor is an excellent
choice for autonomous transportation [5]. There are numerous ways to attach loads to
quadrotor UAVs, including using a robotic arm to pick up the weight [6], mounting it to
the quadrotor [7], and attaching it to the quadrotor using a cable [8,9]. The final technique,
a quadrotor with a payload, offers a number of benefits over the first two: the construction
is simpler, there are fewer restrictions on the size and form of the cargo, and it does not
require landing for loading or unloading, which can save time and energy throughout the
transport process. Moreover, using a robotic arm or attaching the payload directly to the
quadrotor can severely limit the quadrotor’s ability to land vertically.

Due to the aforementioned benefits, the relevance of carrying a suspended payload is
increased by its usage in civil applications, including the delivery of first-aid supplies to
disaster zones, cargo delivery, and agricultural spraying [5].
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Despite its advantages, the suspended load-carrying quadrotor system is nonlinear,
strongly coupled, and underactuated [10]. Additionally, unknown external disturbances
and parametric uncertainties degrade the system’s control performance. Considering these
difficulties, developing a powerful controller for the the suspended load-carrying quadrotor
system is difficult.

1.1. Related Work

Different control strategies were proposed in the literature to control a quadrotor pay-
load system. In [11], a PID controller was proposed, feedback linearization-based controller
was established in [9], and a backstepping-based nonlinear controller was presented in [12].
To actively regulate the position of the load, [8] suggested a nonlinear geometric control
technique. In [13], the construction of a PID-based geometric controller was described that
allowed for the payload to asymptotically follow a predetermined trajectory for both the
payload position and attitude. In order to resolve the challenges brought on by the intense
interaction of the system states and underactuated features of the dynamic system, in [14],
the controller design was split into two parts, the UAV’s attitude control design, and the
UAV’s position control and payload’s swing motion control design. The second part’s
control rule, which takes into account the suppression of the payload’s swing motion, was
developed using the partial feedback linearization process. With an underactuated quadro-
tor payload system, wind disturbances were also considered in [15]. A path-following
controller based on an uncertainty and disturbance estimator was suggested. In addition
to wind disturbances, load variations were also taken into account in [16]. To deal with
transient disturbance and estimate the system characteristics, an adaptive robust controller
for dynamic subsystems was designed. For the kinematic subsystem, a global sliding
mode controller is used to produce the necessary attitude angles for following the intended
3D trajectory.

The above control strategies are founded on theories of exponential or asymptotic
stability. In reality, obtaining rapid tracking may not be possible with such approaches. To
overcome this, a finite-time control strategy was devised for several systems in the litera-
ture [17]. For a class of nonstrict feedback nonlinear systems that contain input saturation,
unidentified smooth functions, and error limitations, the challenge of finite-time control
using neural networks is studied in [18]. The stochastically finite-time control problem
for uncertain multiple-input, multiple-output (MIMO) stochastic nonlinear systems is ad-
dressed in [19] using a nontriangular solution. In [20], a finite-time control system using
the nonsingular fast terminal sliding mode (NFTSM) and finite-time disturbance observer
(FDO) approaches is developed to tackle the precise trajectory tracking issue of a surface ve-
hicle affected by complicated marine environments. The adaptive finite-time decentralized
control issue for nonlinear large-scale systems with time-varying output constraints and
input saturation is discussed in [21]. According to the aforementioned research, finite-time
control is a practical and efficient approach that, in theory, ensures the controlled system’s
rapid transient response and resilience and exactly satisfies the demand for the transient
and robust performance of nonlinear systems.

1.2. Contributions of This Work

The sliding mode controller (SMC) is a robust control method that is regularly applied
to nonlinear systems due to its benefits, such as its insensitivity to parameter variations,
the avoidance of external disturbances, and quick dynamic responses [22]. Despite these
advantages, it is extremely difficult to design an efficient controller due to drawbacks such as
the chattering effect in the control signal, the requirement to accept uncertainties within
a certain range, and the controller’s adaptability to significant parameter changes and
external disturbances [23]. Many different methods were developed in the literature to
successfully eliminate this phenomenon [24–26]. With the recent developments in the area
of artificial intelligence, artificial-intelligence-based controllers are being developed for
different nonlinear systems in order to eliminate these disadvantages of SMC [27–31]. Any
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function may be approximated using neural networks [32,33]. It can both estimate the
nonlinearity of the systems and lower the amplitude of the SMC’s chattering.

In a previous work [34], we designed a novel neural-network-based SMC to control the
quadrotor payload system and eliminate the disadvantages of SMC. In order to improve our
previous work by using the above-mentioned advantages regarding finite-time stability, a
finite-time neuro-sliding mode controller structure for quadrotor UAV carrying a suspended
payload is proposed. The main contributions of this study are listed as follows:

1. Compared to many studies in the literature [10,35,36], a comprehensive nonlinear
mathematical model of the quadrotor payload system was established by taking into
account external disturbances and parameter uncertainties.

2. A novel finite-time neuro-sliding mode controller design is proposed for a quadrotor
transporting a suspended payload. The proposed controller also takes into account
suspended payload dynamics, unlike the system discussed in [37]. It also has a neural-
network component when compared to the study in [38]. Thus, a more comprehensive
control structure was obtained compared to systems using only SMC as in [39]. While
the proposed controller uses the robust structure of the SMC, it also successfully
learns the unknown dynamics with the help of the neural-network component, over-
comes the disadvantages of the SMC, unlike in studies such as [40], and ensures that
the system states reach the desired trajectory, or their errors reach zero or a close
neighbourhood of zero in finite time. Without finite-time analysis, stability is shown
mathematically when time goes to infinity; we show that neuro-sliding mode control
converges in finite time to be able to use it in practice.

3. Comprehensive stability analysis with Lyapunov stability theory for the proposed con-
troller is derived to demonstrate the payload-carrying quadrotor’s finite-time stability.

