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Abstract: The proliferation of small unmanned aerial systems (sUAS) is making very high-resolution
imagery attainable for vegetation classifications, potentially allowing land managers to monitor
vegetation in response to management or wildlife activities and offering researchers opportunities to
further examine relationships among wildlife species and their habitats. The broad adoption of sUAS
for remote sensing among these groups may be hampered by complex coding, expensive equipment,
and time-consuming protocols. We used a consumer sUAS, semiautomated flight planning software,
and graphical user interface GIS software to classify grassland vegetation with the aim of providing a
user-friendly framework for managers and ecological researchers. We compared the overall accuracy
from classifications using this sUAS imagery (89.22%) to classifications using freely available National
Agriculture Imagery Program imagery (76.25%) to inform decisions about cost and accuracy. We also
compared overall accuracy between manual classification (89.22%) and random forest classification
(69.26%) to aid with similar decisions. Finally, we examined the impact of resolution and the addition
of a canopy height model on classification accuracy, obtaining mixed results. Our findings can help
new users make informed choices about imagery sources and methodologies, and our protocols
can serve as a template for those groups wanting to perform similar vegetation classifications on
grassland sites without the need for survey-grade equipment or coding. These should help more land
managers and researchers obtain appropriate grassland vegetation classifications for their projects
within their budgetary and logistical constraints.

Keywords: grassland conservation; grassland restoration; grassland vegetation; habitat restoration;
landcover classification; remote sensing; small unmanned aerial systems; vegetation classification

1. Introduction

The field of remote sensing has rapidly evolved over the past 30 years, changing how
researchers gather data and providing opportunities to directly examine patterns and processes
at scales not previously feasible [1–4]. Remote sensing techniques have become increasingly
popular for ecologists, and the potential and realized applications for wildlife science are
vast [5,6]. Of particular interest to many ecologists is the ability of remote sensing tools to map
land cover and vegetation composition at scales too large for on-the-ground survey methods.
Because remote sensing expands the feasible mapping scale, it has been used successfully in
multiple applications for terrestrial and marine habitats [3,7,8]: mapping temporal changes in
habitat availability for sensitive species [9], performing vegetation health assessments [10],
and monitoring the spread of invasive species [11].

Remote sensing has a long history of use for classifying landscape and vegetation
characteristics. In recent decades, low- or no-cost satellite imagery has been available
with spatial resolution as fine as tens of meters and costlier alternatives to submeter
resolutions [12,13]. Within the United States, the National Agriculture Imagery Program
(NAIP) currently provides free 0.6 m imagery from manned aircraft to authorized users [14].
However, even the precise spatial resolution of satellite and traditional aerial imagery may
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be too coarse to effectively map changes in vegetation structure and composition in some
systems. This is especially true for grasslands, which are largely composed of herbaceous
plants too small to be discerned from satellite-derived images [13].

Imagery acquired using small unmanned aerial systems (sUAS), commonly known as
“drones”, has emerged as an alternative to satellite and manned aerial imagery in recent
years, driven in part by the ever-increasing availability of sUAS [15] and clarification
of regulations on their use in the United States [16]. The centimeter-scale resolution of
sUAS imagery better allows for the detection of differences in vegetation structure or
composition than coarser sources [17]. sUAS imagery can be used to discern individual
species and vegetation types [16] and has been used to reliably monitor species composition
in grasslands [18] and rangelands [19]. sUAS often offer more flexible use patterns than
satellite imagery, or even airplane-based remote sensing [20,21]. Because sUAS operate at
low altitudes, they can usually provide clear views of the ground when satellite imagery is
obscured by clouds. An sUAS can be programmed to record a specific area of interest, be
repeatedly deployed with ease, and can be scheduled to coincide with biologically relevant
events [22,23]. This ability to image and map vegetation on a repeatable, user-defined
timeline could be a valuable tool to land managers for monitoring vegetation changes in
response to management actions (e.g., burning, discing), wildlife interactions (e.g., grazing),
or natural phenomena (e.g., wildfire, weather events).

