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Abstract: The continual expansion of the range of applications for unmanned aerial vehicles (UAVs) is
resulting in the development of more and more sophisticated systems. The greater the complexity of
the UAV, the greater the likelihood that a component will fail. Due to the fact that drones often operate
in close proximity to humans, the reliability of flying robots, which directly affects the level of safety,
is becoming more important. This review article presents recent research works on fault detection on
unmanned flying systems. They include papers published between January 2016 and August 2022.
Web of Science and Google Scholar databases were used to search for articles. Terminology related
to fault detection of unmanned aerial vehicles was used as keywords. The articles were analyzed,
each paper was briefly summarized and the most important details concerning each of the described
articles were summarized in the table.
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1. Introduction

With each subsequent year, the number of unmanned aerial vehicles (UAVs) and their
applications is expanding [1–4]. Shakhatreh et al. in their extensive study [5] list areas where
UAVs are used: infrastructure, agriculture, transportation, security, media & entertainment,
insurance, telecommunications, and mining. They also enumerate specific applications
in which UAVs make a contribution: search and rescue [6–9], remote sensing [10–12],
construction and infrastructure inspections [13–15], and precision agriculture [16–18]. There
is a growing level of technological advancement in the areas of sensors [19–21], generated
computing power [22], materials, as well as in the area of aggregation and data processing
during the flight [23]. Reliability and a high level of safety are required for autonomously
controlled flying robots—especially in transport and entertainment applications. New
techniques of sensory data fusion, fault detection, fault-tolerant estimation and fault-
tolerant control come to the rescue. This article is an attempt to systematize the state-of-
the-art in terms of the fault detection method, since, as it will be shown, there are many
standards, areas, nomenclature and approaches to this area of research.

Fault detection (FD) is the first step in a larger process called fault detection and diagno-
sis (FDD). Most often, the entire fault diagnosis process is divided into three stages [24–27].
Consistent terminology for the different stages of the FDD was first proposed by Isermann
and Ballé in [28] after consultations with the SAFEPROCESS Technical Committee. Sub-
sequently, the nomenclature was reproduced in [29,30]. The individual steps along with
the most important features are presented in Figure 1. For explanations of fault diagnosis
terms, see Appendix A.

In the present paper, we aim to use more specific results of individual studies with
an indication of strengths and weaknesses. We present the method of conducting the
experiment, with particular emphasis on whether it occurred place in real conditions, in
a laboratory, or only simulation tests were carried out. Specific UAV models used in the
research were also indicated, as long as the authors openly present them.
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Figure 1. Fault diagnosis steps.

Table 1 shows a popular breakdown of fault detection methods. Vural et al. in [31]
list two types of these methods: model-based and data-driven. This is the most common,
but not the only, way to distinguish between these methods. Iserman in their book [30]
describes the methods of detection and diagnosis of failures with knowledge-based, signal-
based and process-model-based. Amorim divides fault detection methods into those based
on single signal and multiple signals and models [32]. In turn, Făgărăşan et al. in [33]
divide these methods into signal-based and process-based.

Table 1. Division of fault detection methods.

Model-Based Data-Based

state estimation statistical methods
parameter estimation neural networks
process identification fuzzy logic

state and parameter estimation frequency analysis
parity space approach time-frequency analysis

The same applies to the division of the types of unmanned aerial vehicles. It can be
done by taking into account various criteria. In this paper, in Figure 2, we propose a simple
division of the UAV due to the type of construction into rotary wing, tilt-rotor, fixed wing,
and flapping wing.

The main contribution of this study is: the compilation of the most effective, currently
developed methods of fault detection to drone systems in one place, showing structures in
which specific methods can be used, and methods of testing. Still, many methods are tested
only by simulation. The manner of verification has a significant impact on the obtained
results. All the more valuable is the selection of those studies in which the tests were carried
out during actual flights.
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Figure 2. Types of UAVs.

Faults in UAVs are usually divided into two categories: actuator faults and sensor
faults. Although there are studies treating, for example, damage to circuit boards [34],
drone’s frame [35] or the surface of the flying vehicle itself [36], these are not often addressed
research problems by scientists. Figure 3 presents a common division into two main groups.
Within each group, it indicates the most common types of faults. In turn, Figures 4 and 5
illustrate pseudo signal timelines presenting individual actuator and sensor faults.

Faults
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Calibration error
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Float

Hardover

Loss of effectiveness

SensorActuator

Figure 3. Types of faults (based on [37,38]).
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Figure 4. Common actuator faults (based on [37,38]).
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Figure 5. Common sensor faults (based on [37,38]).

Figures 6–9 show examples of popular types of UAV structures. In turn, Figure 10
presents different types of multirotor propeller arrangements, including rare ones. The
arrows around the rotors represent the propeller rotation direction. Where there are two
arrows placed coaxially, two rotors are placed. E.g. a quadcopter in a quad Y design has
two rotors placed on the rear arm.

Figure 6. Quadrotor UAV structure [39].
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Figure 7. Tilt-rotor UAV structure [40].

Figure 8. Fixed wing UAV structure [41].

Figure 9. Flapping wing UAV structure [42].

Figure 10. Types of multirotor propeller arrangements [43]. In the top row are, in order from left:
bicopter, tricopter, quad +, quad X, quad H, quad V, quad Y. In the bottom row are, in order from left::
hexa +, hexa X, hexa Y6, hexa IY, octo +, octo X, octo X8.

The rest of the paper is organized as follows: Section 2 presents the search procedure
for existing review articles and regular research papers. A short description of reviews
and surveys published in recent years is included in Section 3. Section 4 consists of the
most important information from articles and conference papers describing the current
state of knowledge in the field of UAV fault detection. The work carried out is summarized
in Section 5. Finally, Section 6 concludes the paper.
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2. Search Procedure

All information presented in the next sections of the paper was gathered, analyzed,
and compared mostly based on two main databases, for which the search procedure from
Table 2 is used. Surveys were searched on the Google Scholar database, which allows
one to select review articles in the search preferences. However, this option proved to be
unreliable. Therefore, the words “survey” and “review” were added to the search terms.
Regular research papers were searched mainly in the Web of Science database, which allows
for a precise selection of keywords and logical relationships between them. Then, the found
results were supplemented with articles from Google Scholar. All searches were performed
in the time range from 1 January 2016 to 31 August 2022.

Table 2. Search procedure for surveys and regular papers.

Type Database Year Keywords

Surveys Google Scholar from 2016 survey & fault diagnosis & UAV;
review & fault diagnosis & UAV

Regular papers Web of Science
from
1 January 2016
to 31 August 2022

((fd OR fdi OR fdd) OR ((fault OR failure OR malfunction OR disturbance
OR perturbation OR defect) AND (detection OR isolation OR identification

OR classification OR analysis OR diagnosis))) AND (drone OR uav OR
(unmanned NEAR aerial) OR uas OR (unmanned NEAR aircraft) OR rpa

OR (remotely NEAR piloted)) (Title) and English (Language)

Google Scholar from 2016 fault detection & UAV

3. Existing Surveys and Reviews

The state-of-the-art can be presented as a survey or literature review.
The survey article presents the knowledge and achievements of a given theory, concept

or technique from the beginning to the present state. It aims to summarize its evolution.
Focuses on collecting and presenting information, usually to describe the progress of
discoveries about it [44].

A literature review also includes the collection of the extensive literature on a given
topic. However, unlike the survey article, it additionally compares different studies based
on shared metadata. It draws conclusions from them, describes strengths and weaknesses,
and proposes future directions. The literature review is therefore usually longer than the
survey article [44].

Several valuable review articles have been written in recent years presenting dif-
ferent areas of fault detection in unmanned aerial vehicles. Table 3 briefly presents the
topics discussed.

Table 3. Existing surveys and reviews.

Reference Year of Publ. Description of the Discussed Topics

Shraim et al. [45] 2018 configurations, modeling and identification, control, collision
avoidance, fault diagnosis, fault-tolerant control

Emer et al. [46] 2020 Kalman filtering

Guo et al. [47] 2020 interference and failures, interference estimation and fault
diagnosis, anti-interference control, fault-tolerant control

Fourlas et al. [48] 2021 fault diagnosis, fault-tolerant control, anomaly detection

In the survey on quadrotors [45], the authors conducted a comprehensive review
of quadrotor UAVs. They describe various configurations and the division of state-of-
art into multiple linear and nonlinear control methods. They present papers on model
identification, state estimation, and collision avoidance systems as well as fault diagnosis
and fault-tolerant control. There is an added value in examining the selected controllers
with a certain significant trajectory proposed by the authors. In this way, various quality
indicators were compared during the movement along the assumed flight route and
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disturbances in each of the three axes. This review analyzed articles from the year 1988
to 2016.

In [46], the principles of operation of the Kalman filter are presented. Theoretical as-
sumptions and practical applications of extended, unscented, robust, and adaptive Kalman
filters are described. In particular, the focus was on the use of filters for identification, sen-
sory data fusion, state estimation, fault detection, and fault-tolerant control for unmanned
aerial vehicles. The studies from the years 1998-2020 were analyzed.

The authors of [47] present a fairly broad approach to the subject of multisource
interference, faults and failures described in the studies from 1976 to 2019. They present
the characteristics of various disorders, their estimation and detection, as well as methods
of counteracting and minimizing the effects of this type of irregularities, including mission
reconfiguration techniques. They also described the general principles of designing a UAV
safe control system.

An extensive review of the fault diagnosis and fault-tolerant control methods is pre-
sented by Fourlas et al. [48]. It shows the division of the UAV into wing type, fault detection
and isolation (FDI) method, fault-tolerant control (FTC) type and anomaly detection tech-
niques. The paper reviews techniques for detecting sensor faults, actuators, and anomalies
in the operation of various UAV systems. It also shows fault-tolerant control methods. The
review covers works from 2010 to 2021.

In addition to review articles directly dealing with the issue of fault detection, it is
also worth mentioning the works on the practical applications of unmanned aerial vehicles.
One such paper is [49], which broadly describes the subject of UAV-supported forest
regeneration. The authors, based on over 200 texts (reviewed and non-reviewed), introduce
the benefits of using unmanned flying robots in afforestation and reforestation tasks. They
show the impact of using artificial intelligence and flying machines in accelerating the
process of forest reconstruction and monitoring their condition. They present the benefits
obtained from the use of modern technologies by organizations in many places around the
world. At the same time, they indicate the dangers related to, for example, the interaction
of UAVs with wildlife, e.g., with birds living on terrains where drones are used. They will
also point out that despite the undisputed profits, the use of unmanned aerial vehicles
should complement traditional afforestation methods, and not completely replace them.

Another paper treating the use of UAVs extensively is [50]. This review article de-
scribes the use of drones in a resource-rich country. The authors point out the wide range
of possibilities for the use of UAVs in monitoring tasks, communications, search, cargo
delivery or field processing. Using Kazakhstan as an example, the economic benefits of
solving exemplary problems with UAVs are shown: precision agriculture, exploration of
minerals, monitoring of animals, traffic, environmental pollution, hazardous geophysical
processes, and technical and engineering structures. The main tasks of precision agriculture
are to collect information about the farm, field culture, and region, analyze the informa-
tion gathered, and implement appropriate agro-technological events. A UAV equipped
with a multispectral camera, global positioning system (GPS), a humidity sensor, and a
barometer is able to clearly support the process of collecting information and for further
processing in order to take appropriate measures to support agriculture. Similarly, the
drone’s capabilities for monitoring environmental pollution or wild animal life. In turn, the
possibility of 3D mapping and modeling supports mineral exploration processes. UAVs
provide tremendous assistance in the field of early warning of catastrophes or natural
disasters and monitoring engineering structures. An invaluable advantage is a possibility
to explore dangerous or simply inaccessible places. In the event of a hazardous situation,
these machines help to estimate the level of destruction, search for the injured and provide
assistance. Drones can deliver, for example, small packages containing first-aid kits or
other survival supplies. The article also did not lack an analysis of the limitations that
characterize flying robots. The authors divided them into three groups: technical, legal, and
software-algorithmic. In the first group, sensor sensitivity, dependence on weather payload,
and limited battery capacity, which affects flight time, were mainly pointed out. The second
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group included bans on flying in specific areas and restrictions on safe distances from
people and vehicles. Software and algorithmic constraints, on the other hand, relate to the
volume and heterogeneity of the data acquired, their incompleteness, multi-dimensional,
and high resolution. These all limit the possibilities of processing them directly on board.

