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Abstract: This paper proposes an approximate optimal curve-path-tracking control algorithm for
partially unknown nonlinear systems subject to asymmetric control input constraints. Firstly, the
problem is simplified by introducing a feedforward control law, and a dedicated design for optimal
control with asymmetric input constraints is provided by redesigning the control cost function
in a non-quadratic form. Then, the optimality and stability of the derived optimal control policy
is demonstrated. To solve the underlying tracking Hamilton–Jacobi–Bellman (HJB) equation in
consideration of partially unknown systems, an integral reinforcement learning (IRL) algorithm is
utilized using the neural network (NN)-based value function approximation. Finally, the effectiveness
and generalization of the proposed method is verified by experiments carried out on a high-fidelity
hardware-in-the-loop (HIL) simulation system for fixed-wing unmanned aerial vehicles (UAVs) in
comparison with three other typical path-tracking control algorithms.

Keywords: optimal tracking control; asymmetric input constraints; integral reinforcement learning;
fixed-wing UAVs

1. Introduction

The optimal tracking control problem (OTCP) is of major importance in a variety of
applications for robotic systems such as wheeled vehicles, unmanned ground vehicles
(UGVs), unmanned aerial vehicles (UAVs), etc. The aim is to find a control policy to drive
the specified system, given a particular reference path to follow in an optimal manner [1–6].
The reference paths are generally generated by a separate mission planner according to
specific tasks, and optimization is usually achieved by minimizing an objective function
regarding energy cost, tracking error cost, and/or the traveling time cost.

With the rapid development of unmanned systems, algorithms to solve OTCPs have
been widely studied in the literature. Addressing the OTCPs involves solving the under-
lying Hamilton–Jacobi–Bellman (HJB) equation. For linear systems, the HJB equation is
replaced by the Riccati equation, and the numerical solution is generally available. However,
for nonlinear robotic systems subject to asymmetric input constraints, such as fixed-wing
UAVs and autonomous underwater vehicles (AUVs) [7–9], it is still a challenging issue. To
deal with this difficulty while guaranteeing tracking performance for nonlinear systems,
various methods have been developed to find approximate optimal control efficacy. One
idea is to simplify or transform the objective function to be optimized to obtain a solution
to an approximate or equivalent optimal control problem. For instance, nonlinear model
predictive control (MPC) is used to obtain a near optimal path-following control law for
UAVs by truncating the time horizon and minimizing a finite-horizon tracking objective
function in [7,8]. Another idea aims to solve the approximate solution directly. An offline
policy iteration (PI) strategy is utilized to obtain the near optimal solution by solving a
sequence of Bellman equation iteratively [10]. However, in the abovmentioned methods,
the complete dynamics of the system are generally required and the curse of dimensionality
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might occur. To deal with this issue, an approximate dynamic programming (ADP) scheme
was developed and has received increasing interest in the optimal control area [11–13].

ADP, which combines the concept of reinforcement learning (RL) and Bellman’s
principle of optimality, was first introduced in [11] to handle the curse of dimensionality
that might occur in the classical dynamic programming (DP) scheme for solving optimal
control problems. The main idea is to approximate the solution to the HJB equation using
some parametric function approximation techniques, for which aneural network (NN) is the
most commonly used scheme, such as a single-NN based value function approximation and
the actor–critic dual-NN structure [14]. For continuous-time nonlinear systems, Ref. [15]
proposed a data-based ADP algorithm to relax the dependence on the internal dynamics
of the control system, which is also called integral reinforcement learning (IRL), to learn
the solution to the HJB equation using only partial knowledge about the system dynamics.
After that, the IRL scheme became widely used in various nonlinear optimization control
problems, including optimal tracking control, control with input constraints, control with
unknown or partially unknown systems, etc. [7,14–16].

The IRL-based methods are powerful tools used to solve nonlinear optimal control
problems. However, the OTCP for nonlinear systems with partially unknown dynam-
ics and asymmetric input constraints, especially for curve path tracking is still open to
study. Firstly, the stability of the IRL-based methods for nonlinear constrained systems
are generally hard to prove. Moreover, the changing curvature in the curve-path-tracking
control problem makes it more difficult to stabilize the tracking error compared to the
widely studied regulation control or circular path-tracking control problems. Moreover,
the asymmetric input constraints are more difficult to deal with than commonly discussed
symmetric constraints.

Motivated by the desire to solve the OTCP with the curve path for partially unknown
nonlinear systems with asymmetric input constraints, this paper introduces a feedforward
control law to simplify the problem and redesigns the non-quadratic form control input
cost function and utilizes an NN-based IRL scheme to solve an approximate optimal control
policy. The three main contributions are:

1. An approximate optimal curve-path-tracking control policy is developed for nonlinear
systems with a feedforward control law, which handles the time-varying dynamics of
the reference states caused by the curvature variation, and a data-driven IRL algorithm
is developed to solve the approximate optimal control policy, in which a single-NN
structure for value function approximation is utilized, reducing the computation
burden and simplifying the algorithm structure.