The paper is structured as follows. Section 2 provides a basic overview of quadrotor
dynamics, payload dynamics, neural networks, and finite-time stability. In Section 3, the
suggested neural-network-based finite-time sliding-mode controller for quadrotor UAV car-
rying suspended payload is established, and the efficacy of the technique is demonstrated
using numerical simulations in Section 4. Section 5 concludes with some remarks.

Next, the background and preliminaries are given.

2. Theoretical Background and Preliminaries

This section provides a theoretical overview of quadrotor dynamics, payload dynamics,
finite-time stability, and neural networks. Moreover, some useful definitions and lemmas
are given to construct the proposed controller properly.

2.1. Preliminaries

In this section, the following definitions and lemmas are provided to properly model
the proposed control structure in a later section.

Definition 1 ([41]). Nonlinear system ẋ = f (x, u) is semiglobal practical finite-time stable
(SGPFS) in equilibrium point x = 0 if there is a constant µ > 0 with x(t0) = x0 and settling time
T(µ, x0) < ∞ ensuring ‖x(t)‖ < µ, for all t > t0 + T.

Lemma 1 ([41]). Nonlinear system ẋ = f (x, u) is SGPFS if there is a positive definitive function
V(x) and constants c > 0, 0 < λ < 1, and δ > 0 that ensure:

V̇(x) ≤ −cVλ(x) + δ, t ≥ 0 (1)

Reaching time is given for ∀0 < γ ≤ 1 as follows:
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Tr =
1

(1− λ)γc

(
V1−λ(x(0))−

(
δ

(1− γ)c

) 1−λ
λ

)
(2)

Lemma 2 ([42]). For ζi ∈ <, i = 1, ..., n, 0 < p < 1, the following inequality holds:(
n

∑
i=1
|ζi|
)p

≤
n

∑
i=1
|ζi|p ≤ n1−p

(
n

∑
i=1
|ζi|
)p

(3)

Lemma 3 ([42]). The following Young’s inequality is true for x, y ≥ 0 and p, q > 1 such that
1
p + 1

q = 1 :

xy ≤ xp

p
+

yq

q
(4)

Lemma 4 ([42]). The following inequality holds where τ, υ are real variables and a, b, c > 0 :

|τ|a|υ|b ≤ a
a + b

c|τ|a+b +
b

a + b
c
−a
b |υ|a+b (5)

2.2. Quadrotor Dynamics

The dynamic equations of a quadrotor are established in this section with the following
assumptions [43]:

1. The quadrotor’s construction is rigid and symmetrical.
2. The center of gravity of the quadrotor corresponds with the origin of the body axis.
3. The propellers are rigid.
4. Thrust and drag forces are related to the squares of the propeller’s speed.
5. The UAV’s roll and pitch angles are presumed to be operated within a range of

(−π/2, π/2), and yaw angle within (−π, π).

A rotor on each arm of the quadrotor controls four fundamental movements that
allow for it to achieve the required position and attitude. Four input signals are specified
for the quadrotor’s four motions. The initial input is u1, which changes the speed of all
propellers in the same proportion. u1 controls the vertical movement of the quadrotor in
the z axis. The second input signal, u2, causes a torque along the body’s x axis by changing
the speed of the left propeller while also changing the speed of the right propeller by an
equal amount. As a result, roll movement along the x axis obtained. The third input, u3,
which uses the same concept as u2, adjusts the speed of the propellers on the front and rear
rotors at the same time, leading in pitching motion along the y axis. The fourth input, u4,
simultaneously decreases or raises the speed of the left and right propellers while raising or
reducing the speed of the rear and front propellers. As a result, yaw movement is achieved,
which is the quadrotor turning around its own axis.

Because the rotors were symmetrically positioned, gyroscopic effects and aerodynamic
torques balance each other out in flight, as seen in Figure 1. Two frames of reference are
specified to express the quadrotor’s position and attitude. The first frame of reference is the
Earth frame, which is indicated by E{x, y, z} and represents the position of the vehicle’s
center of gravity. The other is the fixed body frame, which is represented by B{x, y, z}.
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Figure 1. Quadrotor model with payload.

The dynamic quadrotor UAV model may be formed with parametric uncertainties
and unknown external disturbances, and the model is as follows [44,45]:

ẍ =
1
m
(cos φ sin θ cos ψ + sin φ sin ψ)u1 −

K1 ẋ
m + ∆m

+ Dx

ÿ =
1
m
(cos φ sin θ sin ψ + sin φ cos ψ)u1 −

K2ẏ
m + ∆m

+ Dy

z̈ =
1
m
(cos φ cos θ)u1 − g− K3ż

m + ∆m
+ Dz

φ̈ = θ̇ψ̇
Iy + ∆Iy − Iz − ∆Iz

Ix − ∆Ix
+

Jr

Ix − ∆Ix
Ωr θ̇ +

l
Ix − ∆Ix

u2 −
K4l

Ix − ∆Ix
φ̇ + Dφ (6)

θ̈ = ψ̇φ̇
Iz + ∆Iz − Ix − ∆Ix

Iy − ∆Iy
+

Jr

Iy − ∆Iy
Ωrφ̇ +

l
Iy − ∆Iy

u3 −
K5l

Iy − ∆Iy
θ̇ + Dθ

ψ̈ = φ̇θ̇
Ix + ∆Ix − Iy − ∆Iy

Iz − ∆Iz
+

1
Iz − ∆Iz

u4 −
K6

Iz − ∆Iz
ψ̇ + Dψ

where (φ, θ, ψ) are Euler angles indicating roll, pitch and yaw angles; (x, y, z) are posi-
tions of the UAV in the space; m is the UAV’s total mass; g is gravity acceleration; l is
the space from the center of the UAV to the propellers; (Ix, Iy, Iz) are inertias with re-
spect to axes; Jr is the inertia of the propeller; Ki(i = 1, 2, . . . , 6) are the drag coefficients;
Ωr = Ω1 −Ω2 + Ω3 −Ω4 , Ωi are the angular velocities of the propellers, ui(i = 1, 2, 3, 4)
are the virtual inputs given in (7); Di(i = x, y, z, φ, θ, ψ) are external disturbances; ∆ denotes
parametric uncertainties.