There are also many studies available treating not directly unmanned aerial vehicles,
but methods and techniques to support their successful applications. An example of this
is [51], which is a survey on machine vision. The article addresses the topics of machine
learning and artificial neural network in image processing. The authors note that by
using multispectral, thermal, and visible cameras in UAVs, it is possible to analyze soil
characteristics, inspect crops to predict yields, detect diseases, and decide when to irrigate
and harvest crops.

In turn, [52] addresses the problem of change detection techniques for land monitoring.
The authors describe approaches based on neural networks using satellite and drone
images. The article presents methods for classifying bare land, dense vegetation, and sparse
vegetation using satellite data supported by high-resolution images from UAV cameras.
The problem described can be useful in both agriculture and troop movement planning.

4. Regular Research Papers

The current section presents a study of various UAV fault detection methods. The
tables list the year of publication, the anomaly or disturbance to be detected, and the
method used. It is also indicated to which types of vehicles the authors of each study
dedicate their solution. An important part of each paper is also how the effectiveness of
the proposed approach was verified. Thus, it is specified whether the tests were carried
out only by simulation or during a real flight in the laboratory, or in real conditions. The
specific model of the UAV is also given if the authors provided such information. Of course,
other attributes and parameters were also taken into account, but the ones listed above
were considered the most important for a researcher reading this review to quickly find
relevant information.

4.1. Model-Based Methods

Still the most popular way to detect malfunctions of unmanned flying robots is to
use methods that are based on a model of the system. They are a group of methods
belonging to the category of analytical (computational) redundancy using a mathematical
model [48]. They include quantitative (state/parameter estimation, parity space) and
qualitative methods (causal models, abstraction hierarchy) [53]. Abbaspour et al. [54],
in turn, divides them into linear and nonlinear categories. Among the most popular are
mainly Kalman filters with their modifications and extensions [34]. Table 4 summarizes
publications on UAV fault detection that use model-based methods. It lists what types of
malfunctions and disturbances are diagnosed and the exact method used. It is also indicated
for which drone designs the method was developed/researched and how the tests were
conducted. A brief description of each work presented is included in the table below.



Drones 2022, 6, 330 9 of 39

Table 4. Research works using model-based methods.

Reference Year of Publ. Faulty Part/Disturbances/ Used Methods UAV Type Test Performing

Fazal et al. [55] 2016 actuator SPRT — simulated Aerosonde

Gu et al. [56] 2016 GYRO, ACCEL, MAG, GPS UIF — WVU YF-22

Hajiyev [57] 2016 sensor MMNSF,LKF — simulated ZAGI UAV

Herdjunanto [58] 2016 actuator detection filter quadrotor simulated model

Liu et al. [59] 2016 actuator
UMMAE, fading memory,

spherical unscented
transformation

ducted fan simulated model

Papaliakos et al. [60] 2016 any structural analysis, DM
decomposition, MSO large scale systems numerical fixed wing model

Tan et al. [61] 2016 actuator qLPV fixed wing simulated model

Vural et al. [31] 2016 actuator, sensor KF, RKF small UAV simulated model

Witczak et al. [62] 2016 thrust unbalance, wind H∞, DMVT small UAV constructed four-rotor

Żugaj et al. [63] 2016 control surface dynamic model analysis fixed wing numerical model

Guo et al. [64] 2017 pitot tube EKF, χ2 small fixed wing Ultra Stick 25e

Park [65] 2017 speed of wind, airspeed EKF small UAV simulation, fixed wing UAV real
flight

Yi et al. [66] 2017 actuator PF, LO quadrotor Qball-X4

Zhong et al. [67] 2017 sensor ATSEKF quadrotor simulated Qball-X4

Bauer et al. [68] 2018 elevon MMAE, small fixed wing with 2 elevons
and el. motor simulated Vireo

Bowkett et al. [35] 2018 frame mesh method quadrotor X-frame quadrotor

D’Amato et al. [69] 2018 ACCEL, GYRO, MAG EKF, linear programming,
quaternion-based tricopter simulated model

Guo et al. [70] 2018
pitot tube, ACCEL, GYRO,

angle-of-attack sensor, sideslip
sensor

EPMI filter, CUSUM all aircrafts Ultra Stick 25e

Hajiyev [71] 2018 actuator/surface MSNSF, LKF fixed wing simulated ZAGI UAV

Lee et al. [72] 2018 GPS, barometer, GDT CUSUM, FDP, sensitivity factor,
FKF, χ2 — car, airplane

Ma et al. [73] 2018 actuator, sensor adaptive observers quadrotor simulation, self-developed
quadrotor real flight
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Table 4. Cont.

Reference Year of Publ. Faulty Part/Disturbances/ Used Methods UAV Type Test Performing

Zhong et al. [74] 2018 actuator, wind AASKF, AThSKF quadrotor simulated Qball-X4

Demircan et al. [75] 2019 aileron EKF fixed wing simulated Apprentice S

Guzmán et al. [76] 2019 actuator qLPV, H∞, LQR quadrotor simulation

Rotondo et al. [77] 2019 actuator fault and icing LPV, UIO fixed wing simulated Zagi Flying Wing

Saied et al. [78] 2019 GYRO, ACCEL, MAG, GPS,
motor DFPFS multirotor simulation, Tarot outdoor flight

Venkataraman et al. [79] 2019 elevon parity space, LPV, MMAE small fixed wing prerecorded Vireo flight

Wang et al. [80] 2019 actuator, drive circuit board EKF hex rotor simulation flight experiment

Xu et al. [81] 2019 sensor LMI, H∞, H− ducted coaxial-rotor simulated model

Zhong et al. [82] 2019 airspeed tube, elevator SFUKF, STF — simulation

Cristofaro et al. [83] 2020 thrust, elevator, aileron, rudder,
airfoil fault and icing UIO, qLPV fixed wing simulated Aerosonde

Faraji et al. [84] 2020 actuator RThSEKF helicopter simulation

Gao et al. [85] 2020 aileron EKF, MMAE tilt-rotor simulated model

Hajiyev et al. [86] 2020 sensor, TSKF, LKF, — simulation

Zhang et al. [87] 2020 actuator KF, IMM triangular quadrotor simulation

Zuo et al. [88] 2020 sensor UIO quadrotor simulation

D’Amato et al. [89] 2021 sensor PF low-cost multirotor tri-rotor aircraft

Fu et al. [90] 2021 sensor, actuator adaptive observers quadrotor simulated model

Maqsood et al. [91] 2021 sensor ICD, HGO quadrotor simulated model

Miao et al. [92] 2021 sensor nonlinear PI state observer fixed wing simulated L-1011 model

Nejati et al. [93] 2021 actuator RThSCDKF, RThSEKF helicopter simulation

Sun et al. [94] 2021 pitot tube SADS, KF small fixed wing Sentera Phoenix

Cao et al. [95] 2022 actuator extended state observer, interval
observer fixed wing simulation

Gai et al. [96] 2022 elevator, event-triggered
intervals

Hi/H∞, residual generator,
Riccati recursion fixed wing simulation

Hamadi et al. [97] 2022 sensor, software KF, EKF quadrotor Tarot 650 real flight, simulation
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Fazal et al. [55] offer fault-tolerant control for three different types of actuator faults.
Their system consists of FDI using full-state observers and based on the Eigenstructure
Assignment method. Fault detection is performed using sequential probability ratio test
(SPRT). Then the reconfiguration stage is carried out, and the effectiveness of the FTC is
checked in the Simulink simulator.

The authors of the article [56] present a novel sensor fusion design framework. They
use the Unscented Information Filter to build an FDI system that detects faults in inertial
sensors, magnetometer, and GPS receiver. They have prepared a three-step sensor fusion
design framework, which: fuses sensory data in various combinations of sensor pairs,
refines the sensor error model, and reconfigures the measurement system. Describe offline
and online sensors calibration process and perform tests on WVU YF-22 aircraft.

The sensor FDI method, sensitive to the changes in the mean and covariance of
the Kalman filter, is proposed by Hajiyev in [57]. The proposed solution is based on
multiple measurement noise scale factors and allows for the detection and isolation of
sensor faults. Two types of mulfunctions have been distinguished: continuous bias and
measurement noise increment. The proposed multiple measurement noise scale factors
(MMNSFs) were applied for the model of dynamics of a UAV and were used for monitoring
statistics. The optimum linear Kalman filter estimates the state vector of the system. As
the main advantage—as in the later work on actuator/surface faults detection [71]—the
author indicates the simultaneous detection and isolation of faults. However, the proposed
solution is not suitable for identifying the type of faulted sensor. Tests were carried out
on the fixed wing ZAGI UAV model with the pitch rate of gyroscope as an example of
noise-prone sensor readings.

Herdjunanto in [58] proposes detection filter to solve actuator fault signal isolation in
hovering motion of the quadrotor UAV. The big advantage of such a solution is the ability
to handle many types of fault signals without adjusting the filter parameters. In the article,
the author focuses primarily on the theory of detection filter, the mathematical model of
the quadrotor, detection space dimension for UAV’s hovering motion, and detection filter
gain. The simulation is carried out on the assumption that fault signals are present on the
first and second actuators. The fault signal of the first actuator is a stepping function and
the fault signal of the second actuator is a sinusoidal function. The addition of the virtual
actuator vector fulfills the mutual detection requirement of the hovering quadrotor, and by
detection of the filter gain, decoupled detection spaces can be obtained.

Liu et al. [59] present unscented Kalman filter (UKF)-based fault detection and isola-
tion for a ducted fan UAV. This type of drone consists of two main tandem contra-rotating
ducted fans, two auxiliary ducted fans and two control vanes sets. The proposed unscented
multiple model adaptive estimation (UMMAE) method for the fault detection and isolation
is based on a set of UKF filters, each of which is responsible for one actuator and one
that monitors the healthy condition of the system. The authors use various techniques to
improve their method, including: an active supervision module to reduce the ambiguities
between the redundant or coupled actuators, spherical unscented transformation to reduce
computational cost, and fading memory to place more emphasis on recent measurements
instead of past measurements, which makes the filter less sensitive to modeling errors
and provides greater robustness. The simulation tests in MATLAB/Simulink were carried
out on closed-loop control for some sample faulty scenarios. The described method was
compared with extended MMAE for several actuator faults, such as locked-in-place and
floating faults of the control vanes and auxiliary fans failures. In each of the tested examples,
the proposed UMMAE showed greater efficiency and more rapidly fault isolate. For the
specific ducted fan UAV design presented in the article, the UMMAE-FDI turns out to be a
better choice.

An article slightly deviating from the mainstream presented in this review, but still
dealing with the detection of unmanned aerial vehicle faults, was written by Papaliakos et
al. In their work [60] they present calculable residual generators for large scale systems.
They describe the assumptions of structural analysis and introduce a minimal cost method
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of finding causal, computable residual generators. The authors propose a method of
reducing the time needed to generate generators by combining a priori and a posteriori
graph processing. They divided it into three steps: Dulmage-Mendelsohn decomposition,
a priori matching propagation, a posteriori matching selection. They applied their method
to a fixed wing UAV mathematical model. Thirteen residual generators were required to
achieve full fault detection. The authors showed that depending on specific search criteria,
different types of residual generators can be obtained.