2. The non-quadratic control cost function is redesigned via a constraint transformation
with the introduced feedforward control law, which solves the challenge of asym-
metric control input constraints that traditional methods cannot handle directly, and
satisfactory input constraints are guaranteed with proof.

3. The proposed approximate optimal path-tracking control algorithm is validated via
hardware-in-the-loop (HIL) simulations for fixed-wing UAVs in comparison with
three other typical path-tracking algorithms. The result shows that the proposed
algorithm not only has much less fluctuation and smaller root mean squared error
(RMSE) of the tracking error but also naturally meets the control input constraints.

2. Problem Formulation

This section briefly formulates the OTCP of nonlinear systems subject to asymmetric
control input constraints.

Consider the following affine nonlinear kinematic systems:

ẋk(t) = fk(xk(t)) + gk(xk(t))u(t), (1)
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where xk ∈ Rn1 is the vector of system motion states that we focus on, fk(·) : Rn1 → Rn1

is the internal kinematic dynamics, gk(·) : Rn1 → Rn1×m is the control input dynamics of
system, and u ∈ Rm is the control input, which is constrained by

λmin
j ≤ uj ≤ λmax

j , j = 1, . . . , m (2)

where λmin
j and λmax

j are the minimum and the maximum thresholds of control input uj,
which are decided by characteristics of the actuator, and not always satisfying
λmin

j = −λmax
j .

Remark 1. The asymmetric control input constraint (2) is widespread in practical systems, such as
fixed-wing UAVs and autonomous underwater vehicles (AUVs) [1,7–9,17]. For these systems, ex-
isting control algorithms that consider only symmetric input constraints cannot be utilized directly.

This paper studies the OTCP with curve paths for system (1) with input constraint (2).
Thus, we focus on the tracking performance of the above motion states xk with reference to
the reference motion states xkd

specified by the corresponding virtual target point (VTP) pd
on the reference path. Then, the considered tracking control system is described as{

ẋe = fe(xe, xd) + ge(xe, xd)u

ẋd = fd(xd)
, (3)

where xe = xk − xkd
describes the tracking error state, xd = [x>kd

, x>cd
]> ∈ Rn2 represents

the bounded state vector related to the reference motion states, not subject to human
control, xkd

∈ Rn1 is the reference motion states, and xcd ∈ Rn2−n1 describes some other
related system variables, n2 − n1 ≥ 0. The continuous-time functions, fe(·) and ge(·),
are internal dynamics and control input dynamics of the tracking error system, fd(xd) is
the dynamics of the reference states and is decided by the task setting. Obviously, the
specific form of fe(·) and ge(·) is closely related to the specific fd(·). For the tracking control
problem of system (3), the complete system state is denoted as x = [x>e , x>d ]

> . Then there
is x ∈ Rn, n = n1 + n2.

Remark 2. Suppose that the reference path is generated by a separate mission planner, and xcd

describes system dynamic parameters determined by the task setting, such as the moving speed of the
VTP along the reference path. Then, it is reasonable to suppose that fd(·) is known, which describes
the shape of the reference path as well as the motion dynamics of the reference point along the path.

Then, in the problem of curve-path-tracking control, given the reference motion state
xkd

corresponding to pd, denote the curvature of the reference path at this point as κd, and
the speed of the point moving along the path as vd . The dynamics of the reference states
can be more specifically described as

ẋd = fd(xd) =

ẋkd
v̇d
κ̇d

 =

 fkd
(xkd

, κd, vd)
fvd(xkd

)
fκd(xkd

)

. (4)

Then the control objective is to find an optimal control policy u∗ that consumes at
the least cost to drive the tracking error xe to converge to 0. To this end, take the objective
function as

J(x(0), u) =
∫ ∞

0
[E(x) + U(u)]dτ, x(0) ∈ X, (5)

where X ⊆ Rn is a compact set containing the origin of the tracking error, E(x) =
xT

e (t)Qxe(t) is the quadratic tracking error cost with the positive definite diagonal ma-
trix Q, and U(u) is the positive semi-definite control cost to be designed.
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Now, referring to the concept in optimal control theory in [18], we define the admissible
control for OTCP as follows.

Definition 1. A control policy u(t) = µ(x(t)) is said to be admissible, denoted as u(t) ∈ U, with
respect to objective function (5) for the tracking control system (3), if µ(x(t)) is continuous on X and
satisfies constraints (2), and the corresponding state trajectory x(t) makes J(x(0)) < ∞, ∀x(0) ∈ X.

Then, the main objective of this paper is to find the optimal control policy u∗ ∈ U that
minimizes the objective function (5), and before we illustrate the design of solving u∗, the
following assumption is made in this paper.

Assumption 1. For any initial state x(0) ∈ X, given the dynamic function fd(·) of the reference
state, there exists an admissible control u(0) ∈ U, i.e., u(0), which satisfies constraints (2), is
continuous to x on set X, and stabilizes the tracking error in (3).