u1 = (F1 + F2 + F3 + F4)

u2 = (−F2 + F4)

u3 = (−F1 + F3)

u4 =
d(−F1 + F2 − F3 + F4)

b

(7)

where Fi(i = 1, 2, 3, 4) are rotor thrusts, b is the lift coefficient, d is the force-to-moment
scaling vector.
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2.3. Payload Dynamics

In this study, the effects of the load on the quadrotor in three dimensions are dy-
namically modeled and added to the quadrotor’s own dynamics, and the total dynamic
equations of the system are obtained. The payload model was developed on the follow-
ing assumptions:

1. The payload may not rotate along the cable axis; therefore, payloads have only two
degrees of freedom in tilting directions.

2. The load is suspended from a weightless, nonelastic cable, which is rigid.
3. The cable junction was placed at the quadrotor’s centre of mass, and the tensile force

of the cable does not directly impact the quadrotor’s rotating motion.

As seen in Figure 2, where the payload was modeled as a three-dimensional point
pendulum mass, the equations defining the dynamics of the load were derived by taking
into account the αx longitudinal suspension angles in the x− z plane and the αy longitudinal
angles and forces in the y− z plane. The following are the forces generated by the load on
the respective axes [46]:

Figure 2. Point mass payload model.

Fox = mLL
(

α̈x cos αy cos αx − α̇2
x cos αy sin αx

)
Foy = mLL

(
α̈y cos αx cos αy − α̇2

y cos αx sin αy

)
(8)

Foz = mLLα̈x cos αy sin αx + mLLα̇2
x cos αy cos αx

+ mLLα̈y cos αx sin αy + mLLα̇2
y cos αx cos αy −mLg

where mL is the payload’s mass; Fox, Foy, Foz are the payload’s forces effect on quadrotor in
three-dimensional space shown in Figure 2.
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Hence, the entire system dynamics are as follows:

ẍ =
1

(m + mL)
(cos φ sin θ cos ψ + sin φ sin ψ)u1 −

K1 ẋ
(m + mL + ∆m)

− Fox

(m + mL)
+ Dx

ÿ =
1

(m + mL)
(cos φ sin θ sin ψ + sin φ cos ψ)u1 −

K2ẏ
(m + mL + ∆m)

−
Foy

(m + mL)
+ Dy

z̈ =
1

(m + mL)
(cos φ cos θ)u1 −

mg
(m + mL)

− K3ż
(m + mL + ∆m)

+
Foz

(m + mL)
+ Dz (9)

φ̈ = θ̇ψ̇
Iy + ∆Iy − Iz − ∆Iz

Ix − ∆Ix
+

Jr

Ix − ∆Ix
Ωr θ̇ +

l
Ix − ∆Ix

u2 −
K4l

Ix − ∆Ix
φ̇ + Dφ

θ̈ = ψ̇φ̇
Iz + ∆Iz − Ix − ∆Ix

Iy − ∆Iy
+

Jr

Iy − ∆Iy
Ωrφ̇ +

l
Iy − ∆Iy

u3 −
K5l

Iy − ∆Iy
θ̇ + Dθ

ψ̈ = φ̇θ̇
Ix + ∆Ix − Iy − ∆Iy

Iz − ∆Iz
+

1
Iz − ∆Iz

u4 −
K6

Iz − ∆Iz
ψ̇ + Dψ

2.4. Neural Network

In this work, a two-layer neural network (NN) structure was used to estimate uncertain
dynamics as shown in Figure 3.

Figure 3. Neural-network structure.

The first layer is hidden and contains adjustable hidden weights, W ∈ R(Vh×ko), and
the second layer consists of randomly determined constants, V̂ ∈ R(ki×Vh) where ki is the
input count and ko is the output count. Vh represents the number of neurons in the hidden
layer. Estimation function f (x) can be given as f (x) = WTσ

(
V̂T x̄

)
+ ε where ε is the

bounded NN estimation error that satisfies ‖ε‖ < εM, and σ(•) : Ra → RL is the activation
function for the hidden layer. Because input-layer weights V̂ ∈ Rki×Vh are randomly
chosen, for any input x, the estimation is viable; hence, activation function, σ(x) = σ

(
V̂T x̄

)
,

establishes a stochastic base in compact set S [47]. x̄T = [bi xT ], where bi > 0 is a bias term
of input that lets threshold value to be in weight matrix V̂. As an activation function, a
tangent hyperbolic function in the form of σ(x) = 1−e−2x

1+e−2x , was chosen in this study for all
neurons. It was also assumed that target weights were limited to a known positive value
WM satisfying ‖W‖F < WM on any compact subset of Rn [48]. Moreover, ‖•‖ and ‖•‖F are
considered as the vector and Frobenius norm, respectively [47].

Next, the controller design is given.
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3. Controller Design

The suggested controller is outlined here. The proposed controller takes into considera-
tion quadrotor dynamics, and the unpredictable dynamics caused by external disturbances
and parametric uncertainties. To reduce the chattering influence of the SMC, the unknown
dynamics are learned using two-layer NN. Because of the neural-network component,
the controller can successfully govern the system without understanding the quadrotor
dynamics. Furthermore, utilizing the updated learning structure, system dynamics may
be appropriately updated even when there are uncertainties that change over time. With
the assistance of a finite-time control system, the trajectory errors converge to zero in a
finite time.