Set-theoretic robust fault detection of longitudinal motion is described by Tan et al.
in [61]. In order to detect faults of the fixed wing UAV actuators, the authors use the
discretization of the continous-time quasi linear parameter-varying (qLPV) system. They
propose to use interval observers to implement robust FD. During the simulation tests, two
scenarios were checked: fault in throttle level and fault in elevator. The proposed system
detected the throttle level fault immediately, while the elevator fault was delayed.

In [31], the authors present sensor and actuator fault detection, isolation, and accom-
modation system for a small UAV. They use robust Kalman filter (RKF) and simplified
RKF to diagnose speed sensors and elevator faults. They perform simulation tests on a
small UAV model comparing the results with the optimal KF and robust KF during the
occurrence of the fault and without faults.

Witczak et al. in [62] propose a scheme for simultaneous estimation the thrust balance
and the state under uncertain environment. It allows to detect faulty/fault-free situation of
the system and provide proper control. A great advantage is the ability to implement an
approach based on H∞ paradigm in popular systems such as Arduino or Raspberry Pi. For
the purposes of the tests, a small four-rotor drone with a lightweight modular carbon-fiber
and aluminum structure was constructed. Its continuous nonlinear mathematical model
was prepared and the estimator design procedure was performed. It has been proven
that the proposed estimator is solvable. During the experiment, the position of the drone
oscillated around a given point, which was mainly caused by the wind. So while the
balance of the thrust remains unchanged, the orientation of the UAV is modified by the
wind. Experimental results confirm that fault detection using the proposed method can be
performed with considerable accuracy. As the authors postulate, the described approach
can be used for effective fault-tolerant control.

A completely different approach to the problem of detecting damage to unmanned
aerial vehicles was presented by Żugaj et al. in [63]. In this work, the analysis of control
system failures was carried out using the dynamic model of the fixed wing UAV with
6 degrees of freedom. The authors execute a numerical simulation of aircraft behavior
during: fault free configuration, and blocking one elevator in the neutral position. The
results show a large impact of actuator locks on the dynamic performance of the aircraft,
and the analysis of the control system indicates its reconfiguration capability, which can be
used to improve the aircraft’s reliability in flight.

Airspeed estimation using various sensors was presented by Guo et al. in [64]. IMU,
GPS and weather vane sensors were used to detect pitot tube faults. In the proposed
solution, analytical redundancy methods such as Kalman filtration, chi-square test, and
cumulative sum filter were used. Data from the accelerometer, gyroscope, GPS receiver,
and wind vane are sent to the extended Kalman filter (EKF), which determines the "virtual
airspeed". This value is compared with the readings from the pitot tube and the difference
is used to detect a possible failure of the latter sensor. The tests were carried out on two
different aircraft with identical sets of sensors.

Park in [65] discusses a steady wind and airspeed bias error estimation method using
airspeed sensor and GPS. The author proposes a relatively simple algorithm based on the
novel design of en extended Kalman filter, which can be used in small UAVs also for aircraft
heading angle estimation. He performs simulations on a dynamic model of the aircraft,
and then a series of real flights with a fixed wing UAV, achieving several basic maneuvers
with it. The results of the experiment confirmed the effective of proposed method for wind
and airspeed bias error estimation.
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In the study [66], Yi and Zhang present a method of fault diagnosing of an unmanned
quadrotor with the use of a particle filter. They present the modeling of: actuator dynamics,
engine failures, and particle filter. They then conduct tests using the OptiTrack cameras as
the reference system. The tests include detecting control effectiveness loss in one, two, and
three engines sequentially.

Zhong et al. in [67] investigate the possibility of using the adaptive two-stage extended
Kalman filter for sensor fault detection in UAVs. In their work, they model the kinematics
of the quadrotor. This is a rather non-standard approach. The authors note, however, that
in the typical modeling of the dynamics of an unmanned vehicle, the uncertainties and
the gyroscopic effect have a large impact on the propellers’ rotation and the plant itself in
space. To check the effectiveness of bias and drift faults detection, simulation tests were
carried out on the Quanser Qball-X4 model. The experiment was based on a square-shaped
trajectory flight. The following scenarios were checked: no fault, bias and drift faults
occurred separately, and simultaneous bias and drift fault. The tests showed the ability of
the proposed solution to meet the assumed goals.

Actuator failure studies for small fixed wing UAVs equipped with a puller-type electric
motor were carried out by Bauer et al. [68]. The authors prepared fault detection and basic
in-flight reconfiguration system for aircraft elevons stuck. They use the multiple model
adaptive estimation method and linear time-invariant (LTI) Kalman filtering to detect left
and right elevon stuck. If the stuck position is small, reconfiguration is also possible to allow
the flight to continue. The tests were carried out on the basis of software-in-loop simulation,
taking into account the Vireo drone model, the environment with various atmospheric
turbulences, and magnetic and gravity models. The stability of the reconfiguration system
is not proven in this article.

The relatively rarely discussed topic of detecting mechanical damage to the drone’s
frame structure was undertaken by Bowkett et al. in [35]. They conducted research on
the detection of the loss of one of the quadrotor arms and the possibility of changing the
configuration of the flying vehicle from a structure with 4 propellers to a triritor. With
the use of a thin copper wire, which is appropriately braided around the UAV frame,
recognition and determination of the location of the place where the continuity of the frame
is broken is carried out. The authors used a mesh structure applied to the FR4 board. This
method gives better results than the typically used wafer structure. Ten flights with a
drone with 3 operating propellers were carried out in unfavorable weather conditions. All
flights were successful, but the research was used data from two flights. The control was
without major problems and the flights were stable. The test confirmed 100% effectiveness
in detecting critical failures and about 50% effectiveness in the early detection of the first
symptoms of mechanical damage. Adaptive control allows to continue the flight or safe
landing after losing one arm. Taking into account the different configurations of the drone’s
frame, the X-frame design with symmetrical weight distribution turned out to be the
most advantageous.

The problem of attitude estimation using low-cost sensors is discussed in [69], in
which the authors describe a fault detection method based on duplex IMU redundancy.
They present the attitude estimation method using the quaternion-based system and set-
based approach. The algorithms for the detection and isolation of gyro, accelerometer and
magnetometer faults are described. Authors conduct tests on the basis of numerical data,
during which they test the detection: abrupt bias, slow drift, and abrupt freezing. The
following flight conditions are simulated: vertical flight, forward flight, coordinated turn,
and heading change in hovering.

In [70], an extended PMI fault detection filter for detecting sensor faults, is presented.
The authors use both inertial and non-inertial sensors. The extended proportional and
multiple integral (EPMI)-based fault detection filter (FDF) method presented therein, in the
absense of unknown input is actually a well-known extended Kalman filter. Cumulative
Sum filter is used for detecting the abrupt change of residual. To show the effectiveness
of the proposed fault detection solution, simulation tests were carried out using the Ultra
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Stick 25e UAV. The experiments were performed for two scenarios: pitot tube stuck and
accelerometer bias failures, but the authors ensure the efficacy for other types of sensors too.

The innovation approach based model change detection algorithm with multiple
system noise scale factors is presented by Hajiyev in [71]. The proposed method uses
multiple system noise scale factors (MSNSF), which—unlike MMNSF [57]—is sensitive not
to sensor faults, but to actuator/surface faults. The algorithm used is applied for the model
of dynamics of UAV platform, and an actuator/surface faults cause the additive changes in
it. MSNSF is used for the monitoring statistics. Simulations were carried out on the ZAGI
UAV model for various loss of effectiveness types: partial loss, deformation, and icing
of a control surface. They concern actuators: elevator, ailerons, and rudder. For ailerons
and rudder faults, the longitunal motion parameters are estimated accurately, and lateral
motion parameters estimation results are deteriorated. However, in the case of elevator
fault, the results for the individual motions are opposite. The biggest advantage of the
solution is the simultaneous detection and isolation of faults in real time. However, the
disadvantages include the operation of the approach only when all states of the system are
measured. Additionally, fault identification is not enable.

Lee et al. in [72] propose a combination of different inertial navigation system (INS)
fault detection methods to ensure correct navigation during long-term missions of UAV.
They designed a fault detection parameter method to isolate a faulty sensor from correlated
sources of navigation system faults. In order to separate the damaged sensor from other
sensors with the same type of output measurement data, an optimal combination of the
proposed method with the well-known residual-based methods was developed. The
federated Kalman filter with fusion-reset feedback structure mode was used for this. The
technique described can detect, isolate and reconfigure faults. Signal-based FDI techniques
cannot cope with such tasks. Faults have been divided into five classes: bias-type faults,
drift-type faults, freezing-type faults, loss of measurement accuracy faults, and increasing
error faults. The first two types of faults have been modeled for the simulation. Four
decision-making methods were discussed: 1. residual check, 2. one-sided cumulative sum
(CUSUM) test, 3. proposed technique uses an fault detection parameter (FDP), 4. sensitivity
factor check. For fault detection, the combinations of methods 1 and 4, as well as 2 and
3 were used and compared. They were tested with 100 Monte-Carlo simulations. The
combination of the CUSUM test and the proposed technique was determined to be the most
appropriate. Then tests were carried out on physical equipment. Both a car and an airplane
were used. In both cases the detection of the drift-type barometer fault was delayed and the
test trajectory was the worst, but all imitated faults was succesfully detected. The described
FDI algorithm has been designed with minimized misdetection rate and by a non-occurring
false alarm.

A universal system for detecting faults to both sensors and actuators was devel-
oped by Ma et al. in [73]. They studied nonlinear high-gain observer-based diagnosis
and compensation for quadrotor faults. The authors focused on solving the problem of
output-feedback-based fault-tolerant control for UAV with adaptive observers. The main
contribution of the described work includes: presenting the controller for the compensation
of simultaneous faults of sensors and actuators in the environment with disturbances and
uncertainties; estimation of fault parameters using adaptive estimator. The work consists
of the development of a UAV model, design of a fault-tolerant controller, and an analysis of
the stability and robustness of the system. Simulations were carried out in the MATLAB
environment, during which the behavior of the system was tested for bias in sensors, exter-
nal inputs or force bias in motors. Four scenarios were checked: actuator faults only, sensor
faults only, nonsimultaneous composite faults, and simultaneous composite faults. Then,
experiments were performed using the self-developed quadrotor. The tests confirmed the
correctness of the theoretical assumptions and the good operation of the system.

In the article [74] Zhong et al. propose a robust actuator fault detection and diagnosis
scheme for quadrotors. The system is based on a linearized dynamic UAV model and a
decomposed adaptive augmented state Kalman filter (AASKF). The authors present in
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detail the mathematical model used and the preparation of individual versions of Kalman
filters. The simulation results prove the effectiveness of detecting actuator failures and
external wind disturbances.

Another work on the use of extended Kalman filter for UAV fault detection is [75].
Demircan et al. are investigating the ability of this type of nonlinear filter to detect the
aileron locking in fixed wing aircraft. They show the process of building a 6-degrees of
freedom (DoF) UAV model and a fault detection system. EKF is used to estimate the state
for the roll rate, which is directly influenced by the aileron part. In MATLAB, they simulate
four scenarios: one nominal and three with aileron lock. In each of the tested cases, the
defect was correctly detected. The authors recognize computational time as not high, and
the work of the filter as well.