3. Optimal Control Design for Curve Path Tracking with Asymmetric Control
Input Constraints

To find the optimal curve-path-tracking control policy u∗ for system (3), this section
first introduces a feedforward control law which helps to deal with the variation of the
reference state dynamics. Then a dedicated design for a control cost function, which enables
natural satisfactory of the asymmetric input constraint, is proposed (2).

Note that the main difficulty of curve-path-tracking control compared with that of
regulation or straight/circular path tracking, is that the dynamics of the reference motion
states xkd

is time-varying because of the varying curvature of the reference path. To drive
the tracking error to converge to 0, when xe = 0, it needs ẋe = 0. The point is, different from
regulation control problem, there needs to be a non-zero steady-state control law (denoted
as ū) because of the varying dynamics of xkd

, such that

ẋe(t)|xe=0 = fe(0, xd(t)) + ge(0, xd(t))ū(0, xd(t)) = 0. (6)

It is easy to know that this non-zero steady-state control input ū mainly depends
on the dynamics of reference states. Therefore, we rewrite the dynamic function of the
reference motion state in (4) in the following form:

ẋkd
= fkd

(xkd
, κd, vd) = fk(xkd

) + gk(xkd
)ud(xkd

, κd, vd). (7)

Importing (7) and (1) into (6), we can obtain

ū(0, xd) = ud(xkd
, κd, vd).

Then for xe 6= 0, we extend the above result to define the feedforward control ū(x) as

ū(x|xd) = ud(xkd
, κd, vd). (8)

Remark 3.

1. The rewriting of (7) is reasonable for practical robotic systems since the reference state as well
as the associated constraint conditions are well-concerned by the separate mission planner and
will be illustrated by examples in later experiments.

2. The feedforward control law ū here is not an admissible control policy, which cannot drive a
non-zero tracking error to 0, but is to be taken as a part of the control policy for the tracking
control system.

Now, this paper explains how to solve the desired optimal tracking control strategy
u∗ that satisfies the asymmetric control input constraint (2) in a simplified way by using ū.
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Given the dynamic function fd(·) of reference states, ū can be obtained in real time
according to (8). Then, the complete tracking control policy can be described as

u , ū + ũ,

where ũ is the feedback control to be solved. Importing ũ into the tracking error state
equation in (3) generates

ẋe = fe(xe, xd) + ge(xe, xd)(ū + ũ)

= f̄e(xe, xd) + ge(xe, xd)ũ,
(9)

where
f̄e(xe, xd) = fe(xe, xd) + ge(xe, xd)ū.

Thus it holds that f̄e(0, xd) = 0. Then, to solve the optimal control policy u∗ is actually
equivalent to solve the optimal feedback control ũ∗ , u∗ − ū.

Therefore, in the consideration of control input constraint (2), referring to [10,16,19],
the control cost in (5) is designed as

U(u) = Ũ(ũ) = 2
m

∑
j=1

∫ ũj

0
λ̃jrj tanh−1(s/λ̃j)ds, (10)

which is a semi-positive definite function, and the greater the absolute value of the control
input component ũj, the greater the function value. So, being a part of the objective function,
it can help to find an energy-optimal solution, and rj > 0 is the weight coefficient with
reference to component j. The main difference of (10) compared with that in [10,16,19] is
that the threshold parameter in the integrand, i.e., λ̃j ≥ 0, is not a constant directly obtained
from a symmetric control constraint but redefined for the asymmetric constraint (2) with
the introduced feedforward control law as

λ̃j =

{
−(λmin

j − ūj), if ũj < 0.

λmax
j − ūj, if ũj ≥ 0.

(11)

This design allows for the natural satisfaction of the asymmetric control input constraint 2,
which will be illustrated later in Lemma 1.

Then for tracking control system (3) subject to asymmetric control input constraint (2),
given an initial state x(0) ∈ X and the objective fuction (5) with (10), we define the optimal
value function V∗(x) ∈ C1 as

V∗(x(t)) = min
u∈U

J(x(t), u) = min
ũ|ū+ũ∈U

J(x(t), ũ). (12)

Correspondingly, the Hamiltonian is constructed as

H(x, ũ, V∗) = E(x) + Ũ(ũ) + (∇V∗)>ẋ

= E(x) + Ũ(ũ) + (∇xe V
∗)>
[

f̄e(xe, xd) + ge(xe, xd)ũ
]
,

where∇V∗ = ∂V∗
∂x ,∇xe V

∗ = ∂V∗
∂xe

. Then, according to the principle of optimality, ũ∗ satisfies

H(x, ũ∗, V∗) = E(x) + Ũ(ũ∗) + (∇xe V
∗)>
[

f̄e(xe, xd) + ge(xe, xd)ũ
∗]

= 0.
(13)

Then using the stationary condition, the optimal feedback control ũ∗ can be obtained as

ũ∗ = −Λ tanh
[

1
2
(ΛR)−1g>e (x)∇xe V

∗
]

, (14)
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where Λ, R ∈ Rm×m are diagonal matrices constructed by λ̃j and rj, (j ∈ {1, · · · , m}),
respectively, i.e.,

Λ =

λ̃1 · · · 0

0
. . . 0

0 · · · λ̃m

,

R =

r1 · · · 0

0
. . . 0

0 · · · rm

.

