An Intrusion Detection Model for Drone Communication Network in SDN Environment
Abstract
:1. Introduction
2. Related Work
3. Proposed Model
3.1. Deep Auto-Encoder
3.2. Convolutional Neural Networks
3.3. Attention Mechanism
3.4. The DCA Model
4. Exeperimental Evaluation
4.1. InSDN Dataset
4.2. Simulation Setup
4.3. Simulation Metrics
4.4. Simulation Scenarios
4.5. Experimental Results of Binary Classification
4.6. Experimental Results of Multiple Classification
Models | Time Consumed |
---|---|
CNN | 988 s |
LSTM | 1169 s |
DCA | 1902 s |
CNN+LSTM | 27,534 s |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raja, G.; Anbalagan, S.; Ganapathisubramaniyan, A.; Selvakumar, M.S.; Bashir, A.K.; Mumtaz, S. Efficient and secured swarm pattern multi-UAV communication. IEEE Trans. Veh. Technol. 2021, 70, 7050–7058. [Google Scholar] [CrossRef]
- Ullah, H.; Nair, N.G.; Moore, A.; Nugent, C.; Muschamp, P.; Cuevas, M. 5G communication: An overview of vehicle-to-everything, drones, and healthcare use-cases. IEEE Access 2019, 7, 37251–37268. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Agrawal, A.; Goyal, A.; Luong, N.C.; Niyato, D.; Yu, F.R.; Guizani, M. Fast, reliable, and secure drone communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 23, 2802–2832. [Google Scholar] [CrossRef]
- Alkama, D.; Ouamri, M.A.; Alzaidi, M.S.; Shaw, R.N.; Azni, M.; Ghoneim, S.S.M. Downlink Performance Analysis in MIMO UAV-Cellular Communication with LOS/NLOS Propagation under 3D Beamforming. IEEE Access 2022, 10, 6650–6659. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Sun, J. A Vector-Based Approach for Dimensioning Small Cell Networks in Millimeter-Wave Frequencies. IEEE Trans. Veh. Technol. 2022, 71, 8980–8993. [Google Scholar] [CrossRef]
- Kirkpatrick, K. Software-defined networking. Commun. ACM 2013, 56, 16–19. [Google Scholar] [CrossRef]
- Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A survey on software-defined networking. IEEE Commun. Surv. Tutor. 2014, 17, 27–51. [Google Scholar] [CrossRef]
- Wickboldt, J.A.; De Jesus, W.P.; Isolani, P.H.; Both, C.B.; Rochol, J.; Granville, L.Z. Software-defined networking: Management requirements and challenges. IEEE Commun. Mag. 2015, 53, 278–285. [Google Scholar] [CrossRef]
- Shu, Z.; Wan, J.; Li, D.; Lin, J.; Vasilakos, A.V.; Imran, M. Security in software-defined networking: Threats and countermeasures. Mob. Netw. Appl. 2016, 21, 764–776. [Google Scholar] [CrossRef]
- Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep learning approach for network intrusion detection in software defined networking. In Proceedings of the 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 258–263. [Google Scholar]
- Siddappaji, B.; Akhilesh, K.B. Role of Cyber Security in Drone Technology; Springer: Singapore, 2020; pp. 169–178. [Google Scholar]
- Abdelmaboud, A. The Internet of Drones: Requirements, Taxonomy, Recent Advances, and Challenges of Research Trends. Sensors 2021, 21, 5718. [Google Scholar] [CrossRef]
- Yahuza, M.; Idris, M.Y.I.; Wahab, A.W.A.; Nandy, T.; Ahmedy, I.B.; Ramli, R. An edge assisted secure lightweight authentication technique for safe communication on the internet of drones network. IEEE Access 2021, 9, 31420–31440. [Google Scholar] [CrossRef]
- Mukherjee, B.; Heberlein, L.T.; Levitt, K.N. Network intrusion detection. IEEE Netw. 1994, 8, 26–41. [Google Scholar] [CrossRef]
- Nawaz, H.; Ali, H.M.; Laghari, A.A. UAV communication networks issues: A review. Arch. Comput. Methods Eng. 2021, 28, 1349–1369. [Google Scholar] [CrossRef]