Guzmán-Rabasa et al. propose FDI system for quadrotor [76]. Actuator fault detection
uses the LPV technique. The UAV dynamic system has been divided into 2 subsystems: the
translational and the rotational system. The proposed LPV observer from H∞ performance
was synthesized. The described method considers the dynamics of the rotors and their
influence on the displacement of the Euler angles of the aircraft. Its stability is confirmed
by the linear matrix inequalities (LMI) analysis. The detection of partial and complete rotor
failures as applied to rotational dynamics is confirmed by numerical experiments in the
MATLAB environment using the linear quadratic regulator (LQR) controller.

Rotondo et al. in [77] presented a fault diagnosis system and ice accretion in unmanned
fixed wing aircraft with the use of linear parameter varying interval unknown input
observer. They conducted a detailed mathematical analysis of the problem, determined
the impact of icing effects and proposed a diagnosis algorithm. They simulated the Zagi
Flying Wing model in four scenarios: no faults, linear loss of propulsion efficiency, linear
loss of elevator efficiency, and UAV icing. The authors point out several advantages of
their approach: it can take into account the changes of the operating point, using the LPV
paradigm, the presence of the integral term increases the noise suppression properties,
ensuring the absence of false alarms.

Both sensor and actuator faults were detected using differential flatness-based diag-
nosis by Saied et al. in [78]. The authors modeled a hexarotor UAV, six sensor faults and
six motor faults. Flatess technique was used to generate the residuals. They performed
numerical simulations for both sensor and actuator failures, followed by a real outdoor
flight using a Tarot hexarotor, during which motor total failure was injected. Motor faults
were detected and localized quickly and efficiently, and the capacity of detecting sensor
anomalies was simulated.

Venkataraman et al. in [79] compared three different fault detection methods. They
prepared and conducted stuck control surface fault detection efficiency tests for the fixed
wing UAV. This work is an extension of the previous research [68] and complements it by
adding two other methods and comparing their industrial relevance using real flight data.
In order to detect elevon stuck, the following methods were implemented: parity space
(which compares sensory measurements with model-based prediction), a method involving
the concept of robust estimation for linear parameter-varying system, and multiple model
adaptive estimation. Data from the IMU, GPS, magnetometer and pitot-static system were
collected over two flights with a rectangular path shape at a constant altitude. Both flights
consist of five test points, and the trailing edge up stuck faults are injected in the right
elevon. The first (baseline) method estimates the residual of the roll state, has the smallest
state dimension, can only detect the presence of a fault, and using it, there was a case
of not detecting one fault event. The robust LPV method estimates left and right elevon
deflections, it is the fastest, it omitted the detection of one defect, but it can isolate the place
of the error. The third method based on MMAE contained the most states and was the
slowest, but detected all faults and was able to estimate their magnitude, so it can be used
in a reconfigured flight controller. So choosing the best filter is not a trivial problem and
depends on many aspects. The authors conducted research on the Vireo UAV model, but
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they ensure the universality of the proposed solutions and the possibility of extending their
implementation to UAVs with different configurations.

Wang et al. [80] conducted the research on actuator fault detection and reconstruction
scheme for the hex rotor. A lift model of actuator was built. Actuator faults are divided
into two main categories: failure and gain fault. A set of fault observers were designed,
which are based on the extended Kalman filter, and the state feedback provides a multi-
sensor navigation unit, which consists of an accelerometer, gyroscope, magnetometer,
barometer and GPS module. In their research, the authors focused not only on typically
considered engine failures, but also rotor failures and drive circuit board faults. The latter
group analyzes: open circuit of three-phase full control bridge, phase-changing failure, and
MOSFET breakdown. In the article, they conduct stability proof after gain fault occurs
and after failure occurs. To test the effectiveness of your solution, a numerical simulation
was implemented, which confirms that the designed system can quickly detect the fault
location and type, and achieve fault isolation. In turn, the flight experiment in outdoor
conditions shows that the reconfiguration controller can guarantee the control quality and
stability of the UAV position control after the occurrence of actuator faults and failures, and
consequently effectively improve the reliability and safety of the flight.

In [81], Xu et al. present a solution designed for simultaneous robust control and fault
detection for the ducted coaxial-rotor UAV. The approach includes integrated control and
sensor fault detection, considers the uncertainties model, is based on H∞ theory and H−
performance. The mathematical model of the described UAV structure is presented in detail,
and the stability problem is satisfied by the Lyapunov theorem. The described control and
detection strategy is tested using the LMI toolbox and simulation environment in MATLAB.
A flight with disturbances, uncertainties and faults, and without these abnormalities
was simulated. Compared to the other control method, the proposed solution has better
robustness, better noise and disturbance suppression effect and is easier to implement.
The featured observer-based controller has good disturbance attenuation and good fault
sensitivity properties. The FD method has certain limitations in terms of low-frequency
faults and multi-fault detection.

Zhong et al. in [82] present actuator and sensor fault detection for a UAV model. In the
article the UKF and the suboptimal fading factor are combined for airspeed tube blockage
and partial failure of the servo detection. For this purpose, a nonlinear longitudinal control
system model is established. The conducted simulation experiments prove the quick and
effective detection ability of the proposed suboptimal fading unscented Kalman filter
(SFUKF) method.

In [83], Cristofaro et al. present a fault and icing detection system as applied to
unmanned aerial vehicles. The authors developed a nonlinear vehicle model and then per-
formed its linearization. They also modeled wind disturbance, icing and faults in actuators
and effectors. The bank of unknown input observers was used to detect irregularities. Sim-
ulations were carried out using the Aerosonde UAV model, which confirm the effectiveness
of the approach proposed by the authors.

Faraji et al. in [84] investigate the estimation of actuator faults in the helicopter UAV.
The authors developed a robust three-stage extended FDI technique related to nonlinear
features of the drone model in the hovering mode. They estimate, identify and classify
bias, stuck and floating faults under conditions of unknown external disturbances. They
conduct simulation tests in several different scenarios. They demonstrated the effective-
ness of the proposed solution for various faults in actuators and simultaneous faults for
helicopter actuators with external disturbance. The described method was also used in a
later study [93].

Gao et al. in [85] discuss the FDD solution for the tilt-rotor UAV actuator fault. In their
solution, they use a combination of EKF with multiple model adaptive estimation methods
for the purpose of detecting left and right aileron stuck. The presented idea is based on the
online calculation of the fault conditional probability. The proposed method can effectively
detect irregularities in the work of ailerons, even when the actuator is stuck near the trim
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position. The model used consists of only three Kalman filters, which guarantees a low
calculation cost. In order to verify the described method, simulation tests were carried
out on the 6-DoF UAV model with the use of MATLAB in an extreme state with minimal
excitation of the system. Experiments have demonstrated the ability of the system to detect
actuator faults with high level accuracy and efficiency.

Hajiyev et al. in [86] presents the two-stage Kalman filter approach. Contrary to
their earlier works ([57,71]), where he dealt with sensor and actuator/surface faults, in
this work he and their co-authors focused on the estimation of wind speed and UAV flight
parameters. However, the topic of sensor fault detection is also discussed here. They
propose a 2-step estimation procedure for angle-of-attack, side-slip angle and wind velocity
based on readings from GPS, IMU and pitot-static tube. In the first phase, the extended
Kalman filter works, which uses the readings from GPS and pitot tube to estimate wind
speed. In the second stage, the linear Kalman filter estimates the stage parameters based
on GPS and IMU data and uses the air speed estimation from the first stage. Between these
two phases there is an algorithm responsible for fault detection. If a sensor malfunction
is detected, a robust Kalman filter is activated to ensure fault tolerance and accurate
estimation results. The discussed solution has been simulation tested. Both noise increment
and continuous bias fault were correctly detected in the GPS module and pitot-tube, and
the robust two-stage Kalman filter (TSKF) mitigates the effects of sensor failures.

The method for detecting faults of quadrotor actuators with atypical design is pre-
sented by Zhang et al. in [87]. A set of five Kalman filters processes data from the barometer,
gyro and accelerometer. An online fault diagnosis method based on interacting multiple
model performs the analysis in the new Y-shaped rotor. The laboratory-self-made drone
model was used for simulation tests during which six maneuvers were performed. Tests
confirmed the effectiveness of the method in quick detection and accurate localization of
actuator failure and stably estimate the efficiency parameters after a fault occurs.

Zuo et al. in [88] investigate the unscented information filter (UIO)-based sensor
fault diagnosis scheme and fault compensation method for quadrotor UAV. The unknown
input observer is designed using interference decoupling method, in which faults and
interferences are treated as unknown inputs. In order to ensure the stability of the UAV
after a sensor fault and to eliminate the influence of such a fault, the proportional derivative
feedback compensation fault-tolerant controller has been designed. Two scenarios of
sensor failures were prepared and simulation tests were carried out for them in order to
investigate the effectiveness of fault diagnosis. Additionally, one scenario was used to test
feedback compensation.

The use of particle filter application for fault detection and isolation of unmanned
aerial vehicles is presented by D’Amato et. al. In the article [89] authors focus on the
detection of malfunctions of low-cost inertial sensors used in micro- and mini-UAVs. They
use two parallel particle filters. Each of them is responsible for a single 3-axis accelerometer,
gyroscope, and magnetometer system. The sensor-FDI algorithm along with the particle
filter were written in the MATLAB environment and then transferred to an embedded
system based on Raspberry Pi 3B. The FDI system monitors the health of both IMUs
and determines the average attitude based on their indications. If a malfunction of any
of the sensory modules is detected, the attitude is calculated on the basis of readings
from an operational IMU. The operation of the system was divided into three steps: fault
detection, fault isolation, and fault recovery. Numerical simulations were performed using
the flight readings of the light tri-rotor aircraft. Several common sensor fault scenarios
were considered: intermittent abrupt bias, slow drift, abrupt freezing, oscillation, and
random walk. The tests included various system parameters, including a different number
of particles and detection time.

Detection of sensor and actuator faults in relation to class of singular Markov switching
system with mixed time-delays is described by Fu et al. in [90]. The authors used a robust
adaptive observer, which they implemented in the quadrorotor model. The article provides
an extensive overview of the mathematical structure of observer and the robust fault
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tolerant control system design. During numerical simulations in which the FTC was
applied to the lateral motion, the case of without failure and various cases of failures were
examined. These tests confirmed the usefulness of the used fault tolerant control scheme
based on fault signal reconstruction in unmanned multirotor applications.

In [91], Maqsood et al. propose the novel FDI method for quadrotor UAV. The authors
present fault detection technique for angular rate sensors in order to quickly detect faults
and improve fault identification and reconstruction. They use the chain differentiator inte-
grator to estimate faults and a modified high gain observer for fault detection with higher
accuracy. The introduction of a sliding mode effect in the observer algorithm improved
the detection ability, eliminated overshoot and chattering, and provided more accurate
detection results. Numerical simulations were performed for both gradual and abrupt
faults. The following types of faults in the gyroscope rate sensor were tested: incipient,
oscillatory, intermittent. The method proposed in the article was compared with tradi-
tional integral chain differentiator (ICD) and high gain observer (HGO) detection strategies.
The results of the experiment show its clear advantage over other tested nonlinear tech-
niques. In addition to better performance of detection, it is also characterized by lower
computational complexity.

Miao et al. in [92] propose an adjastable nonlinear proportional integral state observer
for fault diagnosis of a fixed wing unmanned aerial vehicle. This algorithm in combination
with the parameter updating technique is used to improve the effect of the additive fault
estimation in single sensor. Two types of faults are investigated: step and periodic fault.
Tests on numerical simulations of the L-1011 model for different values of the observer
parameters show good effectiveness in the case of linear problems, while the nonlinear
model still needs to deal with several problems.