Using an sUAS, however, can be an expensive option, especially when compared with
satellite or aerial imagery that is often freely available. It is therefore important to compare
the accuracy of maps produced from sUAS imagery to those from free sources, such as
NAIP. In addition to purchasing the sUAS and the necessary legal registration/licensing,
specific software is required to construct flight plans and to create usable maps from the
sUAS images. Often, the technical training and ability of ecologists interested in using
sUAS is somewhat limited. Thus, although open-source software options are available,
they may not be adequately user-friendly and potential users may be discouraged from
adopting sUAS imagery for their research or monitoring needs due to software or coding
complexity [11]. Additionally, although the peer-reviewed literature is rich with studies
evaluating many different parameters and approaches to remotely mapping vegetation,
many of those studies can be viewed as overwhelmingly complex by novice potential users,
discouraging sUAS use.

Our objective was to develop a repeatable and approachable workflow simplistic enough
for most ecologists to effectively map the following grassland vegetation classes at our and
other similar grassland sites: autumn olive (Eleagnus umbellata), blackberry (Rubus alleghe-
niensis), common reed (Phragmites australis), grass-dominated vegetation (hereafter “grasses”,
not including common reed), forb-dominated vegetation (hereafter “forbs”), and tree-shrub
(not including autumn olive or blackberry). To decide if the added costs of sUAS using
this simplistic approach were justified, we compared (1) the accuracy of vegetation classi-
fications generated using sUAS to those from NAIP imagery. To inform best-practices for
our workflow, we compared (2) the impacts of image resolution and the use of a canopy
height model on classification accuracy, and (3) the accuracy of random forest and manual
classification methods. We used a consumer-grade sUAS, semiautomated flight software,
and graphical user interface GIS software, representing a relatively user-friendly approach to
vegetation classification using sUAS. We compared manual image classification to automatic
classification using a random forest. A random forest is a machine learning method based on
decision trees [24] that can be used to identify and differentiate researcher-specified objects
and is thus often employed to classify images for land cover or vegetation mapping [25–27]. It
represents a more hands-off solution than manual image classification and has demonstrated
a high accuracy in some cases [28,29] although manual classification may still achieve a higher
accuracy [11]. Information about the relative accuracies of each method would be valuable for
land managers questioning if they should dedicate the extra person hours required for manual
classification. Our final objective (4) was to create a flowchart to guide decision-making by
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land and wildlife managers. This would help them choose the most appropriate path based
on their logistical constraints and desired outcomes.

We also evaluated how several image and classification parameters impacted classifi-
cation accuracy. We tested sUAS imagery at several post hoc resampled resolutions and
predicted that accuracy would decrease with decreasing resolution. One of the primary
determinants of flight time is sensor altitude, which directly correlates with resolution.
Time afield can be limited for land managers, so finding a balance between efficiency and
accuracy is critical. Resolution also impacts computing demands and is thus an important
consideration for those without very powerful computers. We also compared classifications
using canopy height models (CHMs) to those without. Canopy height models are raster lay-
ers representing vegetation height that can be generated from LiDAR or photogrammetry
and are commonly used to estimate aboveground biomass of different landcover types [30]
and to identify plant species [31]. In cases like ours, where the vegetation height can differ
substantially among vegetation classes, a CHM could be a useful addition, but temporally
relevant CHMs are not always readily available and adding CHMs to the workflow can
increase computing demands. Information about the relative contribution of a CHM to
classification accuracy in a similar grassland system would help potential users decide if
they should incorporate one in their workflow.

2. Materials and Methods
2.1. Data Acquisition

We conducted this study at 10 grassland fields (mean ± SD = 10.99 ± 10.57, range
= 1.8–35.9 ha) distributed across Burning Star State Fish and Wildlife Area in northeast
Jackson County, Illinois, USA (−89.20315, 37.86606; Figure 1). Burning Star SFWA is a
reclaimed coal-mine site with forest, surface water, grassland, agriculture, and shrubland
components. Grassland fields were primarily dominated by grasses and forbs with some
tree-shrub and wetland components. We used NAIP imagery and orthophotos collected by
sUAS for mapping, in conjunction with ground-referenced data points collected for map
validation using handheld GPS.