To enable effective controller design, the dynamic equations obtained in (9) are sub-
jected to the following transformation [45]:

z̈ = f1 + g1u1 + ∆ f1{
ẍ = f2 + g2u2 + ∆ f2

φ̈ = f3 + g3u2 + ∆ f3{
ÿ = f4 + g4u3 + ∆ f4

θ̈ = f5 + g5u3 + ∆ f5

ψ̈ = f6 + g6u4 + ∆ f6

(10)

where

f1 = − mg
(m + mL)

− K3ż
(m + mL)

+
Foz

(m + mL)
+ Dz

∆ f1 =
∆mK3ż

(m + mL)(m + ∆m + mL)
, g1 =

cos φ cos θ

(m + mL)

f2 =
(cos φ sin θ cos ψ + sin φ sin ψ)u1

(m + mL)
− K1 ẋ

(m + mL)
− Fox

(m + mL)
+ Dx

∆ f2 =
∆mK1 ẋ

(m + mL)(m + ∆m + mL)
, g2 = 0

f3 =

(
θ̇ψ̇
(

Iy − Iz
)
+ Jr θ̇Ωr − K4lφ̇

)
Ix

+ Dφ, g3 =
l
Ix

∆ f3 =
−
(
θ̇ψ̇
(

Iy − Iz
)
+ Jr θ̇Ωr − K4lφ̇

)
∆Ix

Ix(∆Ix + Ix)
+ θ̇ψ̇

(
∆Iy − ∆Iz

∆Ix + Ix

)
f4 =

(cos φ sin θ sin ψ + sin φ cos ψ)u1

(m + mL)
− K2ẏ

m + mL
−

Foy

m + mL
+ Dy (11)

∆ f4 =
∆mK2ẏ

(m + mL)(m + ∆m + mL)
, g4 = 0

f5 =

(
ψ̇φ̇(Iz − Ix) + Jrφ̇Ωr − K5lθ̇

)
Iy

+ Dθ , g5 =
l
Iy

∆ f5 =
−
(
ψ̇φ̇(Iz − Ix) + Jrφ̇Ωr − K5lθ̇

)
∆Iy

Iy
(
∆Iy + Iy

) + ψ̇φ̇

(
∆Iz − ∆Ix

∆Iy + Iy

)
f6 =

(
φ̇θ̇
(

Ix − Iy
)
− K6ψ̇

)
Iz

+ Dψ, g6 =
1
Iz

∆ f6 =
−
(
φ̇θ̇
(

Ix − Iy
)
− K6ψ̇

)
∆Iz

Iz(∆Iz + Iz)
+ ψ̇φ̇

(
∆Ix − ∆Iy

∆Iz + Iz

)
Moreover, sliding surface functions are selected as follows [49,50]:
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s1 = a11(żd − ż) +
t∫

0

(a12signα1(zd − z) + a11signα2(żd − ż))dt

s2 = a21(ẋd − ẋ) + a23(φ̇d − φ̇) +

t∫
0

(a22signα1(xd − x) + a21signα2(ẋd − ẋ))dt

+

t∫
0

(a24signα1(φd − φ) + a23signα2(φ̇d − φ̇))dt (12)

s3 = a31(ẏd − ẏ) + a33
(
θ̇d − θ̇

)
+

t∫
0

(a32signα1(yd − y) + a31signα2(ẏd − ẏ))dt

+

t∫
0

(
a34signα1(θd − θ) + a33signα2

(
θ̇d − θ̇

))
dt

s4 = a41(ψ̇d − ψ̇) +

t∫
0

(a42signα1(ψd − ψ) + a41signα2(ψ̇d − ψ̇))dt

where α1 ∈ (0, 1), α2 = 2α1
α1+1 , and ai,j(i, j = 1, 2, 3, 4) are the coefficients of sliding surfaces

that are described later. signρ is the representation of signρ(x) = |x|ρsign(x) where ρ > 0.

3.1. Coefficients of Sliding Surfaces

The coefficients of the sliding manifolds in (12) are derived using the same Hurwitz
stability criterion as in [45,51], and they are provided as follows:

a11 > 0, a12 > 0, a41 > 0, a42 > 0

a21 = − m
u1 cos ψ

(r11r12 + r21r31 + r32r11)

a22 = − m
u1 cos ψ

(r11r21r31)

a23 = 1, a24 = r12 + r21 + r31

a31 =
m

u1 cos φ cos ψ
(r12r22 + r22r32 + r32r12)

a32 =
m

u1 cos φ cos ψ
(r12r22r32)

a33 = 1, a34 = r12 + r22 + r32

(13)

where rij(i, j = 1, 2, 3, 4) are the design parameters that are constant.

3.2. Ftnsmc Controller Design

In real-world systems, neural networks (NNs) are always used as one of the on-
line estimation methodologies for dealing with unknown nonlinear uncertainties. The
nonlinear quadrotor dynamics in (10), including parametric uncertainties and external
disturbances, are considered to be unknown in this section. Unknown nonlinear dynamics
fi ∀i = 1, 2, 3, 4, 5, 6 are estimated as follows:

fi = ΘT
i σ
(

HT
i vi

)
+ χi (14)

where Θi ∈ <2×h are the required limited NN weights meeting kn
2

4
∑

i=1
‖Θi ‖2 ≤ ΘM and

ΘM is a positive constant, kn > 0 represents the positive NN learning rate that is specified
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later, h = 8 is the number of neurons in the hidden layer, σ(Hivi) represents the basis
function, and HT

i ∈ <h×n represents the mapping between the inputs and the hidden-layer

neurons, where n = 7 is the number of inputs to the NN, 1
2

4
∑

i=1
ai1χ2

i ≤ χM with χM being a

positive constant, and χi being the limited NN reconstruction error fulfilling.
Θ̂i represents the unknown NN weights, and the approximated uncertain dynamics

are given by:
f̂i = Θ̂T

i σ
(

HT
i vi

)
(15)

The NN weight estimation error is defined as Θ̃i = Θi − Θ̂i, and the estimation
error dynamics are ˙̃Θi = − ˙̂Θi. The error in dynamics estimation can, therefore, be de-
scribed as follows:

f̃i = fi − f̂i

= ΘT
i σ
(

HT
i vi

)
+ χi − Θ̂T

i σ
(

HT
i vi

)
= Θ̃T

i σ
(

HT
i vi

)
+ χi

(16)