In another work [93], Nejati et al. consider robust three-stage central difference Kalman
filter for UAV actuators fault in the presence of external disturbance. The filter used is an
extension of the solution proposed by Zhong et al. in [74]. It estimates stuck, bias and
floating actuator faults in collective pitch servo, elevator servo, aileron servo, and rudder
servo in helicopter UAV. Simulation tests were carried out with the use of a mathematical
helicopter model according to four different scenarios for UAV servos in hover mode
with the wind acting as an external disturbance. It has been shown that the actuator fault
detection can be decoupled and separated from disturbance. The results were compared
with the robust three-stage extended Kalman filter discussed in the previous article [84].
The proposed method can also be used for other types of structures in relation to the faults
discussed in the article.

Sun et al. in [94] propose an algorithm based on two identical synthetic air data
systems for the detection and isolation of water-blockage pitot tube failure. This solution is
dedicated to small UAVs, which are equipped with an air data system, which is responsible
for measuring the airspee, angle-of-attack and angle-of-sideslip (i.e., fixed wing aircrafts).
The authors designed a system to detect and isolate air data faults with a double pitot tube
and developed a sequential integrity monitoring technique in Kalman filter settings to
assess the integrity risk of the designed fault detection algorithm. They also showed how
to set alert limits and protection levels for angle-of-attack and sideslip states. Using the
Phoenix drone, they demonstrated the capabilities of the algorithm based on the recorded
flight data with the occurrence of water blockage of the pitot tube.

Bondyra et al. in their next study [98] continue to develop methods of detection and
classification of multirotor blades faults. This time the authors decided to use a method
based on Mel Frequency Cepstrum Coefficients. The sensors used were four microphones
placed on the drone near the rotors. Two types of artificial neural networks were tested
as a classifier: relatively lightweight long short term memory (LSTM)-based and more
computationally complex convolutional neural network (CNN). The first one contains one
LSTM layer and two fully connected layers. The second one contains six convolutional
layers and one fully connected layer. Various types of damage (fractured tip, edge distor-
tion) were tested, as well as the number and relative position of the damaged propellers.
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Data was collected during Falcon V5 drone flights during hovering, ascending, descending,
and translational motions. The influence of the acquisition time, the number of cepstrum
coefficients and the number and size of kernels were examined. For both classifiers high
detection and isolation efficiency was obtained and the F1 metric exceeds 98%.

The article [95] by Cao et al. describes fault detection techniques based on the extended
state observer and interval observer as applied to unmanned fixed wing aircraft. The
first observer is designed strictly for the purpose of detecting faults, while the interval
observer is designed by combining disturbances and faults. The authors developed a
mathematical model with six degrees of freedom and modeled various scenarios: partial
failure of actuator, actuator bias failure, and fault-free state. In the MATLAB program,
realistic environmental conditions for the extended state observer study were simulated.
This method showed low detection sensitivity in relation to partial failure, it coped well
with the remaining cases. In the case of the interval observer, the larger the failure, the
more clearly the system reacted to the failure. However, in both cases all the faults were
correctly detected by the system. The great advantage of the proposed method is its ease of
implementation for real-time detection.

The problem of dynamic event-triggered fault detection for fixed wing unmanned
aerial vehicles was addressed by Gai et al. in [96]. The article examines the Hi/H∞
method. A UAV model with a variable sampling period based on the dynamic event-
triggered method was created, and a residual generator was constructed. The optimal
solution to the optimization problem was calculated using Riccati recursion. A new method
for determining the function and evaluation threshold of residuals was also proposed.
The operation of the presented method has been verified in the altitude control system.
Simulations were carried out for three different faults in both the open-loop and closed-loop
system. The proposed optimization method successfully eliminated the Zeno phenomenon.
The method showed better performance in various UAV faults under open- and closed-
loop control and reduced information of event transmission compared to the static event-
triggered approach.

An interesting study was conducted by Hamadi et al. in [97]. The authors investigated
the fault tolerant strategy in the event of both hardware sensor faults and software faults
occurring in the quadrotor. They used the simple form of Kalman filtering and its extended
version for nonlinear systems. The developed algorithm was designed, among others, to
detect faults in such modules as GPS, IMU, magnetometer, as well as errors in the Kalman
filters themselves or incorrect initialization of parameters. A fault-tolerant architecture for
data fusion system with an algorithm to detect and identify faults has been developed.
In order to evaluate the operation of the system, they conducted outdoor flights with
hardware fault injections on the GPS and LiDAR, as well as simulations with software
altitude and position fault injections. Experiments have shown the ability of the developed
architecture to function properly during hardware and software faults.

4.2. Data-Based Methods

A somewhat less popular group of methods used for UAV fault detection are data-
based (data-driven, knowledge-based) methods. In recent years, this particular category of
analytically redundant approaches using large data sets has been gaining popularity. This
is probably due to increasingly powerful tools and effective algorithms for processing data,
detecting patterns, and conducting classifications. This group, like the one described in
the previous subsection on model-based, is divided by Zhang et al. [53] into quantitative
and qualitative methods. The authors include statistical methods and neural networks in
the first subgroup. On the other hand, the second includes expert systems, fuzzy logic,
pattern recognition, frequency and time-frequency analysis, and qualitative trend analysis.
Guo et al. in [99] divide data-driven methods into supervised, semi-supervised, and
unsupervised. Table 5 contains selected parameters of research works applying knowledge-
based methods. The publications included in the table are then briefly described.



Drones 2022, 6, 330 20 of 39

Table 5. Research works using data-based methods.

Reference Year of
Publ. Faulty Part/Disturbances/ Used Methods UAV Type Test Performing

Al Younes et al. [100] 2016 sensor iOE quadrotor Qball-X4

Li et al. [101] 2016 actuator, sensor MA-DPCA, T2, SPE fixed wing UAV simulated platform

Ortiz et al. [102] 2016 actuator qLPV planar VTOL UAV simulated planar VTOL UAV model

Baskaya et al. [103] 2017 actuator SVM small UAV simulated MAKO model

Bondyra et al. [104] 2017 rotor blades FFT, WPD, BP, SVM micro rotor UAV stationary motor, Falcon V5 flight

Chen et al. [105] 2017 GYRO wavelet packet, GA, BPNN — simulation

Chen et al. [106] 2017 GYRO wavelet entropy, AFWA-BPNN — simulation

Saied et al. [107] 2017 motor, propeller SVM coaxial octorotor real flight

Bondyra et al. [108] 2018 rotor blades FFT, RDT micro rotor UAV Falcon V5 flight

Olyaei et al. [109] 2018 sensor, actuator CITFA, LQR fixed wing simulation

Al Younes et al. [110] 2019 rotor iOE, MFC, LTI quadrotor Qball-X4

Benini et al. [111] 2019 propeller blade LDA VTOL Songbird VTOL

Guo et al. [99] 2019 GYRO OOCSVM — Ultra Stick 120

Iannace et al. [112] 2019 blades ANN quadrotor quadrotor attached to tripod

Ignatyev et al. [113] 2019 aileron IBKS, CF fixed wing simulated Tekever AR5 model

Wang et al. [34] 2019 GYRO LSTM-RF small fixed wing Ultra Stick 25e

Kantue et al. [114] 2020 rotor TDOA, CFA, GSS, RBFNN quadrotor simulated model

Sadhu et al. [115] 2020 propeller CNN, Bi-LSTM, autoencoder quadrotor Crazyflie 2.0, AirSim

Wang et al. [116] 2020 GYRO FDMAE, PCA-LSTM small fixed wing real flight data

Altinors et al. [117] 2021 motor, propeller DT, SVM, KNN — simulation

Park et al. [118] 2021 GPS spoofing, DoS attack, rudder,
elevator, aileron, engine autoencoder any UAV quadcopter simulated flight, fixed wing

real flight

Souza et al. [119] 2021 motor SAC-DM, WDT small rotor one motor testbench, quadrotor real flight

Zheng et al. [120] 2021
navigation and flight control system,

actuator, aeroengine, equipment
condition, transponder, stall warning

Built-In-Test, XGBoost, LightGBM,
Modified CNN fixed wing TYW-001

Bondyra et al. [98] 2022 rotor blades FFT, MFCC, LSTM, CNN multirotor Falcon V5 flight

Zhang et al. [121] 2022 rotor blades SIM, Cholesky decompositon, Gap Metric multirotor laboratory UAV simulation
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Al Younes et al. in [100] present fault tolerant diagnosis and fault tolerant control with
the use of an intelligent output estimator for sensors of unmanned robots in quadrotor
construction. The proposed scheme consists of the following stages: estimating the sys-
tem’s outputs, residual generation, residual evaluation, decision-making unit, and fault
estimation. Method effectiveness tests were carried out on the Qball-X4 quadrotor using
the OptiTrack system as the ground truth. The bias sensor fault magnitude estimation was
successful during the real flight experiment.

In [101], Li et al. are considering dynamic principal component analysis model com-
bined with moving average technique for FDI in UAV. The authors use two actuator and
five sensor parameters from the longitudinal flight control system as historical normal
flight data for model training. They extend the principle component analysis (PCA) model
to better suit the dynamic nature of the UAV and more effective fault detection. UAV
simulation platform to generate normal steady flight data for training and faulty data for
testing FD performance was used. T2 and squared prediction error (SPE) metrics were
compared for both detection and isolation of the following faults: angle of attack trans-
ducer measurement deviation, airspeed head measurement deviation, vertical gyroscope
measurement deviation, pitch angular rate gyroscope measurement deviation, throttle
lever partial invalidity, and elevator partial invalidity. The pressure altimeter fault was not
considered.The detection efficiency of individual faults was also compared for the case of
using the moving average technique and with its omission. Contribution plots were used
for isolation. High detection and isolation efficiency was achieved with T2, the SPE did not
give satisfactory results. The described method only works when UAV operates in a steady
flight state.

The article [102] presents the design of the cascade tracking controller and fault
detection and isolation system for a planar vertical take-off and landing (VTOL) vehicle.
This UAV model consists of only 2 motors that rotate in opposite directions. There is
a double propeller next to each motor. The UAV dynamic system is divided into three
subsystems, two of which are based on the qLPV model and the third is linear. The authors
provided and partially proved the asymptotic stability and observability of the system.
Tests for proper detection of total and partial faults were performed during the simulation
using a nonlinear model.

In paper [103] the authors propose their solution using support vector machine (SVM)
to detect actuator failures. The training and test data from the gyro and accelerometer are
simulated in the MAKO UAV model, the use of which is discussed in more detail in [122].
The work focuses on the loss of effectiveness faults. At the same time, they present a small
overview of model-based and machine learning (ML)-based fault detection methods.

Bondyra et al. in [104] present a method of detecting physical damage to rotor blades,
which reduces the thrust of the micro UAVs. The technique used is based on signal
processing and constitutes a model-free approach. Three different techniques were tested to
detect the occurrence of physical impairment of rotor blade: fast Fourier transform, wavelet
packet decomposition, and measuring the signal power in frequency bands. Three different
classifiers in the form of a support vector machine were used to diagnose faults, the task
of which is to determine the occurrence of a fault, determine its severity, and the type of
failure (damaged edge, distorted tip). As part of the tests, a stationary dynamometer stand
with a BLDC engine was first prepared and a series of experiments with three propellers
of various types and degrees of damage were carried out. Then, 10 experimental flights
were performed using a multirotor consisting of four propulsion units with two coaxial
rotor-motor pairs. Data from the two axes of the on-board accelerometer were used for the
analysis. The impact of the data buffer length and the signal processing technique used
on the effectiveness of individual fault diagnosis stages were compared. The proposed
method is universal and easy to implement and has demonstrated high accuracy of fault
detection. However, due to the central location of the IMU, it was unable to detect in which
rotor the failure occurred.