2.1.1. Collecting Remotely Sensed Imagery

We collected sUAS orthophotos from 7 to 14 October 2019 using a DJI Mavic 2 Pro with
a 20 MP, 1 inch CMOS RGB sensor (DJI, Shenzhen, Guangdong, China). All flights were
conducted between 10:24 and 14:01 local time to reduce shadows in the resulting imagery.
We chose to fly the sUAS ~61 m above ground level (AGL) based on a qualitative evaluation
of orthomosaics created from test flights at ~31, 47, 61, 91, and 122 m AGL, resulting in
a 1.27 cm ground-sampling distance. We automated flights using DroneDeploy software
(DroneDeploy, San Francisco, CA, USA) with 75% front overlap, 70% sidelap, an 18 KPH
speed limit, and both perimeter 3D and enhanced 3D options activated. DroneDeploy
simplified the construction of flight paths and image collection because it required only the
input of a bounding polygon and the above-listed parameters; it then generated the flight
plan automatically and guided the sUAS during flights. We then uploaded JPG files to
DroneDeploy for processing in terrain mode and downloaded the resulting 1.58 cm ortho-
mosaics, 1.58 cm “plant health” rasters, 4.3 cm digital surface models (DSMs), and 4.3 cm
digital terrain models (DTMs). The “plant health” rasters were produced by DroneDeploy’s
implementation of the visible atmospherically resistance index [32]. We obtained NAIP
imagery of the study area collected between 2 August 2019 and 12 September 2019. These
uncompressed .tif format scenes had a 0.6 m horizontal resolution and included visible (i.e.,
RGB) and near-infrared (NIR) bands [14].
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2.1.2. Collecting Ground Survey Data

Using handheld GPS (Garmin eTrex 10; manufacturer reported ± 3 m positional
accuracy), we marked the locations of various vegetation classes on foot. These classes
were customized to the needs of ongoing research and monitoring projects at the site and
included autumn olive (Eleagnus umbellata), blackberry (Rubus allegheniensis), common
reed (Phragmites australis), grass-dominated vegetation (hereafter “grasses”, not including
common reed), forb-dominated vegetation (hereafter “forbs”), and tree-shrub (not including
autumn olive or blackberry). Grasses largely consisted of native warm-season grasses such
as big bluestem (Andropogon gerardii), Indian grass (Sorghatrum nutans) and switchgrass
(Panicum virgatum), as well as cool-season non-native grasses such as smooth brome (Bromus
inermis), Kentucky bluegrass (Poa pratensis), and green foxtail (Setaria viridis). Common forbs
included goldenrod (Solidago canadensis), ragweed (Ambrosia artemisifolia), and non-natives
such as sericea lespedeza (Lespedeza cuneata) and yellow sweet clover (Melilotus officinalis).
The number of waypoints collected for each class was scaled relative to presumed areal
coverage based on prior experience at the site. A total of 425 ground-reference points (n = 66
autumn olive, 67 blackberry, 60 common reed, 69 forbs, 87 grasses, and 76 tree-shrub) were
collected and subsequently digitized to polygons of known composition in the immediate
vicinity of the waypoints for training and accuracy assessment. We randomly selected 80%
of the ground-reference points for model training and 20% for accuracy assessment.
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2.1.3. Topographic Models

Photogrammetric derivatives (i.e., DSMs and DTMs) from DroneDeploy contained
artifacts that made the resulting canopy height models (CHMs) unfeasible for use in
supervised classifications. These artifacts resulted in some trees having negative instead of
positive CHM values. Coupled with the RGB DroneDeploy imagery, we could correctly
interpret the artifacts when manually digitizing maps, so we still utilized them for manual
classifications. We expected that these artifacts would confound the random forest classifier,
so we obtained DSM and DTM derivatives for Jackson County from the Illinois Height
Modernization Project dataset [33] for automatic classifications. The ILHMP dataset was
created using LiDAR imagery collected in 2014 and has a 0.6 m horizontal accuracy, 6.18 cm
vertical accuracy, and 0.95 m point spacing. The ILHMP was the best freely available option
for developing a CHM despite having been collected five years prior to our study and
is similar to what might be available to land managers; expecting current LiDAR data is
not realistic for many land managers. Based on extensive prior experience at the field site,
we were confident that minimal changes had occurred among the positions of vegetation
classes during that time. No active management (i.e., fire, mowing, grazing) had occurred
on the site in the decade prior to our study and we had observed no major shifts in the
horizontal distribution of classes.