Then the optimal tracking control policy u∗ , ū + ũ∗ is

u∗ = ū−Λ tanh
[

1
2
(ΛR)−1g>e (x)∇xe V

∗
]

. (15)

Importing ũ∗ into (10), we can obtain the optimal control cost

Ũ(ũ∗) = 2
m

∑
j=1

∫ ũj∗

0
λ̃jrj(tanh−1(s/λ̃j))

Tds

= (∇xe V
∗)>ge(x)Λ tanh(D∗) + diag>(ΛRΛ) ln(12 − tanh2(D∗)),

(16)

where D∗ = 1/2(ΛR)−1g>e (x)∇xe V
∗, diag>(·) represents the vector constructed by the

matrix main diagonal elements, 12 = (1, 1)>.
Further, importing (16) into (13), the tracking HJB equation turns into

E(x) + (∇xe V
∗)> f̄e(xe, xd) + diag>(ΛRΛ) ln(12 − tanh2(D∗)) = 0. (17)

Then if one can obtain the solution V∗ by solving (17), (15) would provide the desired
optimal tracking control policy.

Now we propose the following lemma.

Lemma 1. With the non-quadratic control cost function (10), the optimal control policy u∗ in (15)
satisfies the asymmetric constraint (2) naturally.

Proof. Under Assumption 1, there exists an admissible control u(0) ∈ U such that

λmin
j ≤ uj(0) ≤ λmax

j . (18)

Denote u(0) as
u(0) = ũ(0) + ū.

Since u(0) is an admissible control law, according to Definition 1, there must be

ẋe(t)|xe=0 = fe(0, xd(t)) + ge(0, xd(t))u(0)(t)

= fe(0, xd(t)) + ge(0, xd(t))
[
ũ(0) + ū

]
= 0 + ge(0, xd(t))ũ(0)

= 0.

(19)

Thus we have
ũ(0)(0, xd) = 0.

Putting ũ(0) into (18) generates

λmin
j ≤ ūj(0, xd) ≤ λmax

j .
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Then according to definition of λ̃j in (11) and the extended feedforward control defined
in (8), we have

λ̃j ≥ 0.

Since −1 ≤ tanh(·) ≤ 1, according to (14) and (11), the feedback control ũ∗ satisfies{
ũj∗ ≥ −λ̃j = λmin

j − ūj, when ũj∗ < 0.

ũj∗ ≤ λ̃j = λmax
j − ūj, when ũj∗ ≥ 0.

(20)

Then combining (20) with (15), we have

λmin
j ≤ uj∗ ≤ λmax

j .

This completes the proof.

Next, the following theorem provides the optimality and stability analysis of u∗.

Theorem 1. For tracking control system (3), given the dynamics function fd(·) of the reference
state, initial state x(0) ∈ X and the objective function (5) with (10), assume V∗ is a smooth positive
definite solution to (17), then the optimal control policy given by (15) has the following properties:

• ∀u ∈ U, u∗ minimizes objective function J(x(0), u) ;
• u∗ stabilizes the tracking error xe gradually.

Proof. First, we prove that u∗ minimizes the objective function J.
Given the initial state x(0) and the solution of HJB equation (17) as V∗, it holds that∫ ∞

0
V̇∗(x(t))dt = −V∗(x(0)). (21)

Thus for any admissible control u = ū + ũ, the corresponding objective function (5) can be
represented as

J(x(0), u) =
∫ ∞

0

[
E(x) + Ũ(ũ)

]
dt +

∫ ∞

0
V̇∗(x(t))dt + V∗(x(0)). (22)

Deriving V∗ alone the state trajectory corresponding to ui, we have

V̇∗(x(t)) =
∂V∗

∂x
ẋ = (∇xe V

∗)>
[

f̄e(xe, xd) + ge(xe, xd)ũ
]
,

and

J(x(0), u) =
∫ ∞

0

[
E(x) + Ũ(ũ)

]
dτ

+
∫ ∞

0
(∇xe V

∗)>
[

f̄e(xe, xd) + ge(xe, xd)ũ
]
dτ + V∗(x(0)).

(23)

By adding and subtracting
∫ ∞

0 (∇xe V
∗)>ge(x)ũ∗dτ and

∫ ∞
0 Ũ(ũ∗)dτ to the right side

of the equation, it generates

J(x(0), u)

=
∫ ∞

0

[
E(x) + Ũ(ũ∗)

]
dτ +

∫ ∞

0
(∇xe V

∗)>
[

f̄e(xe, xd) + ge(xe, xd)ũ
∗]dτ + V∗(x(0))

+
∫ ∞

0
(∇xe V

∗)>ge(xe, xd)(ũ− ũ∗)dτ +
∫ ∞

0
Ũ(ũ)dτ −

∫ ∞

0
Ũ(ũ∗)dτ.

