
����������
�������

Citation: Morando, L.; Recchiuto,

C.T.; Calla, J.; Scuteri, P.; Sgorbissa, A.

Thermal and Visual Tracking of

Photovoltaic Plants for Autonomous

UAV Inspection. Drones 2022, 6, 347.

https://doi.org/10.3390/

drones6110347

Academic Editor: Francesco Nex

Received: 21 October 2022

Accepted: 7 November 2022

Published: 9 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Thermal and Visual Tracking of Photovoltaic Plants for
Autonomous UAV Inspection
Luca Morando 1 , Carmine Tommaso Recchiuto 1 , Jacopo Calla 2, Paolo Scuteri 2 and Antonio Sgorbissa 1,*

1 Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova,
Via Opera Pia 13, 16145 Genova, Italy

2 JPDroni S.r.l., Via Jacopo Ruffini, 9/1A, 16128 Genova, Italy
* Correspondence: antonio.sgorbissa@unige.it

Abstract: Because photovoltaic (PV) plants require periodic maintenance, using unmanned aerial
vehicles (UAV) for inspections can help reduce costs. Usually, the thermal and visual inspection
of PV installations works as follows. A UAV equipped with a global positioning system (GPS)
receiver is assigned a flight zone, which the UAV will cover back and forth to collect images to be
subsequently composed in an orthomosaic. When doing this, the UAV typically flies at a height above
the ground that is appropriate to ensure that images overlap even in the presence of GPS positioning
errors. However, this approach has two limitations. First, it requires covering the whole flight zone,
including “empty” areas between PV module rows. Second, flying high above the ground limits
the resolution of the images to be subsequently inspected. The article proposes a novel approach
using an autonomous UAV with an RGB and a thermal camera for PV module tracking through
segmentation and visual servoing, which does not require a GPS except for measuring the “small”
relative displacement between a PV module row and the next one. With this solution, the UAV
moves along PV module rows at a lower height than usual and inspects them back and forth in a
boustrophedon way by ignoring “empty” areas with no PV modules. Experimental tests performed
in simulation and at an actual PV plant are reported, showing a tracking error lower than 0.2 m in
most situations when moving at 1.2 m/s.

Keywords: autonomous vehicle navigation; localization and visual serving; photovoltaic (PV) plant
inspection

1. Introduction

We are currently facing a worldwide energy challenge that requires us to search for
alternatives to fossil fuels, including green and renewable energies [1]. According to [2],
in 2019, renewable energy sources made up 34% of gross electricity consumption in the EU-
27, slightly up from 32% in 2018. While wind and hydropower accounted for two-thirds of
the total electricity generated from renewable sources (35% each), the remaining one-third
of the electricity generated was from solar power (13%), solid biofuels (8%), and other
renewable sources (9%). The analysis also shows how solar power is the renewable source
experiencing the fastest growth, given that in 2008 it accounted for approximately 1%.

Solar energy plants offer many advantages, as they have a long life and are environ-
mentally friendly, noise-free, and clean. However, photovoltaic (PV) installations require
periodic maintenance because they always need optimal conditions to work properly [3].
Surface defects [4–8] are the most common problems. They can be detected through human
inspection: a qualified operator can easily detect different defects, including snail trails (a
snail trail is a discoloration of the panel), yellowing of the encapsulant, delamination and
bubble formation in the encapsulant, front surface soiling, busbar oxidation, or impact from
physical objects. However, a human inspection might be time-consuming if the PV plant
is very large (or in particular conditions, e.g., panels are mounted on a rooftop). In order
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to reduce the cost and time required for maintenance, methods exist [9] to estimate the
presence and impact of global defects through the analysis of the power output. However,
this approach presents two main disadvantages: a reference power production is required,
and the exact locations of defects cannot be identified.

Unmanned aerial vehicles (UAVs) have been recently proposed for PV inspections. In
past decades, research made significant steps forward concerning the development of UAVs
for monitoring applications, including the inspection of power transmission lines [10], gas
and oil pipelines [11], precision agriculture [12], and bridges [13]. Indeed, the ability
of multi-rotor UAVs to hover and move freely in the air and the fact that they can be
easily piloted and equipped with different sensors make this technology very appealing in
monitoring scenarios. Generally, UAVs used for PV inspection are equipped with a thermal
camera (which may or may not complement a standard RGB camera or other sensors) to
identify defects that can produce heat anomalies on the solar panels.