2.2. Image Preprocessing
2.2.1. Preprocessing sUAS and NAIP Imagery

All subsequent processing of raster and ground reference data was conducted in
ArcGIS Pro 2.7.0 (Environmental Systems Research Institute, Inc., Redlands, CA, USA). We
merged the maps of individual fields derived from DroneDeploy to create single maps
encompassing all fields for each map type (i.e., orthomosaic, DTM, DSM, plant health) and
projected to NAD 1983 UTM zone 16. We resampled the original 1.58 cm orthomosaic to
produce additional rasters with 5, 20, and 60 cm horizontal resolution to compare among
resolutions. We then clipped all four orthomosaics to study field extents. We created a
canopy height model (CHM) by subtracting the DroneDeploy DTM from the DroneDeploy
DSM. We followed similar procedures for NAIP imagery, mosaicking the four NAIP scenes
into a single raster, projecting to NAD 1983 UTM zone 16, and clipping to the field edges. We
produced true-color (i.e., RGB), color-infrared (CIR), and normalized difference vegetation
index (NDVI) versions of the NAIP orthomosaic.

2.2.2. Creating Topographic Derivatives

We also produced a LiDAR-based CHM by subtracting the ILHMP DTM from the
ILHMP DSM for the random forest classifier due to concerns shortcomings in the DroneDe-
ploy derived CHM would confound the analysis. To reduce computational demands when
processing the ILHMP data, we converted the resulting raster to 8-bit unsigned data and
clipped it to a 300 m buffer area around each of the 10 study fields. We then projected it to
NAD 1983 UTM zone 16. The ArcGIS Pro Image Classification Tool requires that all raster
bands to be classified are of equal resolution, so we resampled the CHM to each of the
four resolutions used for the sUAS-derived orthomosaics using a bilinear interpolation and
clipped each resulting raster to the field extents.

2.3. Image Classification and Assessment
2.3.1. Classified Datasets

We created two datasets for manual classification (i.e., digitizing). The first included
our sUAS-derived products from DroneDeploy including 1.58 cm orthomosaic and plant
health layers and 4.3 cm DTM and DSM layers. The second included true-color, false-color,
and NDVI layers from NAIP imagery. Investigators were “blind” to the ground-survey
data collected via GPS for any field they manually classified (i.e., Investigator A collected
GPS data for fields 1–4, but digitized fields other than 1–4) to reduce any positive bias
that they could potentially have on classification accuracy from their experience during
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ground-survey data collection. We viewed imagery at different scales to discern features
but maintained a 1:300 scale for manual polygon creation and segmenting.

We created six base datasets for supervised classification; this comprised four different
resolutions of sUAS orthomosaics, a true-color NAIP orthomosaic with NIR as a fourth
band (i.e., R, G, B, NIR), and a color-infrared NAIP orthomosaic with blue as a fourth band
(NIR, R, G, B). We composited each of the six base datasets with an ILHMP-derived CHM
of equal resolution, generating six more datasets with an additional band each. Each of the
12 datasets, 6 with CHM and 6 without CHM, were used for random forest classifications
so that we could compare the influence of resolution, data source, and CHM on the random
forest classification accuracy.

2.3.2. Classification Parameters

Because our vegetation classes likely had spectral overlap, and due to potential noise
associated with very high-resolution imagery, we used object-based classification to account
for both spectral and spatial properties of the imagery. We used a supervised random forest
classifier, implemented as the Random Trees tool within ArcGIS Pro’s Image Classification
workflow.

We used default settings for segmentation (spatial detail 15.5, spectral detail 15) and
training (maximum number of trees = 50, maximum tree depth = 30, maximum number of
samples per class = 1000) but scaled the number of pixels for minimum segment size to
maintain a similar minimum segment footprint across different resolutions (~2.5 m2). The
Image Classification tools use only the first three bands of a raster for segmentation but
use all bands for later steps. We held training settings at defaults (maximum number of
trees = 50, maximum tree depth = 30, maximum number of samples per class = 1000). We
used the segment attributes of active chromaticity color, mean digital number, standard
deviation, and compactness for training. We used 80% of the ground reference data for
training.