Drones 2022, 6, 330 22 of 39

Chen at al. in the article [105] propose a back propagation neural network (BPNN),
which is extended to genetic algorithm for optimization. First, the three-layer wavelet
packet divides the signal from the sensor into eight frequencies, the energies of which
constitute inputs to the artificial neural network (ANN). The goal of the genetic algorithm
(GA) is to optimize the initial weights and thresholds of BPNN. The simulation experiments
were carried out in MATLAB for four scenarios including various types of sensor faults:
no fault, deviation fault, impulse fault, and multiplicative fault. The proposed method
obtained higher accuracy and lower errors compared to the solution based on typical BPNN.

In a subsequent article, [106] Chen et al. present another sensor fault detection al-
gorithm using wavelet packet and back propagation neural network. Unlike the method
described in [105], this time rely on adaptive fireworks to enhance the local search ability
as well as to improve the convergence of the proposed algorithm. This algorithm adopts
a distributed mechanism for sharing information in parallel. Wavelet transform splits
the signal into a set of basis functions, which allows for multi-scale analysis. Thanks to
the combination of parallel searching and global optimization, the described solution can
improve the deficiencies of back propagation algorithm and ensures higher prediction
accuracy. A neural network (consisting of eight input neurons, eleven in the hidden layer
and three output neurons) was used for the experiment. Tangsig was an activation function
of the hidden layer, and trainlm was used as a network training algorithm. The input
data were rate gyroscope signals during normal operation and after sensor fault injection.
Feature vector extraction was carried out through selecting the wavelet basis function,
calculating the normalized energy entropy, and calculating the wavelet entropy of the
fault signal. The proposed adaptive fireworks algorithm back propagation (AFWA-BP)
achieved better classification efficiency, higher convergence speed, shorter running time,
and stronger global search ability compared to GA-BP and particle swarm optimization
(PSO)-BP.

Saied et al. in [107] present an active fault tolerant control approach for a multirotor
unmanned aerial vehicle. Error detection and fault diagnosis of engines and rotors are
performed using the speeds and electric currents of the brushless motors. The support
vector machine was used as a classifier. The experiments were carried out on a coaxial
octorotor drone and the effectiveness of the proposed system was checked during two
scenarios. Simultaneous failure of two engines and a propeller loss were tested. The
attempts confirmed the correct detection and localization of the tested faults.

In another work Bondyra et al. [108] are continuing their research on defect detection
of the propulsion system of multirotor UAV. As in the previous work [104], the authors use
the model-free approach to check for a fault. This time, however, a set of four accelerometers
is used, thanks to which it is possible to locate the place where the fault occurred. The
waveforms from the two axes of each sensor were converted to the frequency domain.
Signal values from 16 frequency bands were input to the set of random decision trees.
The effectiveness of detection and isolation of damage to single propellers as well as pairs
of adjacent and opposite rotors was tested during real flights with the Falcon V5 drone.
The effect of the number of grown trees and the length of the acquisition window on the
accuracy of detection was compared. The results showed over 95% sensitivity in detecting
and isolating faults.

An interesting and rare solution in UAV FDI applications was presented by Olyaei et
al. in [109]. They propose a method based on deep learning image analysis, which carries
out the classification of color images from time-frequency-amplitude graphs. The presented
algorithm includes three main steps: database creation, training, and testing. The database
consists of both faulty and fault-free signals. The signals related to sensors and actuators
are divided into the following categories: bias, loss of accuracy, float, drift, and without
fault. The obtained images with a size of 200 × 200 pixels were entered into the MATLAB
database and then processed by Python software using the Tensorflow backend in deep
network. The training accuracy after 1000 epochs was 98%. In addition, the article presents
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the classification of sensor/actuator faults in an accessible form, detailing the characteristics
of each malfunction in a descriptive and graphic version.

In the next article [110] Al Younes et al. reuse the Qball-X4 quadrotor to test the
effectiveness of fault diagnosis. Unlike their earlier work [100], in which they dealt with
sensor faults, this time authors are checking actuator fault diagnosis. They synthesize
the integration of a model free schema with a state observer for a MIMO system. They
propose the intelligent Output Estimator method for fault diagnosis and fault tolerant
control in the quadrotor. The uncertainties estimation is performed using the ultra-local
model, which is continuously updated. Actual testing was performed on the 15% and 25%
loss-of-effectiveness of the Qball-X4 front rotor. Both the FDD and FTC capabilities were
tested during hover and square-path flights.

The study of propeller blade damage detection techniques was undertaken by Benini
et al. [111]. In their regularized linear discriminant analysis method, they use the read-
ings from the accelerometer, which is part of the high-rate inertial measurement unit, to
perform actuator fault detection tasks. The authors propose a two-stage algorithm that
is based on 45 different time and frequency-domain features. As best feature selection
algorithm, an univariate filter approach based on the bootstrap method is proposed. In
order to detect a fault, linear discriminant snalysis (LDA) is considered. An interesting
drone—Germandrones Songbird VTOL UAV—was used in the experiments. It combines
the features of a fixed wing aircraft during flight and the flexibillity of a multirotor UAV
during take-off and landing. The focus is on quadrotor-mode as it is where the impact of a
damaged propeller blade is most noticeable. During fully autonomous flights, data from
the IMU were collected during a flight with one or two modified blades. Tests included
normal condition flights and with broken propeller during: hovering, climbing, landing,
and complete flight. The most appropriate phase of flight to detect propeller damage turned
out to be climbing, which worked well for both time and frequency-domain features.

Guo et al. propose optimized one-class support vector machine (OOCSVM) approach
regulated by local density. In [99], they present FD for UAV sensors based on one-class
SVM classifier without negative samples. The authors decided to use the boundary-
based method due to the higher efficiency of detecting small amplitudes in comparison to
other types of unsupervised fault detection algorithms. The proposed method provides
robust performance without prior knowledge of the instances. It also does not require
prejudgment. The article shows the method of determining the optimized classifier and the
rule for computing the tolerance coefficients. In the experiment, the Ultra Stick 120 model
was used to detect simulated faults, but the control law was used in the real flight of the
mentioned UAV model. Constant deviation and drift were injected in the gyroscope. True
positive rate (TPR) and false positive rate (FPR) values as well as area under curve (AUC)
for receiver operating characteristic (ROC) curve for the detection of roll rate disturbances
were compared with other methods: common OCSVM, PCA, kernel principle component
analysis (KPCA), local outlier factor (LOF).

Iannace et al. in [112] have used sound analysis in order to fault diagnosis for quadro-
tor blades. The authors perform unbalanced blades detection on a UAV attached to a tripod.
At a distance of 1.2 m from the drone, there is a microphone that collects sounds emitted by
the rotors. Measurements were made from 4 sides of the vehicle in each of 3 cases: balanced
blades, unbalanced blade with one paper strip, unbalanced blade with two paper strips.
After collecting the data, 31 frequency features were distinguished for each of the three
classes. The set of features was divided into training and testing sets. The training set was
used to train the feed-forward multilayer neural network model, while the test set was
used to check the effectiveness of the trained classifier. The efficiency was 97.63%. The
presented method of testing the drone can be used in indoor conditions in the pre-take-off
procedure in order to detect any irregularities before the actual flight begins.

Two-layer fault detection for fixed wing UAV incremental flight controller is proposed
by Ignatyev et al. [113]. This method uses angular accelerations and current control deflec-
tions to minimize the dependence on the UAV model. The idea of incremental dynamics
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was used to design the incremental backstepping controller. The incremental backstep-
ping (IBKS) structure consists mainly of two blocks: angle controller (measurements of
the attitude state derivative) and rate controller (evaluations of angular rate derivatives).
The main advantage of IBKS is that it does not require any knowledge of the model. An
amplification matrix is used to decrease the aircraft flight control system signals. In order
to estimate the parameters, the algorithm of recursive linear regression with exponential
forgetting is used. The division of tasks of the two layers of the proposed method is as
follows: the first layer monitors the combined control effectiveness and detects possible
irregularities. If an anomaly is detected, the second layer localizes the fault and determines
the individual effectiveness of each control surface. The nonlinear model of the Tekever
AR5 was used to conduct simulation tests. It is medium-altitude, medium-endurance, two
engines, two rudders, and four ailerons fixed wing UAV. Two types of damage were tested:
stuck in position, and hardover of the each of the four ailerons.

Wang et al. in the article [34] describe data-driven multivariate regression approach
using LSTM with residual filtering. To detect faults, mitigate the impact of random noise,
and ensure rapid recovery from failure, they propose the LSTM-RF regression model. They
extract space-time features from flight data and the FDR requirements turn into a regression
issue. They investigate roll bias and roll drift as common sensor errors. The main element
of the regression model is a 3-layer neural network in which the hidden layer is formed
by LSTM memory cells. Each stage of designing the model used is presented in detail,
loss function formula, methods used to prevent overfitting, calculation of the detection
threshold, fault detection steps, etc. The gyroscope bias and drift detection efficiency tests
were carried out both in simulation and in real flight. TPR, FPR, accuracy values, and ROC
curve were compared with other commonly used LSTM-based methods.

Kantue et al. in [114] present an integrated approach to UAV fault detection and
diagnosis. To detect, isolate and identify an incipient fault in a three-phase BLDC motor,
the authors use the time difference of arrival principle. The time difference of arrival
(TDOA) method has not been used for UAV actuator faults before. This is an effective
data-driven technique that does not require a priori knowledge of the stage of the source.
The time of arrival difference detection process requires at least two signals to be available.
A continuous forward algorithm with a golden section search was adopted for the purposes
of real-time implementation. Radial basis function neural network (RBFNN) was used to
train and test the data. A hardware-in-the-loop model simulation was carried out using the
MATLAB environment, ARM microcontroller and Windows PC to predict bias and variance
errors. The big advantage is the speed of the NN training process, which is performed
before the next batch of data is available. However, the method has limitations in the form
of the amount of available memory and fault detection accuracy.

In a work using the technique of deep learning [115], Sadhu et al. detect and identify
the causes of the drone’s mis-operations. Using the Convolutional Neural Network (CNN)
bidirectional long short term memory (Bi-LSTM) autoencoder network and accelerometer,
gyroscope and magnetometer readings, they classify propellers failures in 9 different
scenarios. Data was collected during flights with 3DR Solo and Crazyflie 2.0 UAVs. Then,
simulation tests were carried out in Microsoft’s AirSim drone simulator as well as real-
world experiments. The classification accuracy was about 99% and 85%, respectively. The
results were compared with the SVM classifier.

Interesting research was conducted by Wang et al. in the work from 2020 [116]. Two
models based on LSTM networks were prepared—one traditional and the other using the
PCA technique. It was used to reduce the size of the input to the network. The structure
itself contains 1 input layer, 2 hidden layers with 30 nodes each, and 1 fully connected
output layer. The proposed FDMA consists of two main parts: the model pruning to reduce
the size of the model, and the field-programmable gate array (FPGA) acceleration which
meets the condition of parallelism of calculations and is customizable. Each model is
available in three versions: original, computing optimized, and quantized—fault detection
model acceleration engine (FDMAE). The results of the experiment based on real gyroscope
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data collected during the small fixed wing UAV flight were compared both for different
versions of the models and during processing with different calculation units. Compared,
inter alia, error value, number of false alarms, time and power consumption. Particularly
high AUC values confirm the high efficiency of the proposed fault detection method.

The methods based on the analysis of sound signals are proposed by Altinos et al.
in [117]. Based on information from the microphone, they detect damage in BLDC engines,
which are typical solutions for both military and civilian drones. Thanks to the use of
fine decision tree, quadratic support vector machine, and medium k nearest neighbors
classifiers, the most common engine failures are recognized. Simulation tests were carried
out, in which bearing, eccentric, and propeller failures were classified after distinguishing
six statistical features. Accuracy was achieved on the level above 90% for each of the
three engines with different rotational speeds. The SVM method proved to be the most
effective, sometimes reaching even 99.75%. The proposed method is fast and allows for
implementation in embedded systems and work in real time.