The use of UAVs reduces the inspection time, but, on the other hand, creates a larger
amount of raw data to be processed, which must meet some requirements in terms of reso-
lution and position accuracy. Currently, the inspection of PV plants through thermovisual
imagery is mostly based on UAV photogrammetry [14–16]. A UAV equipped with a global
positioning system (GPS) receiver and an inertial measurement unit (IMU) is assigned a
flight zone: it will cover this area in a “boustrophedon” way (i.e., back and forth like the ox
turns while plowing) by ensuring the required overlapping of images, horizontally and
vertically, to be subsequently composed in an orthomosaic. The UAV typically flies at a
height above the ground that is appropriate to ensure that the images overlap even in the
presence of GPS positioning errors. However, this approach has two limitations. First,
it requires covering the whole zone, including “empty” areas between PV module rows:
depending on how PV module rows have been arranged in the PV plant, there may be large
areas without PV panels to be inspected. Second, flying high above the ground limits the
impact of positioning errors, which is good, but it also limits the resolution of the images to
be subsequently inspected.

One could imagine a solution that does not build an orthomosaic of the whole plant.
The UAV can be instructed to move along PV module rows at a lower height, see Figure 1, so
that the panel almost completely occupies the camera’s field of view and ignores the areas
where there are no PV modules to be inspected. This process will produce “strips” of higher
resolution images (one strip per PV module row) instead of a “mosaic”. To implement
this mechanism, it might seem sufficient to provide a sequence of waypoint coordinates
to the UAV’s mission planner before take-off. The waypoints might, in turn, be chosen
during the pre-flight setup, with an operator drawing the desired path on Google Earth
images showing the solar plant to be inspected. However, as discussed in [9], the error
in planimetric coordinates of the objects captured in Google Earth ranges from 5 to 10 m.
This aspect, together with the intrinsic inaccuracy of the GPS signal, will likely produce
a wrong UAV placement, determine a wrong alignment of the UAV with the PV module
rows, increase the amount of useless data acquired, and reduce performance.

Based on these premises, a different solution using visual information is needed to
correct the error between the UAV and the actual position of PV modules in real time.

The main contribution of this article is a portfolio of techniques for PV module seg-
mentation and UAV navigation through visual servoing based on the onboard RGB and
thermal cameras, which does not require a GPS except for measuring the “small” relative
displacement between a PV module row and the next one. The solution proposed in this
article relies on a pipeline of visual segmentation techniques without needing the vast
dataset of images taken in different environmental conditions typical of data-driven ap-
proaches, and an extended Kalman filter (EKF) to merge subsequent observations. Please
note that, in PV plant inspection, a thermal camera is required for detecting defects: then,
opportunistically using both RGB and thermal cameras for PV module row tracking is
convenient as it may improve reliability in critical light or temperature conditions.
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Figure 1. System at work in a PV plant. The DJI Matrice 300 drone was equipped with a hybrid RGB
and a thermal camera, the DJI Zenmuse XT2.

JP Droni (JPDroni S.r.l is a company in Genova providing aerial services for video
productions, precision agriculture, and technical inspection of power plants) confirms
that GPS-based photogrammetry is the only approach currently adopted in Italy (and,
to their knowledge, in the world) for PV inspection: in commercial applications, the UAV
typically flies 30–40 m above the ground. With respect to GPS-based photogrammetry,
the availability of new visual servoing techniques based on PV module segmentation might
produce two breakthroughs.

• First, it enables the drone to follow the planned path, which lies in the middle of
the underlying PV module row, with greater accuracy. Due to the higher navigation
accuracy, the system is robust to the wrong placement of the GPS waypoints (e.g.,
chosen with Google Earth before the mission’s start): this, in its turn, prevents the
drone from flying over empty areas between two parallel PV module rows, collecting
useless data, and wasting time and battery autonomy.

• Second, it enables the drone to fly at a lower height to the ground, capturing details
on the PV module surfaces otherwise impossible to see (possibly including PV panels’
serial numbers) while reducing the oscillations in position generated by noise in
GPS localization.

Experiments conducted in a simulated environment and at an actual PV plant in
northern Italy show that the proposed approach ensures a tracking error lower than 0.2 m
in most situations when moving at 1.2 m/s, paving the way to its usage in real settings.
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Figure 1 shows how the system works and introduces the main concepts used in the
rest of the article:

• PV midline, a straight line in the middle of the PV module row that determines the
desired motion direction;

• PV end, a point on the PV midline that identifies the end of the PV module row;
• PV start, a point that identifies the start of the new PV module row, whose position is

computed with respect to the end of the previous row.

The upper left corner of Figure 1 shows a UAV moving along the PV rows in a
boustrophedon way. The UAV moves from PV start to PV end along a PV midline. Then, it
“jumps” to the next PV row, and it starts moving again from the following PV start to its
corresponding PV end, and so on. Please note that even if panel defect detection is the final
goal of UAV-based inspection, this article addresses only UAV navigation and purposely
ignores defect detection—which most companies perform offline by analyzing the images
acquired along the path through dedicated tools.