2.3.3. Accuracy Assessment

We produced confusion matrices for accuracy assessment of each of 14 classified maps
using 500 GIS-generated stratified random points, 20% of the ground reference data for
validation in the field. We calculated overall accuracy, producer’s accuracy, and user’s
accuracy. Overall accuracy is the proportion of correct classifications out of all classifications.
Producer’s accuracy is the probability that a ground-surveyed point was classified correctly
(i.e., 100% omission error). User’s accuracy is the probability that a point on the classified
map is correctly classified (i.e., 100% commission error) and is of particular importance
when the resulting classified maps is used in additional models (i.e., habitat suitability or
resource selection models planned for the ongoing research at the site).

3. Results

Manual classifications were more accurate than random forest classifications (Table 1,
Figure 2). The manual classification of sUAS imagery produced the most accurate map
(overall accuracy = 89.22%) and the manual classification of NAIP imagery produced the
second-most accurate map (76.25%). Random forest classifications produced maps with
accuracies ranging from 47.31 to 69.26%. The accuracy was higher for sUAS maps than for
NAIP maps, not just for the manual classifications above, but also for all random forest
classifications (56.29–69.26% vs. 30.74–48.50%).
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Table 1. Summary of classification types, imagery sources, and parameters used for classification
along with overall accuracy for each classification. Two classification types were used, manual
digitizing and random forest machine learning. Imagery was collected from two sources: small
unmanned aerial system (sUAS) flights and the National Agriculture Imagery Program (NAIP).
Segmentation was performed on both red, green, and blue (RGB) and on near-infrared, red, and green
band (CIR) combinations. Canopy height models were derived from DroneDeploy or Illinois Height
Modernization Program (ILHMP) data. Changes in minimum segment size in pixels corresponded to
similar minimum segment footprints (~2.5 m2).

Classification Type Imagery Source Resolution (cm) Canopy Height Data Minimum Segment
Size (Pixels) Overall Accuracy

Manual sUAS 1.58 DroneDeploy 89.22%
Manual NAIP 60 None 76.25%

Random forest sUAS 1.58 ILHMP 9999 69.26%
Random forest sUAS 1.58 None 9999 60.28%
Random forest sUAS 5 ILHMP 992 62.87%
Random forest sUAS 5 None 992 66.27%
Random forest sUAS 20 ILHMP 64 65.47%
Random forest sUAS 20 None 64 61.48%
Random forest sUAS 60 ILHMP 7 56.29%
Random forest sUAS 60 None 7 58.88%
Random forest NAIP RGB 60 ILHMP 7 48.50%
Random forest NAIP RGB 60 None 7 30.74%
Random forest NAIP CIR 60 ILHMP 7 43.11%
Random forest NAIP CIR 60 None 7 47.31%

The impacts of modifying imagery resolution or including a CHM were mixed
for the random forest classifications of sUAS imagery. The 1.58 cm imagery with the
CHM had the highest classification accuracy of all random forest classifications (overall
accuracy = 69.26%), but the addition of the CHM did not universally improve accuracy
within each resolution. Moreover, a finer resolution did not universally improve accuracy.
When the CHM was not included, the 5 cm (overall accuracy = 66.27%) and 20 cm (61.48%)
classifications performed better than the 1.58 cm classification (60.28%). When the CHM
was included, the accuracy at the 20 cm resolution (65.47%) was higher than at the 5 cm
resolution (62.87%).