The estimated NN weights were adjusted using the adaption law shown below:

˙̂Θi = −knΘ̂i + siai1σ
(

HiWi
)
, ∀i = 1, 2, 3, 4. (17)

where kn > 0 is the learning rate.
An exponential reaching law is provided to achieve appropriate steady-state behavior [52]:

ṡi = −η1si − η2signβ(si) (18)

where η1 > 0,η2 > 0 and β ∈ (0, 1).
Taking the derivative of sliding surface si defined in (12) yields:

ṡ1 = a11(z̈d − z̈) + a12signα1(zd − z) + a11signα2(żd − ż)
ṡ2 = a21(ẍd − ẍ) + a22signα1(xd − x) + a21signα2(ẋd − ẋ)
+ a23(φ̈d − φ̈) + a24signα1(φd − φ) + a23signα2(φ̇d − φ̇)

ṡ3 = a31(ÿd − ÿ) + a32signα1(yd − y) + a31signα2(ẏd − ẏ)
+ a33

(
θ̈d − θ̈

)
+ a34signα1(θd − θ) + a33signα2

(
θ̇d − θ̇

)
ṡ4 = a41(ψ̈d − ψ̈) + a42signα1(ψd − ψ) + a41signα2(ψ̇d − ψ̇)

(19)

The dynamics of the system, including parametric uncertainties and external distur-
bances, were considered to be unknown and they were estimated with the NN in this work.
Therefore, by inserting the estimation function in (16) for all the dynamics, and taking the
reaching law into consideration in (18) for ṡi = 0 control signals can be written as follows:

u1 =
1

a11

{
a11

(
z̈d − f̂1

)
+ a12 s ignα1(zd − z) + a11 s ignα2(żd − ż) + η1s1 + η2signβ(s1)

}

u2 =
1

a21 + a23


a21

(
ẍd − f̂2

)
+ a22signα1(xd − x) + a21signα2(ẋd − ẋ)

+ a23

(
φ̈d − f̂3

)
+ a24signα1(φd − φ) + a23signα2(φ̇d − φ̇) + η1s2 + η2signβ(s2)

 (20)

u3 =
1

a31 + a33

a31

(
ÿd − f̂4

)
+ a32signα1(yd − y) + a31signα2(ẏd − ẏ) + a33

(
θ̈d − f̂5

)
+ a34signα1(θd − θ) + a33signα2

(
θ̇d − θ̇

)
+ η1s3 + η2signβ(s3)


u4 =

1
a41

{
a41

(
ψ̈d − f̂1

)
+ a42signα1(ψd − ψ) + a41signα2(ψ̇d − ψ̇) + η1s4 + η2signβ(s4)

}
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3.3. Stability Analysis

Theorem 1. Consider nonlinear System (10) with the sliding surface dynamics in (19) , the
controller inputs as in (20), and the estimated dynamics applied to the system, and the estimated NN
weights tuned with the adaptation law (17), All NN weight estimation errors and sliding surfaces
were SGPFS, and the tracking error converged in a finite time to a small neighborhood of the origin.

Proof of Theorem 1. Define the Lyapunov candidate function of all sliding surfaces, si and
NN weight estimation errors Θ̃i as follows:

V =
4

∑
i=1

(
1
2

si
2 +

1
2

(
Θ̃T

i Θ̃i

))
(21)

by taking Derivative (21) and inserting the dynamics in (10), and considering that ˙̃Θi = − ˙̂Θi
to obtain:

V̇ =
4

∑
i=1

(
si ṡi + Θ̃T

i
˙̃Θi

)
= s1 ṡ1 + s2 ṡ2 + s3 ṡ3 + s4 ṡ4 + Θ̃T

1
˙̃Θ1 + Θ̃T

2
˙̃Θ2 + Θ̃T

3
˙̃Θ3 + Θ̃T

4
˙̃Θ4

= s1
(
a11(z̈d − f1 + g1u1 + ∆ f1) + a12signα1(zd − z) + a11signα2(żd − ż)

)
+ s2

(
a21(ẍd − f2 + g2u2 + ∆ f2) + a22signα1(xd − x) + a21signα2(ẋd − ẋ)
+ a23(φ̈d − f3 + g3u2 + ∆ f3) + a24signα1(φd − φ) + a23signα2(φ̇d − φ̇)

)

+ s3

(
a31(ÿd − f4 + g4u3 + ∆ f4) + a32signα1(yd − y) + a31signα2(ẏd − ẏ)
+ a33

(
θ̈d − f5 + g5u3 + ∆ f5

)
+ a34signα1(θd − θ) + a33signα2

(
θ̇d − θ̇

))
+ s4

(
a41(ψ̈d − f6 + g6u4 + ∆ f6) + a42signα1(ψd − ψ) + a41signα2(ψ̇d − ψ̇)

)
− Θ̃T

1
˙̂Θ1 − Θ̃T

2
˙̂Θ2 − Θ̃T

3
˙̂Θ3 − Θ̃T

4
˙̂Θ4 (22)

Using the controller inputs in (20), dynamic estimation error function in (16) and
reaching law in (18), (22) can be rewritten in a compact form as:

V̇ = −
4

∑
i=1

η1s2
i −

4

∑
i=1

η2|si|
β+1

+
4

∑
i=1

siai1 f̃1 −
4

∑
i=1

Θ̃T
i

˙̂Θi

= −
4

∑
i=1

η1s2
i −

4

∑
i=1

η2|si|
β+1

+
4

∑
i=1

siai1

(
Θ̃T

i σ
(

HT
i vi

)
+ χi

)
−

4

∑
i=1

Θ̃T
i

˙̂Θi

= −
4

∑
i=1

η1s2
i −

4

∑
i=1

η2|si|
β+1

+
4

∑
i=1

siai1

(
Θ̃T

i σ
(

HT
i vi

))
+

4

∑
i=1

siai1χi −
4

∑
i=1

Θ̃T
i
(
−knΘ̂i + siai1σ

(
HiWi

))
= −

4

∑
i=1

η1s2
i −

4

∑
i=1

η2|si|
β+1

+
4

∑
i=1

siai1

(
Θ̃T

i σ
(

HT
i vi

))
+

4

∑
i=1

siai1χi + kn

4

∑
i=1

Θ̃T
i Θ̂i −

4

∑
i=1

siai1Θ̃T
i
(
σ
(

HiWi
))

= −
4

∑
i=1

η1s2
i −

4

∑
i=1

η2|si|
β+1

+
4

∑
i=1

siai1χi + kn

4

∑
i=1

Θ̃T
i
(
Θi − Θ̃i

)
= −

4

∑
i=1

η1s2
i −

4

∑
i=1

η2|si|
β+1

+
4

∑
i=1

siai1χi − kn

4

∑
i=1

∥∥Θ̃i
∥∥2

+ kn

4

∑
i=1

Θ̃T
i Θi (23)

The following inequalities hold from Young’s inequality in Lemma 3:
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kn

4

∑
i=1

Θ̃T
i Θi ≤

kn

2

4

∑
i=1

∥∥Θ̃i
∥∥2

+
kn

2

4

∑
i=1
‖Θi ‖2

4

∑
i=1

siai1χi ≤
1
2

4

∑
i=1

s2
i ai1 +

1
2

4

∑
i=1

ai1χ2
i

(24)

Upper bounds ΘM and χM; inserting (24) into (23), we obtain:

V̇ ≤ −
4

∑
i=1

η1s2
i −

4

∑
i=1

η2|si|
β+1

+
1
2

4

∑
i=1

s2
i ai1 +

1
2

4

∑
i=1

ai1χ2
i − kn

4

∑
i=1

∥∥Θ̃i
∥∥2

+
kn

2

4

∑
i=1

∥∥Θ̃i
∥∥2

+
kn

2

4

∑
i=1
‖Θi ‖2 (25)

≤ −
4

∑
i=1

(
η1 −

ai1
2

)
s2

i −
4

∑
i=1

η2|si|
β+1

− kn

2

4

∑
i=1

∥∥Θ̃i
∥∥2

+ 4χM + 4ΘM

Here, by using Lemma 2, the inequality below holds:

 4

∑
i=1

η2|si|
2


β+1
2

≤
4

∑
i=1

η2|si|
β+1

(26)

Moreover, according to Lemma 4, the inequalities. below exist:(∥∥Θ̃i
∥∥2
)ξ
≤ (1− ξ)ξ

ξ
1−ξ +

∥∥Θ̃i
∥∥2

(
‖s‖2

)ξ
≤ (1− ξ)ξ

ξ
1−ξ + ‖s‖2

(27)

where 0 < ξ =
β+1

2 < 1.
By using (26) and (27), and Lemma 2, (25) can be rewritten as:

V̇ ≤ −
(

η1 + η2 −
ai1
2

) 4

∑
i=1

1
2
|si|

2
ξ

− kn

(
4

∑
i=1

1
2

∥∥Θ̃i
∥∥2
)ξ

+ 4χM + 4ΘM +

(
kn

2
+ η1 −

ai1
2

)(
(1− ξ)ξ

ξ
1−ξ

)
≤ −c̄Vξ

i + δ̄

(28)

where c̄ = min
{
−
(
η1 + η2 − ai1

2
)
, kn
}

,

δ̄ = 4χM + 4ΘM +
(

kn
2 + η1 − ai1

2

)(
(1− ξ)ξ

ξ
1−ξ

)
, with η1 ≥ ai1

2 .

Now let

T̄ =
1

(1− ξ)γc̄

V1−ξ(si(0), Θ̃i(0))−
(

δ̄

(1− γ)c̄

) 1−ξ
ξ

 (29)

With Lemma 1, all signals are SGPFS, ∀t ≥ T̄, Vξ(si, Θ̃i) ≤ δ̄
(1−ξ)c̄ .

Moreover, from the definition of V, ∀t ≥ T̄, the following can be obtained:

|ei| ≤
(

δ̄

(1− ξ)c̄

) 1
2ξ

(30)

After a finite time T̄, the tracking errors of all states ei converge to a small neighborhood
of the origin and stay there. This concludes the proof.
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Remark 1. According to stability analysis, design parameters ξ, γ, c̄, and δ̄ significantly impacted
the proposed controller’s capacity for stability. High control precision and a quick convergence rate
can result from large ξ, γ, c̄. They could, however, provide comparatively huge control torques that
would not be practical. High control precision and a quick convergence rate can also come from
large δ̄. This might, however, potentially cause an infinite convergence. Therefore, it is important to
carefully choose the design parameters of the suggested controller so that it can reach a sufficient
level of control performance.

Remark 2. Due to their fractional power structure, finite-time-based controllers are more reliable
than traditional controllers, as is demonstrated in the simulation results in the next section. However,
because initial conditions impact the convergence time of the finite-time controller, this is not always
possible in applications. Therefore, it is not always possible to compute the settling time of the
finite-time controller. Since the estimated function’s initial values are included in this study, it
is also not possible to accurately compute the settling time. A fixed-time stability structure was
suggested in the literature [53] as a solution to this issue, and this structure may serve as the subject
of our next research.

Next, numerical simulations are given in detail.