(24)
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Then combine (24) with HJB equation (13), we further obtain

J(x(0), u)

=
∫ ∞

0
H(x, ũ∗, V∗)dτ + V∗(x(0)) +

∫ ∞

0
(∇xe V

∗)>ge(xe, xd)(ũ− ũ∗)dτ

+
∫ ∞

0
Ũ(ũ)dτ −

∫ ∞

0
Ũ(ũ∗)dτ

=V∗(x(0)) +
∫ ∞

0

[
(∇xe V

∗)>ge(x)(ũ− ũ∗) + 2
m

∑
j=1

∫ ũj

ũj∗
λ̃jrj tanh−1(s/λ̃j)ds

]
dτ.

(25)

Denote that

M = (∇xe V
∗)>ge(x)(ũ− ũ∗) + 2

m

∑
j=1

∫ ũj

ũj∗
λ̃jrj tanh−1(s/λ̃j)ds. (26)

Then to prove that u∗ minimizes J, one needs to prove that M > 0 for all admissible control
u 6= u∗, and that M = 0 if and only if u = u∗.

Based on (14), there is

(∇xe V
∗)>ge(x) = −2ΛR tanh−1

(
(Λ−1ũ∗)>

)
. (27)

Then importing (27) to M, we obtain

M = 2
[
ΛR tanh−1(Λ−1ũ∗)

]>
(ũ∗ − ũ) + 2

m

∑
j=1

∫ ũj

ũj∗
λ̃jrj tanh−1(s/λ̃j)ds

= 2
m

∑
j=1

rj

[
λ̃j tanh−1(ũj∗/λ̃j)(ũj∗ − ũj) +

∫ ũj

ũj∗
λ̃j tanh−1(s/λ̃j)ds

]
.

(28)

To help to analyze, define a function ςa(x1, x2) as

ςa(x1, x2) = a tanh−1(x1/a)(x1 − x2) +
∫ x2

x1

a tanh−1(s/a)ds,

where a > 0, −a ≤ x1, x2 ≤ a. Since tanh−1(·) increases monotonically, when x1 < x2,
there must be a x̂ ∈ (x1, x2), such that

a tanh−1(x̂/a)(x2 − x1) =
∫ x2

x1

a tanh−1(s/a)ds,

and that tanh−1(x̂/a) > tanh−1(x1/a). Then importing tanh−1(x̂/a) into
ςa(x1, x2) generates

ςa(x1, x2) = a tanh−1(x1/a)(x1 − x2) + a tanh−1(x̂/a)(x2 − x1)

= a
(

tanh−1(x̂/a)− tanh−1(x1/a)
)
(x2 − x1)

> 0.

(29)

Likewise, when x1 > x2, there must also be a x̂ ∈ (x2, x1), such that

a tanh−1(x̂/a)(x1 − x2) = −
∫ x2

x1

a tanh−1(s/a)ds,
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and that tanh−1(x1/a) > tanh−1(x̂/a). Then importing tanh−1(x̂/a) into ςa(x1, x2) we have

ςa(x1, x2) = a tanh−1(x1/a)(x1 − x2)− a tanh−1(x̂/a)(x1 − x2)

= a
(

tanh−1(x1/a)− tanh−1(x̂/a)
)
(x1 − x2)

> 0.

(30)

Further, when x1 = x2, it holds that ςa(x1, x2) = 0. That is, ςa(x1, x2) = 0 only when
x1 = x2, and ςa(x1, x2) > 0, when x1 6= x2.

Combining the above conclusion with (28), M can be represented as

M = 2
m

∑
j=1

rjςλ̃j
(ũj∗ , ũj). (31)

Then, there is {
M > 0 if ∃j ∈ {1, · · · , m}, s.t. ũj 6= ũj∗ .
M = 0 if ∀j ∈ {1, · · · , m}, s.t. ũj = ũj∗ .

(32)

Therefore, J(x(0), u) ≥ V∗(x(0)) holds for all u ∈ U, in which the = holds only when
u = u∗ , ū + ũ∗.

Next, we prove that the tracking error xe is gradually stabilized with u∗.
Note that V∗(x) is a positive semi-definite function. Take V∗(x) as the Lyapunov

function of the tracking control system (3), then there is

V̇∗(x(t)) = −x>e Qxe − Ũ(ũ∗) ≤ 0. (33)

It is known from the proof of Lemma 1 that ũ∗(0, xd) = 0, then the “=” in (33) holds only if
xe = 0. Thus, u∗ gradually stabilizes xe.

This completes the proof.

4. IRL-Based Approximate Optimal Solution

The last section provides the design of the optimal tracking control policy u∗. However,
to solve u∗ involves solving the HJB Equation (17), which is highly nonlinear to V∗. In
consideration of the difficulty in solving (17), this section provides an NN-based IRL
algorithm to obtain an approximate optimal solution.