The sources of classification error varied among the different classification types and
resolutions, but several notable errors were evident. We misclassified forbs and common
reed more than other classes in our manual classifications of both sUAS and NAIP imagery,
often misclassifying the forbs as trees/shrubs or grasses, and common reed as forbs and
grasses (Supplementary Tables S1 and S2). Our misclassification of forbs had a large
impact on the user’s accuracy for the tree/shrub class in the sUAS classification and on
grasses in the NAIP classification due to the large areal coverage of forbs in the fields and
correspondingly large number of validation points for that class in the accuracy assessment.
The producer’s accuracy was lowest for autumn olive in all but one of the random forest
classifications (Supplementary Tables S3–S14). The user’s accuracy was lowest for the
tree/shrub class in all random forest classifications, indicating that the resulting maps
had a substantial uncertainty for any points indicated as tree/shrub. Adding the CHM
improved the user’s accuracy for tree/shrub in all classifications.
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Figure 2. Examples comparing NAIP and sUAS methods: (A) 60 cm National Agriculture Imagery
Program (NAIP) imagery, (B) 1.58 cm resolution sUAS imagery, (C,D) manual classifications for each,
and (E,F) most accurate random forest classifications for each. The most accurate random forest
classification of NAIP imagery (E) included a canopy height model and used red, green, and blue
layers for segmentation. The most accurate random forest classification of sUAS imagery (F) included
a canopy height model and used 1.58 cm resolution imagery.

4. Discussion

Our research team comprises several wildlife researchers, with only limited remote
sensing expertise. We required vegetation maps of our grassland sites for use in our wildlife
habitat studies but were overwhelmed by the extensive, complex, and often contradictory
remote sensing literature. We did not need to know the absolute best methodology, but
rather the best methodology given our logistical, financial, and knowledge-based con-
straints. Many land managers and wildlife researchers might find themselves in a similar
situation and could benefit from our results and the decision-making workflow that we
have created based on those results.

We used consumer-grade sUAS and GPS technology with semiautomated flight soft-
ware and graphical user interface mapping software to accurately map grassland vegetation
in our study area. Without specialized survey equipment or procedures such as ground-
control points, real-time kinematic processing GPS, thermal sUAS sensors, or radiometric
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calibration, we achieved ~89% classification accuracy with our best-performing classifi-
cation. This level of accuracy is similar to other studies classifying vegetation types from
remote sensing imagery, including studies relying on supervised classifiers such as ran-
dom forest or convolutional neural networks [11,21,34,35], and those employing manual
digitizing [20,36,37]. We had a general knowledge of the vegetation at our study site from
ongoing research there, but this would be a reasonable expectation for most land managers
or researchers already working in a location. Higher-end equipment may have further
improved our classification accuracy but would have required more expenses, training,
and processing. Our method is feasible and repeatable for use by those lacking extensive
survey or coding experience and offers an actionable method for vegetation mapping and
monitoring by ecologists and land managers.

4.1. sUAS vs. NAIP Imagery

Using sUAS imagery clearly improved classification accuracy of our selected classes
at our site when compared to NAIP imagery (manual: 89.22% vs. 76.25%, random forest:
69.26% vs. 48.50%). The best sUAS imagery classification outperformed the best NAIP
imagery classification even when we downscaled the 1.58 cm sUAS imagery to a 60 cm
resolution for random forest classifications (58.88% vs. 48.50%).

Several factors must be considered when selecting between sUAS and NAIP imagery
for a project. Because we planned on using the resulting classifications as parameters
in subsequent ecological models, we wanted to minimize classification error within our
logistical and budget constraints so as to not largely increase uncertainty in those later
models. According to our results, NAIP imagery classification may be satisfactory for
some other purposes, such as landscape-scale vegetation analyses or studies covering areas
too large to feasibly map via sUAS and would have the added benefits of being free and
requiring no extra time afield.

There are additional benefits to the sUAS approach beyond accuracy. NAIP imagery
is collected at periods that are outside of investigators’ control and typically at intervals of
one to multiple years. Moreover, NAIP imagery is often not available until months post
collection. Using sUAS imagery can allow investigators or managers to obtain information
about grasslands on schedules that suit their needs. For example, differences in the phenol-
ogy of various plants could be leveraged to improve discrimination [35] or mapping could
be conducted during critical periods for local wildlife or after extreme events. Routine
monitoring can also be conducted at shorter intervals using sUAS than would be possible
using NAIP imagery [18,20].

4.2. Random Forest Classification vs. Manual Classification

We achieved a substantially higher classification accuracy by manually classifying
imagery than by using random forest classification. This was true for both sUAS (89.22% vs.
69.26%) and NAIP imagery (76.25% vs. 48.50%). Other studies that have directly compared
supervised and manual classification methods also found manual classification to be more
accurate, though more time-consuming [37] (overall accuracy: 93% manual, 80% random
forest), Hamylton et al., [38] (overall accuracy: 91% manual, 85% convolutional neural
networks, and 82% pixel-based algorithm).