Park et al. in [118] perform fault detection analysis using a stacked autoencoder. Using
an unsupervised deep neural network, they perform a binary classification for different
types of faults of UAV. They present an interesting approach that generalizes the type
of drone in which the detection of irregularities is to be used. The research described in
the article is a continuation of the previous work [123]. It was extended by a series of
analyzes for feature extraction, establishing the fault detection model by only training
the safe state data, examining the proposed solution on two types of datasets. Both cyber
attacks such as GPS spoofing and denial of service (DoS) attack, and actuator failures are
contemplated. Two datasets were used: UAV attack dataset without recovery measures and
AirLab Failure and Anomaly dataset with recovery measures. The first one was collected
during the flight of the quadcopter in a simulated environment, and the second one during
the real flight of the fixed wing UAV. The effectiveness of fault detection was tested in
various scenarios. The best result was the fault detection during the GPS spoofing attack
(AUC = 0.9969), and the worst during the aileron failure (AUC = 0.7509). The proposed
method is characterized by high computational complexity, therefore it is proposed to use
efficient graphical computing units and UAV communication with the ground station.

An unusual solution for detecting faults in the engines of small drones is proposed
by Souza et al. in [119]. They present a chaos-based signal analysis using the density of
maxima technique to analyze brushless direct current motors. It is not computationally
complex, and its simplicity is considered by the authors to be the main novelty. A one-
second data sample is sufficient for the satisfactory efficiency of engine speed estimation
and failure detection. A testbench with a BLDC motor was set up to collect data and
validate the results. The readings from the two axes of the accelerometer were processed by
signal analysis based on chaos using density of maxima (SAC-DM), and wavelet discrete
transform (WDT) was applied to extract only the chaotic components. Five experiments
were carried out for each of the three selected engine rotational speeds and the effectiveness
of its estimation was tested. The average accuracy of the speed estimation was 97.8%. For
the fault detection study, five flights of five minutes each were carry out with one person
controlling the quadcopter by operating the same smooth movements. The following
scenarios were prepared: balanced flight, shifted center of gravity, unbalanced propeller (in
different degrees), and their combinations. However, the fault classification itself included
only two classes: failure and non-failure. The detection accuracy for different types of faults
ranged from 33.1% to 100%, averaging 82.75%. The method used is sensitive even to weak
disturbances. Despite the low computational requirements, the accuracy is relatively high.

A Compound Fault Labeling and Diagnosis Method is described by Zheng et al.
at [120]. Based on flight data and Bulit-In-Test record of the UAV, they categorize various
types of faults. The authors collected data from the TYW-001 fixed wing UAV and processed
it using different techniques. They upgraded the original diagnostic model based on the
Gradient Boosting and Fully Convolutional Network Decision Tree to eXtreme Gradient
Boosting, Light Gradient Boosting Machine and modified Convolutional Neural Network.
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Data collected was large-scale, high-dimensional, multi-class, imbalanced, and noisy. 200 in-
stances from each test flight were randomly sampled and labeled manually. The data was
then divided into test and training sets. The total data set consisted of 457 parameters and
one label containing 98 classes. All 98 condition classes were analyzed in order to finally
establish 49 new classes of complex failures. The effectiveness of five different classifiers
was compared. Extreme gradient boosting (XGBoost) turned out to be the best, but it
was the slowest. On the other hand, light gradient boosting machine (LightGBM) was
characterized by the highest classification errors, but due to its low complexity, it has the
potential for an early warning system.

The article [121] presents a time-domain frequency estimation approach for the de-
tection of partial defects of multirotor blades. The method is based on the well-known
subspace identification method and avoids the pseudospectrum peak search. Recursive
frequency estimation is based on Cholesky decomposition. By using a small matrix instead
of a full, extended observability matrix, a lower computational cost is ensured. A gap-
metric oriented performance indicator is proposed for detecting the fault and assessing the
severity of the fault. It was introduced as a test statistic for monitoring frequency change
from a subspace perspective. The greater the value, the greater the severity of the error.
The proposed algorithms were tested for damage diagnostics on measurements from the
laboratory UAV platform with partial blade damage. 100 Monte Carlo simulations were
performed and the effectiveness was assessed using root mean square error and average
gap metric. Signals with different signal-to-noise ratios were checked using the fast Fourier
transform (FFT), Aboutanios-Mulgre, Candan techniques and the proposed algorithm. It
showed higher frequency estimation accuracy, unfortunately the authors described fault
detection performance as acceptable.

4.3. Mixed Model- and Data-Based Methods

Some of the damage detection studies under consideration include methods that
incorporate techniques classified as both model-based and data-based. There are also
some that are difficult to categorize into any group from the typically used division. Some
authors use assign the methods shown in this subsection to a specific group. For example,
according to Wang et al. the NN-EKF method belongs to the model-based group [34].
Sometimes the authors themselves point to a specific group of methods. E.g. Zhang et
al. describe their method as model-based. However, due to the use of neural networks
and fuzzy system, the publication [124] was classified as using methods from both groups.
Articles that were hard to clearly classify as describing model-based or data-based methods
are presented in Table 6.
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Table 6. Research works using mixed methods.

Reference Year of Publ. Faulty
Part/Disturbances/ Used Methods UAV Type Test Performing

Abbaspour et al.
[125] 2016 sensor NN-EKF — simulated WVU

YF-22

Abbaspour et al. [54] 2017 sensor, actuator NN-EKF small UAV simulated WVU
YF-22

Fan et al. [126] 2017 engine PF, k-means cluster,
MLPNN — —

Cao et al. [127] 2019 attitude system RAFO, RBFNN — simulation

Zhang et al. [124] 2019 GPS, ACCEL, GYRO KF, fuzzy system, NN helicopter off-line aircraft model

Cheng et al. [128] 2020 GNSS historical data, KF — field test, unknown
vehicle

Ouadine et al. [129] 2020 sensor
ANN, Hammerstein-

Wiener model,
SMC

quadrotor simulated model

Mokhtari et al. [130] 2021 actuator, navigation
sensor ANN, EKF small-scale helicopter simulated Yamaha

R-50 model

Saied et al. [131] 2021 GYRO, ACCEL,
MAG, GPS, LiDAR

EIKF, Bhattacharyya
distance multirotor simulation

One of the less frequently discussed topics related to the malfunction of UAV sensors
is a deliberate attack. Abbaspour et al. [125] present their own fault data injection attack de-
tection mechanism. They propose a system based on a 3-layer adaptive neural network, the
coefficients of which are updated using the embedded Kalman filter, which accelerates the
network learning rate. Tests conducted in the MATLAB Simulink environment confirm the
effectiveness of both fault data injection attacks and sensor failures caused by other factors.

In [54], Abbaspour et al. continue their research on the damage detection mechanism
using an artificial neural network, the weighting parameters of which are updated with
EKF. In this article, the authors deal with various types of sensor and actuator failures.
They present the applied nonlinear UAV model with 6 degrees of freedom, the neural
network update law, and prove the stability of the neural network adaptive structure
(NNAS)-based FD method. The authors test the ability of the network to quickly detect
abrupt, intermittent, incipient, and multiple faults and compare the results with a similar
system based on a classical neural network. The tests, as in the aforementioned work [125],
are carried out on the WVU YF-22 model simulated in the MATLAB environment. Notably,
apart from the higher efficiency, is the significant increase in the computation speed of the
proposed method in relation to the standard updated NN.

Fan et al. analyzed the different types of UAV engine faults in [126]. Based on
telemetry data such as engine speed, lubricant pressure, oil temperature, and cylinder head
temperature, they detect eleven typical engine faults. The diagnosis process was performed
using three different methods. The results of the classification were compared with the use
of: particle filter, k-means cluster, and multi-layered perception NN. The accuracy rate for
individual faults and detection methods ranged from 86.43% to 96.98%. For the mutation of
fault diagnosis, the diagnosis effect of particle filtering (PF) was worse than that of neural
network and k-means, but for creep failure, PF performed best. Unfortunately, the use of
the particle filter method entails increased computational complexity.

The article [127] presents fault detection using a robust adaptive observer combined
with radial basis function neural network. This system is used to estimate the interference
of the UAV attitude system. The authors describe the observer structure and the FD method
and conduct simulations that show that the proposed method provides smoothness and
continuity of the elevator, aileron, and rudder deflection under external disturbances.

The paper [124] shows the malfunction detection setup of the navigation system of a
small helicopter. Kalman filtration was used to detect damage, which processes readings
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from microelectromechanical system (MEMS) inertial sensors and a GPS receiver. The FDD
system was developed based on the fuzzy system and the 4-layer neural network.

In turn, in [128] Cheng et al. present global navigation satellites system fault detection
and exclusion algorithm for UAV positioning. The proposed method is based on historical
data from the satellites of the navigation system and copes with the following satellite
malfunctions: clock bias, ephemeris error, multipath, tropospheric and ionospheric errors.
The authors use the pseudo-range rate-based transition model and Kalman filter for real
time online fault detection and exclusion scheme. The described method allows for the
simultaneous detection of multiple faults of different satellites and provides a higher
accuracy position. The algorithm used requires only four satellites to work, which is
a much better result than traditional solutions. During tests with the on-board LiDAR
device, the positioning accuracy was 1.01 m (horizontal) and 6.73 m (3D). The satellite fault
detection rate was 100%.

In [129], Ouadine et al. discuss the sensor FDI for the quadrotor UAV. As originality,
the authors present the Hammerstein-Wiener model with the artificial neural network com-
bination. They consider sliding mode control of the single input, single output system for
the synthesis of control laws in the conditions of nonlinear processes, external disturbances
and large uncertainties related to modeling. The used Hammerstein-Wiener model works
well in systems equipped with sensors and actuators with nonlinear operating character-
istics. The artificial neural network is based on the multilayer perceptron and is used to
classify five different abrupt type faults. MATLAB Neural Network Toolbox was used for
its implementation. The scaled conjugate gradient backpropagation was used for network
training, and a hyperbolic tangent sigmoid was used as the transfer function. The network
consists of four input neurons corresponding to the number of residues generated by the
Hammerstein-Wiener model, ten neurons in the hidden layer, and five output neurons
corresponding to the number of classes. Training lasted 67 epochs and the classification
rate reached 100%.

Research on detecting faults in small-scale UAVs was carried out by Mokhtari et al.
in [130]. For the detection and isolation task of a different type of actuators and navigation
sensors faults in a helicopter in real time, they used an artificial neural network, the weights
of which are updated with the extended Kalman filter. The authors have developed an
active fault-tolerant control that mitigate faults and false data injection attacks. Various
types of malfunctions were investigated on the Yamaha R-50 numerical model: abrupt,
incipient, and intermittent faults. The simulations showed the ability of the presented
method to increase the reliability and safety of small UAV flights during the failure of the
navigation sensor.

In another work [131], Saied et al. similarly to [78] consider the problem of fault
detection of navigation sensors. Together, for error detection and error identification,
they use two extended informational Kalman filters, the outputs of which are compared
using the Bhattacharyya distance metric. This method allows to locate the fault in the
accelerometer, gyroscope, magnetometer, GPS module and LiDAR sensor. Real data was
used in the experimental tests in the simulator. The operation of the system was checked
during GPS fault injection, and then LiDAR fault injection. The techniques used were
implemented to build a fault tolerant multi-sensor fusion architecture.

5. Discussion

Fault detection is a fundamental part of fault diagnosis of various processes. In the
case of machinery operating in close proximity to humans, it is important for safety reasons.
In the case of unmanned aerial systems, it is especially important because such vehicles
change their position in space in the event of failure. A flying robot after a malfunction
can uncontrollably change its flight trajectory damaging itself or surrounding structures or
even falling to the ground posing a risk to human life and health. That is why early failure
detection is so important in UAV applications. It is also a critical element of fault-tolerant
control, which allows for the reduction of the maintenance costs of such a vehicle, extending



Drones 2022, 6, 330 29 of 39

the service intervals and reducing the need to replace worn and non-serviced components.
Due to the increasing use of drones in a wide range of applications, ensuring the reliability
and safety of these vehicles is becoming an increasingly important issue.