4. Numerical Simulations

To test the efficiency of the suggested controller, a nonlinear model of a quadrotor
UAV was built and simulations in MATLAB were run; ode45 was used as the solver. Two
different trajectory tracking simulations were performed on quadrotor UAV transporting a
suspended payload system to demonstrate the effectiveness of the developed controller.
Furthermore, the simulations were enlarged with two more control approaches, demon-
strating the superiority of the suggested control over other control structures. First, a
classical SMC was used to control the system. Then, the system was controlled with a
finite-time SMC (FTSMC) control structure by adding a finite-time control structure to the
classical SMC structure. Thus, before adding the neural-network component, the advan-
tages of the finite-time control structure over the classical SMC were observed. Lastly, we
clearly demonstrate the superiority of the results obtained using the proposed controller,
finite-time-based neuro-sliding mode controller (FTNSMC) over the results obtained in the
previous simulations.

The parameters of the quadrotor dynamical model are given in Table 1. The UAV’s
mass and inertia were also subject to a %20 uncertainty as ∆m = 0.20m, ∆Ix = 0.20Ix,
∆Iy = 0.20Iy, ∆Iz = 0.20Iz. Moreover, the quadrotor was assumed to be subjected to con-
stant time-varying disturbances as Dx = 0.02sin(t + 5), Dy = 0.02cos(2t + 3),
Dz = 0.02sin(3t + 2), Dz = 0.02sin(3t + 2), Dθ = 0.02sin(0.2t + 5), Dφ = 0.02cos(0.2t + 3),
Dψ = 0.02sin(0.3t + 2). Moreover, payload’s desired angles are chosen as, αx = Aαx cost,
αy = Aαy sint, where Aαx = Aαy = 0.5. Controller parameters were selected by trial and
error as in Table 2. The hidden-layer neurons were employed at random, while the neural-
network weights were initially set to zero during the simulations. The simulations were
run with the following assumptions in mind.

Assumption 1. The parametric uncertainties and external disturbances that were defined in (9)
were assumed to be bound by a known bound.

sat(x) =

{
x/κ,

sign(x),

|x| ≤ κ

|x| > κ
(31)

where κ > 0, and it was taken to be κ = 0.5 in the simulations.

Assumption 2. The parametric uncertainties and external disturbances that were defined in (9)
were assumed to be bounded by a known bound.
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Table 1. Model parameters.

Parameter Value Parameter Value

m 1.1 kg g 9.8 m/s2

mL 0.5 kg L 1 m
Ix 1.22 Ns2/rad l 0.21 m
Iy 1.22 Ns2/rad b 5 Ns
Iz 2.22 Ns2/rad d 2 N/ms2

K1 0.1 Ns/m K4 0.12 Ns/rad
K2 0.1 Ns/m K5 0.12 Ns/rad
K3 0.1 Ns/m K6 0.12 Ns/rad
Jr 0.2 Ns2/rad

Table 2. Controller parameters.

Parameter Value Parameter Value

a11 0.01 r22 0.3
a12 0.05 r32 0.03
a41 0.01 η1 2
a42 0.02 η2 5
r11 0.03 β 1/3
r12 0.3 α1 83/97
r31 0.03 kn 0.1
r21 0.03

Two different scenarios were considered in the simulations for the trajectory tracking
problem of quadrotor carrying a suspended payload.

4.1. Scenario 1

In the context of model uncertainties and external disturbances, the control goal was
to allow the quadrotor to track a square desired trajectory. For simulation experiments, the
quadrotor’s beginning position and angle parameters were [0, 0, 0]m and [0, 0, 0]rad, and
the chosen desired quadrotor trajectories are listed in Table 3 . The simulation time for all
runs was 80 s.

Table 3. Desired trajectories for the first scenario.

Parameter Trajectories Time (s)

[xd yd zd]

[6, 6, 6] m 10
[3, 6, 6] m 20
[3, 3, 6] m 30
[6, 3, 6] m 40
[6, 6, 6] m 50
[6, 6, 0] m 80

[φ θd ψd]
[0, 0, 0.5] rad 60
[0, 0, 0] rad 80

The x position of the quadrotor for three controllers is given in Figure 4. For a classical
SMC, the quadrotor reached the first desired x value at around 7.89 s. The addition of a
finite-time structure decreased the reaching time to around 6.08 s, and with the proposed
method, the quadrotor reached the first desired x value at around 6.16 s.
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Figure 4. x positions of quadrotor for Scenario 1.

The y position of the quadrotor for three controllers is given in Figure 5. For a classical
SMC, the quadrotor could not reach the first desired y value but it reaches about 5.97 m
at 10 s. With FTSMC, the quadrotor reached the first desired y value at around 8.87 s, and
with the addition of the neural-network component, this value decreased to around 8.55 s.

Figure 5. y positions of quadrotor for Scenario 1.
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The z position of the quadrotor for three controllers is given in Figure 6. The quadrotor
arrived at the desired 6 m value at around 12.68 s, whereas for FTSMC, this value decreased
to 10.53 s; with the suggested controller, it settled to the desired value in less than 8.46 s.

Figure 6. z positions of quadrotor for Scenario 1.

In Figure 7, the change in controller input u1 is given. Although the initial values of the
control input were similar in all three controllers, the chattering effect was clearly observed
for the classical SMC. With FTSMC, this chattering decreased but remained. Using the
proposed controller, the chattering effect completely disappeared. Moreover, the proposed
controller exceptionally decreased the input value compared to SMC and FTSMC.

Figure 7. u1 control inputs for Scenario 1.
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Figure 8 displays the change in sliding variable s1. It behaved as expected when
the variables approached its sliding surfaces. Additionally, the oscillations of the sliding
variable completely accounted for the position and velocity tracking inaccuracies of the
system state variables.

Figure 8. s1 sliding variables for Scenario 1.

Variation in controller inputs u2 and u3 is seen in Figures 9 and 10 respectively. Ẇhen
SMC was used, both a chattering effect and a very high control input value were observed.
By adding finite time to SMC, the chattering decreased as the value of the control input
decreased with FTSMC. However, in both cases, high sparks and chattering could be seen
clearly. Using the proposed controller not only significantly reduced the value of the control
input, but also completely eliminated the chattering effect.
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Figure 9. u2 control inputs for Scenario 1.