- Guerber, C.; Larrieu, N.; Royer, M. Software defined network based architecture to improve security in a swarm of drones. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 51–60. [Google Scholar]
- Altawy, R.; Youssef, A.M. Security, privacy, and safety aspects of civilian drones: A survey. ACM Trans. Cyber-Phys. Syst. 2016, 1, 1–25. [Google Scholar] [CrossRef]
- Sharma, N.; Magarini, M.; Jayakody, D.N.K.; Sharma, V.; Li, J. On-demand ultra-dense cloud drone networks: Opportunities, challenges and benefits. IEEE Commun. Mag. 2018, 56, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Chica, J.C.C.; Imbachi, J.C.; Vega, J.F.B. Security in SDN: A comprehensive survey. J. Netw. Comput. Appl. 2020, 159, 102595. [Google Scholar] [CrossRef]
- Ali, S.T.; Sivaraman, V.; Radford, A.; Jha, S. A survey of securing networks using software defined networking. IEEE Trans. Reliab. 2015, 64, 1086–1097. [Google Scholar] [CrossRef]
- Rawat, D.B.; Reddy, S.R. Software defined networking architecture, security and energy efficiency: A survey. IEEE Commun. Surv. Tutor. 2016, 19, 325–346. [Google Scholar] [CrossRef]
- Niyaz, Q.; Sun, W.; Javaid, A.Y. A deep learning based DDoS detection system in software-defined networking (SDN). arXiv 2016, arXiv:1611.07400. [Google Scholar] [CrossRef] [Green Version]
- Polat, H.; Polat, O.; Cetin, A. Detecting DDoS attacks in software-defined networks through feature selection methods and machine learning models. Sustainability 2020, 12, 1035. [Google Scholar] [CrossRef]
- Malik, J.; Akhunzada, A.; Bibi, I.; Imran, M.; Musaddiq, A.; Kim, S.W. Hybrid deep learning: An efficient reconnaissance and surveillance detection mechanism in SDN. IEEE Access 2020, 8, 134695–134706. [Google Scholar] [CrossRef]
- Javanmardi, S.; Shojafar, M.; Mohammadi, R.; Nazari, A.; Persico, V.; Pescapè, A. FUPE: A security driven task scheduling approach for SDN-based IoT–Fog networks. J. Inf. Secur. Appl. 2021, 60, 102853. [Google Scholar] [CrossRef]
- Ilango, H.S.; Ma, M.; Su, R. Low Rate DoS Attack Detection in IoT-SDN using Deep Learning. In Proceedings of the 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Melbourne, Australia, 6–8 December 2021; pp. 115–120. [Google Scholar]
- Schueller, Q.; Basu, K.; Younas, M.; Patel, M.; Ball, F. A hierarchical intrusion detection system using support vector machine for SDN network in cloud data center. In Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, NSW, Australia, 21–23 November 2018; pp. 1–6. [Google Scholar]
- Hadem, P.; Saikia, D.K.; Moulik, S. An SDN-based Intrusion Detection System using SVM with Selective Logging for IP Traceback. Comput. Netw. 2021, 191, 108015. [Google Scholar] [CrossRef]
- Zhai, Y.; Zheng, X. Random forest based traffic classification method in SDN. In Proceedings of the 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB), Fuzhou, China, 15–17 November 2018; pp. 1–5. [Google Scholar]
- Ribeiro, A.R.L.; Santos, R.Y.C.; Nascimento, A.C.A. Anomaly Detection Technique for Intrusion Detection in SDN Environment using Continuous Data Stream Machine Learning Algorithms. In Proceedings of the 2021 IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, 15 April–15 May 2021; pp. 1–7. [Google Scholar]
- Assis, M.V.O.; Carvalho, L.F.; Lloret, J.; Proença, M.L., Jr. A GRU deep learning system against attacks in software defined networks. J. Netw. Comput. Appl. 2021, 177, 102942. [Google Scholar] [CrossRef]
- Qin, G.; Chen, Y.; Lin, Y.X. Anomaly detection using LSTM in IP networks. In Proceedings of the 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD), Lanzhou, China, 12–15 August 2018; pp. 334–337. [Google Scholar]