With the optimal value function denoted as V∗, the following integral form of the
value function is taken according to the idea of IRL:

V∗(x(t)) =
∫ t+T

t

[
x>e Qxe + Ũ(ũ∗)

]
dτ + V∗(x(t + T)), (34)

where the integral reinforcement interval T > 0.
Then the IRL-based PI Algorithm 1 is presented as follows.

Algorithm 1 IRL-based optimal path-tracking algorithm

1: Policy evaluation: NN weights update

V(k)(x(t)) =
∫ t+T

t

[
x>e Qxe + Ũ

(
ũ(k)

)]
dτ + V(k)(x(t + T)). (35)

2: Policy improvement:
u(k+1) = −Λ tanh

(
D(k)

)
+ ū, (36)

where D(k) = 1/2(ΛR)−1g>e (x)∇xe V
(k).
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Remark 4. Equation (34) is equivalent to the HJB equation (17) in the way that (34) and (17) have
the same positive definite solution V∗, and according to the result of traditional PI algorithm, given
an initial admissible control u(0), then for all k ≥ 0, iteratively solving (35) for V(k), there always
exists an admissible control u(k+1) with (36), and when k→ ∞, u(k) and V(k) uniformly converge
to u∗ and V∗[10,20].

To implement Algorithm 1, this paper introduces a single-layer NN with p neurons to
approximate the value function:

V(k)(x) =
(

W (k)
c

)>
σ(x) + ε(x), (37)

and
∇V(k)(x) = (∇σ(x))>W (k)

c +∇ε(x), (38)

where W (k)
c ∈ Rp is the optimal weight vector to approximate V(k), σ(·) : Rn → Rp is the

vector of continuously differentiable bounded basis functions, and ε is the approximation
error. Then, according to work in [10], when the number of neurons p → ∞, the fitting
error ε would be close to 0, and [21] points out that, even when the number of neurons is
limited, the fitting error is still bounded. Therefore, ε and∇ε are bounded over the compact
set X, i.e., there exist constants bε > 0 and b

′
ε > 0 such that |ε(x)| ≤ bε, ‖∇ε(x)‖ ≤ b

′
ε.

Putting (37) into (35), we obtain the tracking Bellman error as

ε
(k)
c (t) =

∫ t+T

t

[
x>e Qxe + Ũ

(
ũ(k)

)]
dτ +

(
W (k)

c

)>
∆σ(x(t)), (39)

where ∆σ(x(t)) = σ(x(t + T))− σ(x(t)). Then, there exists a positive constant εmax such
that |εc

(k)(t)| ≤ εmax, ∀t ≥ 0.
Since the optimal weight vector W (k)

c in (37) is unknown, the value function is approx-
imated in the iteration as

V̂(k)(x) =
(

Ŵ (k)
c

)>
σ(x), (40)

where Ŵ (k)
c is the estimation of W (k)

c . Then, the estimation of ε
(k)
c (t) is

ê(k)c (t) =
∫ t+T

t

[
x>e Qxe + Ũ

(
ũ(k)

)]
dτ +

(
Ŵ (k)

c

)>
∆σ(x(t)). (41)

To find the best weight vector W (k)
c of V(k), the tuning law of the weight estimation

Ŵ (k)
c should minimize the estimated Bellman error ê(k)c . Utilizing the gradient decent

scheme and considering the objective function Ec =
1
2

(
ê(k)c

)2
, we take the tuning law for

the weight vector as

˙̂W (k)
c = −αcδ

∂Ec

∂Ŵ (k)
c

= −αc
∆σ(x)

(∆σT(x)∆σ(x) + 1)2 ê(k)c , (42)

where αc > 0 is the learning rate, and δ = 1
(∆σT(x)∆σ(x)+1)2 is used for normalization [16].

Then, taking the sampling period as equal to the integral reinforcement interval T, after
each N sampling period, the NN weights of online IRL-based PI for the approximate
tracking control policy after kth iterations is updated by

Ŵ (k+1)
c = Ŵ (k)

c − αc
1
N

N−1

∑
j=0

∆σj(x)(
∆σ>j (x)∆σj(x) + 1

)2 ê(k)cj .
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Importing Ŵ (k+1)
c into (36), we obtain the improved control policy

û(k+1) = −Λ tanh
(

D̂(k+1)
)
+ ū, (43)

where D̂(k+1) = 1/2(ΛR)−1g>e (x)(∇σ(x))>Ŵ (k+1)
c . Then, given an initial approximated

weight Ŵ (0)
c corresponding to an admissible initial control u(0), the online IRL-based PI

can be performed as in Figure 1.

Figure 1. The flowchart of the online integral reinforcement learning (IRL)-based policy iteration
algorithm for approximate optimal tracking control policy.