This survey article presents an overview of recent research on fault diagnosis in UAVs
over the past seven years. Most of the proposed methodologies can be assigned to one of
two categories: model-based and data-driven. Primarily the research area of actuator and
sensor fault diagnosis was considered, although studies on other subsystems also appear.
Some of the most important information from each of the articles considered are included in
the tables, which form the core of this study. A brief description of the proposed technique
and the results obtained is also made.

Table 7 compares the statistics of the use of individual methods within the prepared
review. They cover the most typical types of damage, the most commonly considered
UAV designs, and the most popular techniques within each group of model-based and
data-based methods. The data are compiled from the 79 papers presented in Tables 4–6.
The results in parentheses were obtained considering the mixed methods shown in Table 6.

Table 7. Comparative statistics of the methods used.

Model-Based Data-Based Overall

The popularity of the method 57% (68%) 33% (43%) —

Actuator faults 46% (49%) 24% (28%) 73%
Sensor faults 33% (42%) 11% (20%) 53%

Fixed wing UAV 24% (27%) 11% (14%) 38%
Multirotor UAV 22% (24%) 15% (18%) 39%

Varius types of Kalman filter 25% (33%) — 33%
Varius types of neural networks — 14% (23%) 23%

The most popular group of ways to detect faults are methods using a mathematical
model of an unmanned aerial vehicle. They are used by 45 of the 79 studies described,
which is 57%. Additionally, taking into account mixed methods from Table 6 we get a
result in which 68% of the authors of all considered solutions use model-based methods.
Data-driven methods account for 33% of the research (43% including mixed methods).

Most research is on actuator faults detection techniques. As many as 73% of the papers
deal with this topic. Interestingly, they account for as much as 80% of studies using strictly
model-based methods (Table 4) and 76% of studies using data-based methods (Table 5).
The problem of sensor faults is covered by 53% of papers. This represents 58% and 36%
for model- and data-based methods, respectively. Individual results do not add up to
100%, since some methods deal with both actuator and sensor faults. The most commonly
considered specific actuators and sensors are shown in the charts in Figure 11. The most
popular actuators whose fault detection was studied by the authors of the described articles
were the elevator among fixed wing UAVs and the propeller among multirotors. Together,
they were concerned with as many as 40% of the articles that dealt with actuators. This was
followed by the motor, rudder, and aileron, respectively. Among the sensors, on the other
hand, the gyroscope came first. It was considered in as many as 26% of articles treating
sensor malfunctions/spoofing attacks. The next most frequently considered sensors were
the GPS (or another navigation receiver), accelerometer, pitot tube, and magnetometer.
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Figure 11. Individual actuators and sensors faults detected by the following methods presented in
the scientific articles. Values indicate the percentage of articles refering to a certain group of drone
subsystems that examined a particular actuator or sensor.

It has also analyzed what types of flying vehicles are being considered by researchers.
The articles whose authors clearly indicated which UAV design the method they presented
was suitable for, as well as those that used a model of a specific flying robot, were taken
into account. Among model-based methods, fixed wing designs led the way, accounting for
about a quarter of all studies. Among data-based methods, multirotors were studied more
often. Among them were the main quadrotor structures, but there were also hexacopters,
octorotors, and some less popular structures. Overall, however, both groups of UAVs were
considered equally often. Both fixed wing and multirotor UAVs were involved in slightly
less than 40% of all articles. The remaining studies either considered less popular solutions
like the ducted fan or tilt-rotor UAVs or did not favor any particular design.

Reading articles on fault detection, it’s easy to notice frequently encountered popular
methods. A common model-based method is the Kalman filter. It comes in various forms,
from its basic, well-known form, through adaptive, two- and three-stage versions, to
extended, federated, robust, and mixed forms applied to a specific solution. In total, this
type of solution can be found in one in three publications on UAV fault detection. Among
data-driven methods, on the other hand, neural networks are becoming increasingly
popular. Its various forms and types are the basis of almost a quarter of the solutions in
this group.

6. Conclusions

Although UAVs, due to their mobility and relatively low cost, are very often chosen
devices, in order to operate them safely, it is necessary to develop a reliable system for
detecting various types of malfunctions in their operation. Only with redundant failure
protection systems, the drones flying over our heads will be able to become a common
sight that will not cause concern.

This review article presents papers on the topic of fault detection in relation to un-
manned flying systems. Articles—both review and regular—cover the publication period
from January 2016 to August 2022. Tables 4–6 are the main part of this article. They include,
inter alia, the specification of the type of detected fault, the methods used, and the manner
of testing. This statement is a kind of cheat sheet useful when searching for publications on
a specific type of UAV, a given element subject to the process of damage, or the detection
techniques used. The main division that can be made on the basis of the analysis of the
above-mentioned table concerns the detection of actuator and sensor faults. There are tests
that try to detect both types of damage. There are those that deal with specific elements
of the drone system or disturbances to which the flying robot is subjected during flight.
Another division concerns the UAV type. The FD methods described usually apply to
multi-rotor systems or fixed wings. There are also studies relating to other structures, e.g.,
flappers or unusual, hybrid structures, as well as universal methods that work regardless
of the type of drone.
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Both the results of the tests performed and the way they are carried out, which rarely
correspond to real conditions, show that there is still a lot to do in the field of fault detection
of flying robots. For drones to operate safely in the human environment, methods are
needed that are more reliable, real-time, and independent of defective communication
systems. Much remains to be done on the topic of the universality of the techniques used,
because in laboratory conditions it is difficult to predict all possible scenarios, and the
real problems still surprise designers and researchers dealing with the developing field of
unmanned aerial vehicles.

Future work will include the development of an extensive collection of data collected
during various phases of flight and various types of damage to unmanned aerial vehicles.
Traditional inertial sensors will be applied, the use of which in the sensing process yields
very good results and high-efficiency [132]. Readings from less common sensors in detection
applications will also be collected. These will include on-board microphones, which also
show great potential in the task of early detection of damage to drone actuators [98].
The database prepared in this way will be used to train machine learning methods and
verify those trained before. It will benefit studies on UAV damage detection as well as
fault-tolerant control.
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Abbreviations
The following abbreviations are used in this manuscript:

AASKF Adaptive Augmented State Kalman Filter
ACCEL Accelerometer
AFWA Adaptive Fireworks Algorithm
AKF Adaptive Kalman Filter
ANN Artificial Neural Network
AThSKF Adaptive Three-Stage Kalman Filter
ATSEKF Adaptive Two-Stage Extended Kalman Filter
AUC Area Under Curve
Bi-LSTM Bidirectional Long Short Term Memory
BP BandPower
BPNN Back Propagation Neural Network
CF Command Filter
CFA Continuous Forward Algorithm
CITFA Color Image obtained from the Time-Frequency-Amplitude graph
CNN Convolutional Neural Network
CUSUM Cumulative Sum
DFPFS Differential Flatness Property of Flat Systems
DM Dulmage-Mendelsohn
DMVT Differential Mean Value Theorem
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DoF Degrees of Freedom
DoS Denial of Service
DT Decision Tree
EIKF Extended Informational Kalman Filter
EKF Extended Kalman Filter
EPMI Extended Proportional and Multiple Integral
FD Fault Detection
FDD Fault Detection and Diagnosis
FDF Fault Detection Filter
FDI Fault Detection and Isolation
FDMAE Fault Detection Model Acceleration Engine
FDP Fault Detection Parameter
FFT Fast Fourier Transform
FKF Federated Kalman Filter
FPGA Field-Programmable Gate Array
FPR False Positive Rate
FTC Fault-Tolerant Control
GA Genetic Algorithm
GDT Ground Data Terminal
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
GSS Golden Section Search
GYRO Gyroscope
HGO High Gain Observer
IBKS Incremental BacKStepping
ICD Integral Chain Differentiator
IMM Interacting Multiple Model
INS Inertial Navigation System
iOE intelligent Output Estimator
KF Kalman Filter
KNN K Nearest Neighbours
KPCA Kernel Principle Component Analysis
LDA Linear Discriminant Analysis
LiDAR Light Detection and Ranging
LightGBM Light Gradient Boosting Machine
LKF Linear Kalman Filter
LMI Linear Matrix Inequalities
LOF Local Outlier Factor
LPV Linear Parameter-Varying
LQ Linear Quadratic
LQR Linear Quadratic Regulator
LSTM Long Short Term Memory
LTI Linear Time-Invariant
MA-DPCA Moving Average & Dynamic Principal Component Analysis
MEMS Microelectromechanical System
MFC Model Free Control
MFCC Mel Frequency Cepstrum Coefficients
ML Machine Learning
MLPNN Multi Layered Perceptron Neural Network
MMAE Multiple Model Adaptive Estimation
MMNSF Multiple Measurement Noise Scale Factors
MSNSF Multiple System Noise Scale Factors
MSO Minimal Structurally Overdetermined
NN Neural Network
NNAS Neural Network Adaptive Structure
OOCSVM Optimized One-Class Support Vector Machine
PCA Principle Component Analysis
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PF Particle Filtering
PI Proportional Integral
PSO Particle Swarm Optimization
qLPV quasi Linear Parameter-Varying
RAFO Robust Adaptive Fault Observer
RBFNN Radial Basis Function Neural Network
RDT Random Decision Tree
RF Residual Filtering
RKF Robust Kalman Filter
ROC Receiver Operating Characteristic
RThSCDKF Robust Three-Stage Central Difference Kalman Filter
RThSEKF Robust Three-Stage Extended Kalman Filter
SAC-DM Signal Analysis based on Chaos using Density of Maxima
SADS Synthetic Air Data System
SFUKF Suboptimal Fading Unscented Kalman Filter
SIM Subspace Identification Method
SMC Sliding Mode Control
SPE Squared Prediction Error
SPRT Sequential Probability Ratio Test
STF Strong Tracking Filtering
SVM Support Vector Machine
TDOA Time Difference Of Arrival
TPR True Positive Rate
TSKF Two-Stage Kalman Filter
UAV Unmanned Aerial Vehicle
UIF Unscented Information Filter
UIO Unknown Input Observer
UKF Unscented Kalman Filter
UMMAE Unscented Multiple Model Adaptive Estimation
VTOL Vertical Take-Off and Landing
WDT Wavelet Discrete Transform
WPD Wavelet Packet Decomposition
XGBoost eXtreme Gradient Boosting

Appendix A. List of Terms

Fault—unpermitted deviation of at least one characteristic property of the system
Failure—permanent interruption of a systems ability to perform a required function under
specified operating conditions
Malfunction—intermittent irregularity in fulfilment of a systems desired function
Error—deviation between a computed value (of an output variable) and the true, specified
or theoretically correct value
Disturbance—an unknown (and uncontrolled) input acting on a system
Perturbation—an input acting on a system which results in a temporary departure from a
steady state
Residual—fault indicator, based on deviations between measurements and model-equation-
based calculations
Symptom—change of an observable quantity from normal behavior [30]
Fault detection—determination of the fault occurrence in a system and time of detection
Fault isolation—determination of kind, location and time of detection of a fault by evaluat-
ing symptoms. Follows fault detection
Fault identification (and fault estimation)—determination of the size (estimation of the
magnitude), severity and time-variant behavior of a fault. Follows fault isolation
Fault diagnosis—determination of kind, size, location and time of detection of a fault
by evaluating symptoms. Follows fault detection. Includes fault detection, isolation and
identification [30,133]
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