- Azizjon, M.; Jumabek, A.; Kim, W. 1D CNN based network intrusion detection with normalization on imbalanced data. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 218–224. [Google Scholar]
- Elsayed, M.S.; Le-Khac, N.A.; Jahromi, H.Z.; Jurcut, A.D. A Hybrid CNN-LSTM Based Approach for Anomaly Detection Systems in SDNs. In Proceedings of the 16th International Conference on Availability, Reliability and Security (ARES 2021), Vienna, Austria, 17–20 August 2021. [Google Scholar]
- Ding, P.; Li, J.; Wang, L.; Wen, M.; Guan, Y. HYBRID-CNN: An efficient scheme for abnormal flow detection in the SDN-Based Smart Grid. Secur. Commun. Netw. 2020, 2020, 8850550. [Google Scholar] [CrossRef]
- Ahuja, N.; Singal, G.; Mukhopadhyay, D. DLSDN: Deep learning for DDOS attack detection in software defined networking. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 683–688. [Google Scholar]
- Ng, A. Sparse autoencoder. CS294A Lect. Notes 2011, 72, 1–19. [Google Scholar]
- Fukushima, K.; Miyake, S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and Cooperation in Neural Nets; Springer: Berlin/Heidelberg, Germany, 1982; pp. 267–285. [Google Scholar]
- Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 2204–2212. [Google Scholar]
- University of California at Irvine. UCI KDD Archive. Available online: http://kdd.ics.uci.edu/ (accessed on 9 September 2005).
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar]
- Elsayed, M.S.; Le-Khac, N.A.; Jurcut, A.D. InSDN: A novel SDN intrusion dataset. IEEE Access 2020, 8, 165263–165284. [Google Scholar] [CrossRef]
Algorithm Involved | Targeting Specific Attacks | SDN Dataset | Detection Accuracy |
---|---|---|---|
SVM | F | F | 95.98% |
Random Forest | F | F | 98% |
KNN | Y | Y | 98.3% |
FUPE | Y | Y | 98.2% |
OutlierDenStream | Y | Y | 97.83% |
GRU | Y | F | 97.1% |
LSTM | F | F | 98% |
CNN | F | F | 91.2% |
SAE+Multilayer perceptron | Y | F | 99.75% |
CNN+LSTM | F | Y | 97.6% |
Our model | F | Y | 99.6% |
Flow Type | Quantity |
---|---|
BFA | 1405 |
BOTNET | 164 |
DDoS | 121,942 |
DoS | 53,616 |
Normal | 68,424 |
Probe | 98,129 |
U2R | 17 |
Web-Attack | 192 |
Batch Size | Loss | Val Loss |
---|---|---|
256 | 0.095364 | 0.095196 |
500 | 0.156235 | 0.165432 |
1000 | 0.215263 | 0.214537 |
Hidden Layer Size | Loss | Val Loss |
---|---|---|
16 | 0.103622 | 0.103436 |
32 | 0.095364 | 0.095196 |
48 | 0.098497 | 0.098497 |
Model | Accuracy | Recall | Precision | F-Score |
---|---|---|---|---|
CNN | 0.991 | 0.992 | 0.997 | 0.995 |
LSTM | 0.994 | 0.996 | 0.996 | 0.996 |
CNN+LSTM | 0.997 | 0.997 | 0.999 | 0.998 |
DCA | 0.997 | 0.998 | 0.998 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, L.; Ding, S.; Wu, T.; Dong, W.; Yin, Y. An Intrusion Detection Model for Drone Communication Network in SDN Environment. Drones 2022, 6, 342. https://doi.org/10.3390/drones6110342
Kou L, Ding S, Wu T, Dong W, Yin Y. An Intrusion Detection Model for Drone Communication Network in SDN Environment. Drones. 2022; 6(11):342. https://doi.org/10.3390/drones6110342
Chicago/Turabian StyleKou, Liang, Shanshuo Ding, Ting Wu, Wei Dong, and Yuyu Yin. 2022. "An Intrusion Detection Model for Drone Communication Network in SDN Environment" Drones 6, no. 11: 342. https://doi.org/10.3390/drones6110342
APA StyleKou, L., Ding, S., Wu, T., Dong, W., & Yin, Y. (2022). An Intrusion Detection Model for Drone Communication Network in SDN Environment. Drones, 6(11), 342. https://doi.org/10.3390/drones6110342