Remark 5. Let u(0) be any admissible bounded control policy in the algorithm in Figure 1, and
take (42) as the tuning law of the critic NN weights. If ∆σ̄ = ∆σ(x)/(∆σT(x)∆σ(x) + 1) is
persistently exciting (PE), i.e., if there exist γ1 > 0 and γ2 > 0 such that ∀t > 0

γ1 I ≤
∫ t+T

t
∆σ̄∆σ̄Tdτ ≤ γ2 I, (44)

where I is the unit matrix, then for the bounded reconstruction error εc
(k) in (41), the critic weight

estimation error W̃ (k)
c = W (k)

c − Ŵ (k)
c converges exponentially fast to a residual set [13–15].

5. Application to Fixed-Wing UAVs

This section verifies the proposed method on the OTCP for fixed-wing UAVs curve
path tracking in HIL simulations in comparison with three other typical path
tracking algorithms.

5.1. Problem Formulation

The system state of fixed-wing UAVs denoted by xk = (x, y, ψ)> includes the position
of the UAV in the inertial system p = (x, y)> and the heading angle ψ. The control input u
comprises the airspeed uv and heading rate uω, which are constrained by

vstall ≤ uv ≤ vmax,

−ωmax ≤ uω ≤ ωmax,
(45)

where vstall > 0 is the minimum stall speed, vmax, and ωmax are the maximum speed and
heading rate, respectively, determined by executor features.
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Given the VTP pd(t) at time t, the corresponding reference motion state xkd
(t) =

(xd, yd, ψd)
> is then designated. Let the VTP move at a constant speed vd along the reference

path. Then, denote the curve length of one point with reference to the start point along the
path as l. Given the parameterized function Q(l) of the reference path, the curvature κd at
pd(t) can be calculated. Then, the reference state dynamics are obtained:

ẋd =


ẋd
ẏd
ψ̇d
v̇d
κ̇d

 =


0
0
0
0

fκd(xkd
|Q(l))

+


cos ψd 0
sin ψd 0

0 1
0 0
0 0


[

vd
vdκd

]
. (46)

Then, the feedforward control law is

ū =

[
vd

vdκd

]
.

Define the tracking error in a local Frenet–Serret coordinate system {F} as
xe = (xe, ye, ψe)> [22,23]. Then, let Q = I3×3 and R = I2×2. The goal is to solve the
optimal control u∗ that minimizes the objective function (5) with (10).

5.2. Approximate Optimal Control Policy Learning

This subsection utilizes the proposed method to find an approximate optimal policy
for OTCP of fixed-wing UAVs formulated in the last subsection.

The learning process is carried out on Matlab 2018. Table 1 presents the parameter
settings, and the nonlinear kinematics of fixed-wing UAVs is modeled by

ẋk =

 ẋ
ẏ
ψ̇

 =

cos ψ 0
sin ψ 0

0 1

[uv
uω

]
. (47)

Given coordinates of five waypoints, the reference curve path is generated using
the third order B-spline curve algorithm (See Figure 2a). Given the reference state of the
start point on the reference path, the initial state of the UAV is randomly chosen within
xe(0), ye(0) ∈ [−50, 50], ψe(0) ∈ [−π, π]. The basis for the value function approximation is
selected as

σ =
[
xe ye ψe xeye xeψe yeψe x2

e y2
e ψ2

e
]>. (48)

The value function NN weights are initialized as

Ŵ (0)
c =

[
0.1 0.1 −0.5 0.1 0.1 0.1 0.1 0.1 0.5

]>, (49)

which corresponds to an admissible but non-optimal control policy u(0). Given the initial
NN weights and the corresponding admissible initial control policy, the tracking data are
collected online, and the NN weights are updated once a batch of a specific amount of data
is collected according to the flow in Figure 1.

Table 1. Parameter settings for optimal policy learning.

Symbol Value Meaning

vd (m/s) 19 the cruising speed of the UAV
vstall (m/s) 14 the minimum stall speed of the UAV
vmax (m/s) 24 the maximum speed of the UAV

ωmax (rad/s) 0.6 the maximum heading rate
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The iterative process of critic NN weight estimates are provided in Figure 2b, which
converges to a steady value in 23 steps, and the final NN weights are

Ŵ (23)
c =

[
0.329 0.002 0.574 0.102 0.074 0.120 0.100 0.103 3.204

]>, (50)

which provides an approximate optimal path-tracking control policy for fixed-wing UAVs.
In the process of policy training, we found that w3 and w9 demonstrate stronger oscillation
compared with other NN weights, which is also presented in Figure 2b. This is because
both of the corresponding activation functions are one-variable functions of the heading
angle error ψe, which is set to be within [−π, π] during the training, and the value ranges of
xe and ye are set to be [−300, 300]. Thus, there is no unified metric for the three components.
As a result, the weight of the activation function would be much more sensitive to variation
of the approximated function value.

x (m)

y
 (

m
)

reference path

passed waypoints

(a) Reference path

iteratioon steps

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

(b) NN weights iteration

Figure 2. The reference path for policy learning and the neural network (NN) weights iteration.