Figure 10. u3 control inputs for Scenario 1.

In Figure 11, the change in controller input u4 is given. Despite the fact that the starting
values of the control input were comparable in all three controllers, the chattering effect was
plainly seen in the conventional SMC. This chattering was reduced by FTSMC, but it still
existed. When the proposed controller was used, the chattering effect was fully eliminated.
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Figure 11. u4 control inputs for Scenario 1.

Variations in quadrotor angles for proposed controller are given in Figure 12.

Figure 12. Quadrotor angles for proposed controller for Scenario 1.
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The trajectory tracking of the UAV in 3D is given in Figure 13 for all three controllers.
Adding a finite-time structure to the conventional SMC obviously sped up the system
responsiveness. Additionally, the NN improved the system response even more.

Figure 13. Trajectory of quadrotor in 3D space for Scenario 1.

Figure 14 shows the variation in the neural-network weights. As expected, the neural-
network weights rapidly learnt the unknown dynamics after each movement of the UAV
and converged to a value close to zero.

Figure 14. Change in neural-network weights for Scenario 1.

4.2. Scenario 2

In the second simulation, the control goal was to allow the quadrotor to track a circular
desired trajectory and also ensures that the system state errors reach zero or to a close
neighbourhood of zero in a finite time. The chosen desired quadrotor trajectories are listed
in Table 4. The simulation time for all runs was 320 s.

Table 4. Desired trajectories for the second scenario.

Parameter Trajectories

[xd yd zd]
50sin(0.05t)
50cos(0.05t)

t

[θd φd ψd] [0, 0, 0.5] rad

The errors in the x axis for three controllers are given in Figure 15. Compared to
a classical SMC, the proposed controller provided a fast convergence rate as accepted.
The error in the x axis reached zero for the first time at around 4.3 s with the proposed
controller and oscillated in the neighborhood of zero with a small margin because of the
nature of desired trajectory, whereas it reached zero at around 6.6 s with FTSMC and 14 s
with classical SMC.
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Figure 15. Errors in x-axis for Scenario 2.

Figure 16 displays the y-axis errors for three controllers. With the SMC, error conver-
gence was very slow and it converged to zero after 50 s, as seen in the figure. The addition
of finite-time structure decreased this value to around 13 s.

Figure 16. Errors in y-axis for Scenario 2.

In Figure 17 errors in the z axis are shown. For SMC controller error reached the
neighborhood of zero within around 6.5 s. With FTSMC, this value was around 5.5 s, and
with FTNSMC, it was around 4.5 s.

Figure 17. Errors in z-axis for Scenario 2.

u1 controller inputs for three controllers are given in Figure 18. Since the desired
trajectory was orbital, the progress of the motion in the z axis was expected to be slow.
Changes in the control inputs for this axis were, therefore, close to each other within the
three controllers. On the other hand, there was a difference between the convergence of the
control inputs to nominal value. This time was around 4.5 s for SMC and FTSMC, and this
time decreased to 2.8 s for the proposed controller. Moreover, small chattering could be
detected with FTSMC, but this effect was also eliminated with FTNSMC.
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Figure 18. u1 control inputs for Scenario 2.

Variations in control inputs u2 and u3 are given for the three controllers in Figures 19 and 20,
respectively. The control signal for SMC exhibited undesirable sparks at the beginning
with some chattering effect and, since it could only enter the desired trajectory after 50 s,
high chattering occurred at these time values for input u2. FTSMC reduced this chattering
effect while increasing the initial value of control input; lastly, by using NNFTSMC, a
chattering-free control input could be obtained while decreasing the initial value of control
input of FTSMC. For the u3 control input, a chattering effect could also be seen for SMC and
FTSMC. However, the neural-network component in the proposed controller significantly
reduced this effect.

Figure 21 demonstrates the change of control inputs u4 for the three controllers.
Although the initial values were close to each other for all controllers, with the proposed
controller, the control input converged to zero more quickly after the initial movement and
it was a smoother control input than the SMC and FTSMC methods. Furthermore, FTSMC
showed more chattering-free control input behavior than the classical SMC did.
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Figure 19. u2 control inputs for Scenario 2.

Figure 20. u3 control inputs for Scenario 2.
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Figure 21. u4 control inputs for Scenario 2.

In Figure 22, the trajectory of the quadrotor in 3D space is given for three controllers.
The suggested controller tracking performance of the desired trajectory was superior to
that of classical SMC and FTSMC.

Figure 22. Trajectory of quadrotor in 3D space for Scenario 2.

The change in neural-network weights is presented in Figure 23. As expected, the
neural-network weights rapidly learnt the unknown dynamics after each movement of the
UAV and converged to a value close to zero.
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Figure 23. Change in neural-network weights for Scenario 2.

5. Conclusions

A neural-network-based finite-time sliding-mode controller was proposed to control a
quadrotor UAV carrying a suspended payload with parametric uncertainties and external
disturbances. After deriving the full nonlinear mathematical model of system, the proposed
controller was developed, and three different simulations were performed to demonstrate
the effectiveness of the proposed controller. First, the system was controlled with a classical
SMC. In this simulation, errors in the trajectory tracking in all three axes due to the effects
of unknown dynamics and serious chattering effects were observed in the control signals.
Very high control signals were also needed to control the system. In the second simulation,
a finite-time control structure was added to the SMC to reduce the values of the control
signals and the trajectory tracking errors to converge to zero in a finite time. Although
FTSMC improved the settling times and the values of the controller signals, it was not
effective in eliminating the chattering effect. A neural-network structure was added to
FTSMC to construct the proposed controller and effectively handle chattering. With the
use of the neural network, chattering disappeared completely, the control signs were
significantly reduced, and the settling times were further improved. Future work is to
improve the finite-time stability to fixed-time stability to be able to free it of initial conditions
to calculate the reaching time, demonstrating the effectiveness of the proposed controller
with a real-time experiment.
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