We did not record the exact time spent on each method but, anecdotally, random forest
classifications took several days of computational processing for the highest resolution
imagery and minutes-to-hours for lower resolution imagery, compared to ~30 person-hours
for manual classification. The computational processing represented the total processing
time to conduct the classifications, not necessarily the time actively spent at a computer
by an investigator. Random forest classification is a relatively passive process, requiring
only minutes of user input even for the highest resolution imagery. By comparison, manual
classification relies entirely on user input.

Although we obtained a high accuracy with our manual classification and a moderate
accuracy with our top random forest classification, errors may have occurred. With subme-
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ter vegetation patches, it is possible that misclassifications arose from errors in alignment.
Our orthomosaics had ~1.1 m of RMSE, but we did not test the manufacturer-reported
3 m accuracy of the GPS units used for ground reference data. More advanced protocols
(i.e., ground-control points, radiometric calibration) and equipment (i.e., RTK GPS for
ground reference points and sUAS) would likely further improve classification accuracies
but would require additional training, time, and expense. Similarly, radiometric calibration
could improve accuracy by reducing the impact of radiometric differences throughout the
imagery collection period but would require additional processing and time afield. Uneven
brightness values could lead to a substantial spectral overlap among vegetation classes,
and we advise those planning to solely use supervised classification techniques or those
evaluating changes in imagery collected over time to consider radiometric calibration in
their workflows [35,39,40].

We constrained our flights to mid-day, but shadows were evident adjacent to trees and
shrubs at the extreme ends of our flight window. Further constraining flights to a narrower
window or to only overcast days may help reduce the impact of shadows. In a different
approach, Ishida et al. [41] trained a support vector machine classifier simultaneously
with sunlit and shaded MODIS satellite data, which improved classification accuracy by
13.5%. Field operations are ultimately an exercise in balance; further limiting the flight
window or collecting imagery twice during differently lit periods means more time afield.
Investigators will need to balance accuracy and efficiency in their own operations.

We mostly held parameters to default settings when conducting the random forest
classifications in ArcGIS Pro. It is likely that fine-tuning the settings could improve classifi-
cation accuracies. Further investigations into the impact of each of those parameters on
this dataset may be worthwhile but was beyond the scope of this project.

4.3. Impacts of Resolution and the Use of a Canopy Height Model (CHM)

Despite the 1.58 cm imagery with CHM resulting in the most accurate random forest
classification, the relationship between resolution and classification accuracy was not
straightforward. The lowest overall accuracy resulted from 60 cm imagery, but some of
the 5 cm and 20 cm classifications performed nearly as well as the 1.58 cm classification
with CHM and better than the 1.58 cm classification without CHM (Table 1). This pattern is
consistent with other studies that have investigated the effects of resolution on classification
accuracy. Lu and He [12] and Liu et al. [42] compared the classification accuracy resulting
from sUAS-derived imagery of varying resolutions. Both studies found little difference
in accuracy for resolutions less than 15 cm and found that the highest resolution was not
necessarily the most accurate.

The similarity in classification accuracy that we observed at different resolutions can
have important implications for planning both flights and image classification. If investi-
gators wish to prioritize efficiency in their supervised classifications, they may be able to
use lower-resolution imagery without substantially decreasing accuracy. They can increase
efficiency using lower resolutions in two ways. First, they could fly the sUAS missions at
higher altitudes, within legal constraints, to maximize aerial coverage during each flight.
This could also help improve image mosaicking and reduce geometric distortions caused
by relief displacement, which may help offset the decreased resolution. Second, they could
upscale acquired imagery, as we did, to reduce computational demands during preprocess-
ing and classification by orders of magnitude. Doing so may also present a viable method
for those without powerful computers to perform random forest classifications on sUAS
imagery. An advantage of this approach over flying at greater altitude is that investigators
would still have access to the higher resolution imagery if a need arose later. We used a
fairly robust computer for the random forest classification (i.e., Intel i9 processor, 64 GB
RAM, m.2 solid-state drive), so investigators using slower computers should expect longer
processing times. Investigators debating the trade-offs between efficiency and accuracy of
these methods should also consider the scale of their project and subsequent dataset size.
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We added a CHM from ILHMP to imagery for random forest classifications in an
attempt to better discriminate different vegetation types and to ameliorate potential tree
shadow issues. Adding a CHM did not universally improve the random forest classification
accuracy; it reduced accuracy in some cases. The original CHM had a 1 m resolution
and possibly did not contain enough detail to resolve the shadow problem even after
downscaling to finer resolution. It is also possible that we incorrectly assumed that the
five-year-old vertical dataset would be suitable, and that vertical vegetation structure had
changed enough over that period to impact results. Any changes in the distribution of
the vegetation classes in our study during that period would have negatively biased our
classification accuracies. Despite that, we obtained good classification accuracies for most
land-management applications.