5.3. HIL Simulation Test and Result Analysis

To fully validate the effectiveness of the proposed method on OTCP of fixed-wing
UAVs, the learned control policy was tested on a high-fidelity HIL simulation system in
comparison with three other typical path-tracking algorithms [5]: the pure pursuit and
line of sight algorithm (PLOS), the nonlinear Lyapunov guidance method (NLGL), and the
backstepping control method (BS). The HIL simulation system consists of a swarm control
station, the host computer, a Pixhawk autopilot, a QGround Control, and an X-Plane aircraft
simulator. Specifically, the swarm control station, which is used to give task instructions
and displays the current status of the system, was developed by the authors’ team. The
host computer was used to simulate the onboard computer of the physical aircraft, which
receives and processes task instructions from the control station and state information from
onboard sensors and generates and sends control commands to Pixhawk. The Pixhawk
autopilot is a widely-used open-source autopilot, and it processes and generates control
commands for the underlying actuators and collects and sends back the sensor data. The
X-Plane aircraft simulator, which is a high-fidelity aircraft simulator, provides the physical
engine and dynamics simulation of the UAV, and the QGround Control performs as an
information transfer station between X-Plane and Pixhawk (see Figure 3 for the flow of
control commands and sate information).
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Figure 3. The high-fidelity hardware-in-the-loop (HIL) simulation system.

Note that:

1. The reference path in HIL simulations shown in Figure 4a is generated by QGround
Control with eight waypoints (provided in Table 2) on an experimental airport, which
is different from that used for policy learning and has larger curvature changes.

2. Speed constraints in the aircraft simulator during the test were 10 ≤ uv ≤ 18, different
from settings in policy learning (which is the same as a practical UAV platform).

Table 2. Waypoints of the reference path in HIL simulation tests.

WP 1 WP 2 WP 3 WP 4

Latitude 34.0245 34.0288 34.0240 34.0198
Longitude 113.7068 113.7032 113.7012 113.7040

WP 5 WP 6 WP 7 WP 8

Latitude 34.0282 34.0247 34.0212 34.0245
Longitude 113.7096 113.7114 113.7106 113.7068

x (m)

y
 (

m
)

reference path

passed waypoints

(a)
x (m)

y
 (

m
)

reference path

proposed method

BS

PLOS

NLGL

ini. & end. point

(b)

Figure 4. The reference path and tracking trajectories in HIL simulation tests: (a) reference path;
(b) tracking trajectory.

In spite of the abovementioned differences between settings of policy learning process
and HIL simulation, the learned control policy provided satisfying tracking performance in
the comparison HIL simulation. The path-tracking trajectories are presented in Figure 4b,
which shows that all of the four algorithms can stably track the reference curve path.
Figures 5 and 6 further show the heading and the cross-tracking errors of the four algo-
rithms. From these two figures, we can see that the learned control policy using the proposed
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method leads to a smooth curve-path-tracking trajectory with a small lateral steady-state
tracking error and near zero heading and forward steady-state tracking errors. Moreover,
heading tracking errors of BS, PLOS, and NLGL, the forward tracking error of BS, and the
lateral tracking error of PLOS and NLGL, show significant fluctuations compared with the
proposed method, especially when the UAV moves up to the corners of the reference path.
This is because the heading tracking error and the information of curvature variation of the
reference path are not considered in the three algorithms. Therefore, the three algorithms
cannot achieve a satisfactory curve-path-tracking control performance as in the straight-line
and circular path-tracking control problems, and the proposed method can provide more
stable and smooth tracking performance. Figure 6 also shows that both PLOS and NLGL
algorithms have a significant steady-state forward error. The main reason is that, the
tracking performance of the two algorithms is very dependent on the update rule of the
VTP, which is required to be updated ahead of a distance before the UAV’s arrival, and the
algorithms would fail to track the path if this distance is not large enough (such as, smaller
than about 20 m). Finally, Figure 7 provides the control input using the provided method,
which verifies that the input constraints are naturally satisfied instead of being forcibly cut
down during the whole path-tracking period.

sampling step

e
 (

ra
d

)

proposed method

BS

PLOS

NLGL

Figure 5. The heading error comparison.

sampling step

x
e
 (

m
)

proposed method BS PLOS NLGL

sampling step

y
e
 (

m
)

proposed method BS PLOS NLGL

sampling step

M
R

S
E

 (
m

) proposed method BS PLOS NLGL

Figure 6. The cross-tracking error and the root mean squared error comparison.
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sampling step

u
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)

sampling step

u
 (

ra
d
/s

)

Figure 7. The control input using the proposed method.

6. Conclusions

This paper developed an approximate optimal control scheme for OTCP of nonlinear
systems with asymmetric input constraints. Especially, the difficulty brought by the varying
curvature of the curve reference path is handled by introducing a feedforward control law.
The effectiveness was verified in a high-fidelity HIL system for fixed-wing UAVs. The
result confirmed the effectiveness and generalization of the learned control policy and
indicates the capability of ADP theory in complicated nonlinear systems. Future work will
study the robust control of such control systems under external disturbance.
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