4.4. Recommendations for Similar Uses

Mapping vegetation in grasslands can be a valuable tool for land managers and
wildlife researchers but deciding whether or not to use sUAS or freely available imagery
can be difficult. Similarly, deciding on flight parameters, classification methods, and addi-
tional data sources can be intimidating for novice GIS users. By comparing classification
accuracies among different combinations of remote sensing platforms, data sources, classi-
fication methods, and flight parameters, we can inform potential users on the costs and
benefits of each. We present this guidance in the form of a workflow chart (Figure 3)
where potential users can consider their logistical constraints and desired outcomes when
deciding on their chosen methodology. No two study sites are identical, nor are any two
teams of investigators. This workflow allows potential users to select the best course of
action for their specific use-case.
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4.5. Conclusions

We demonstrated that consumer-grade sUAS and GPS could be used with relatively
simplistic semiautomated flight planning and graphical user interface GIS software pack-
ages to produce accurate grassland vegetation classifications in our study area (up to
89.22%). We also showed how several imagery and methodological parameters could
impact classification accuracy and presented a guide to assist potential users in their
decision-making regarding data sources and classification methods. Implementing similar
methods to ours and considering those parameters can make sUAS classification more
approachable for land managers and researchers seeking to obtain useful and accurate
maps of their grasslands in an efficient manner.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/drones6110318/s1, Table S1: Accuracy assessment for manual
classification of sUAS imagery. Overall accuracy was 89%, Table S2: Accuracy assessment for
manual classification of National Agriculture Imagery Program imagery. Overall accuracy was 76%,
Table S3: Accuracy assessment for random forest classification of 1.58 cm sUAS imagery with a
canopy height model. Overall accuracy was 69%, Table S4: Accuracy assessment for random forest
classification of 1.58 cm sUAS imagery without a canopy height model. Overall accuracy was
60%, Table S5: Accuracy assessment for random forest classification of 5 cm sUAS imagery with
a canopy height model. Overall accuracy was 63%, Table S6: Accuracy assessment for random
forest classification of 5 cm sUAS imagery without a canopy height model. Overall accuracy was
66%, Table S7: Accuracy assessment for random forest classification of 20 cm sUAS imagery with
a canopy height model. Overall accuracy was 65%, Table S8: Accuracy assessment for random
forest classification of 20 cm sUAS imagery without a canopy height model. Overall accuracy was
61%, Table S9: Accuracy assessment for random forest classification of 60 cm sUAS imagery with
a canopy height model. Overall accuracy was 56%, Table S10: Accuracy assessment for random
forest classification of 60 cm sUAS imagery without a canopy height model. Overall accuracy
was 59%, Table S11: Accuracy assessment for random forest classification of National Agriculture
Imagery Program imagery with a canopy height model and segmented using near-infrared, red, and
green blue bands. Overall accuracy was 43%, Table S12: Accuracy assessment for random forest
classification of National Agriculture Imagery Program imagery without a canopy height model and
segmented using near-infrared, red, and green bands. Overall accuracy was 47%, Table S13: Accuracy
assessment for random forest classification of National Agriculture Imagery Program imagery with a
canopy height model and segmented using red, green, and blue bands. Overall accuracy was 49%,
Table S14: Accuracy assessment for random forest classification of National Agriculture Imagery
Program imagery without a canopy height model and segmented using red, green, and blue bands.
Overall accuracy was 31%.
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