The article is organized as follows. Section 2 surveys the relevant literature. Section 3
describes the system architecture. Section 4 introduces the techniques used for PV module
segmentation using RGB and thermal images. Section 5 introduces strategies for UAV
autonomous navigation. Sections 6 and 7 present the experimental results in a photorealistic
simulated environment and a real PV plant. Finally, in Section 8, conclusions and directives
for future research are given.

2. State of the Art

Even if defect detection is not the objective of this article, it is important to highlight
previous work in this field as it motivates the application domain we are considering.
Researchers proposed various techniques for automatic defect detection from aerial images.
For example, the authors of [17,18] use computer vision and machine learning techniques
to detect and classify cracks and potholes in roads and highways using images taken by
UAVs. Similarly, refs. [19,20] address the inspection of power lines with UAVs, using
techniques such as faster region-based convolutional neural network (Faster R-CNN) [21]
to detect defects and the Hough transform [22] for cable detection. Strategies for automatic
defect detection have also been applied to the PV plant scenario. For example, ref. [23]
proposes two different techniques for inspection and mapping, aerial IR/visual image
triangulation and terrestrial IR/visual image georeferencing: the authors discuss the
potential of both approaches in localizing defective PV modules. In [24], a convolutional
neural network (CNN) is used for defect recognition based on aerial images obtained
from UAVs. The authors of [25] present an approach that unifies two region-based CNNs
(R-CNN) to generate a robust detection approach combining thermography and telemetry
data for panel condition monitoring. A model-based approach for the detection of panels is
proposed in [26]: this work relies on the structural regularity of the PV module rows and
introduces a novel technique for local hot spot detection from thermal images based on a
fast and effective algorithm for finding local maxima in the PV panel regions. In [27], a fully
automated approach for detecting, classifying, and geopositioning thermal defects in the
PV modules is proposed, which exploits a novel method based on image reprojection and
function minimization to detect the panels from the images. The work described in [28]
proposes a novel method for estimating the power efficiency of a PV plant using data from
thermal imaging and weather instruments obtained using a UAV instrumented with a
radiometer, a thermometer, and an anemometer. These and similar studies address only the
problem of autonomous defect detection and geopositioning without using the acquired
images as feedback for the UAV to move autonomously along the inspection path.

The autonomous inspection of PV plants through UAV photogrammetry has been
explored in the literature [14,15,29,30]. The UAV is given a set of waypoints, usually
arranged in such a way as to cover a delimited area to ensure the required horizontal
and vertical overlapping of images. Then, the UAV moves along the planned sequence
of waypoints using GNSS/GPS data only, possibly negatively impacting data quality due
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to positioning errors [31]. An approach to generating an optimal waypoint path based
on satellite images is proposed in [32] to reduce the error due to the misalignment of
georeferenced images and the actual inspection site. The PV plant’s boundary is extracted
via computer vision techniques, and the system can re-compute the path if the UAV requires
reaching a specific location (e.g., a PV module where a defect has been detected) or if the
UAV cannot complete the initial path for any reason. In [33], a novel technique for boundary
extraction is proposed using a Mask R-CNN architecture with a modified VGG16 backbone.
The network is trained on the AMIR dataset [34]: an aerial imagery collection of PV plants
from different countries. The authors of [35] present a novel way to develop a flight
path automatically with coverage path planning (CPP) methods [36] by segmenting the
region of interest within PV plant images. The work proposed in [16] uses a VGG16 CNN
fed with images that underwent a structure from motion-multiview stereo (SfM-MVS)
photogrammetric processing workflow to generate thermal orthomosaics of the inspected
sites. These and similar approaches focus on planning a waypoint path with the objective
of covering the whole area according to the principles of photogrammetry, i.e., they do
not consider tracking individual PV module rows at a lower height from the ground to
produce fewer and higher resolution images to be processed.

Visual servoing is widely used in robotics. Many examples of UAV autonomous
navigation based on data acquired through cameras exist in the literature, some involving
inspection tasks. For example, an algorithm for detecting vertical features from images
was used in [11] to guide a UAV along a semi-linear path while flying over a highway in
the United States. This approach is based on the consideration that vertical edges are a
characterizing attribute of highways that can be easily detected using methods such as
RANSAC [37], which can also be used to predict splines [38] where sharp curves may
occur. Similar techniques are found in [39,40], where the authors contributed to the fields of
precision agriculture and building inspection, respectively. In [39], a novel control technique
based on a passivity-based visual servoing controller with dynamics compensation to track
crops is described. The proposed system allows a UAV to move along straight lines
such as those formed by structured crops. In [40], a complete navigation and inspection
task is executed by an autonomous quadrotor. The most interesting part of this work
is the approach used for road detection and navigation, which segments the image into
predominant color layers before feeding it to DeepLabv3+ [41], a network trained for
semantic segmentation. The road is then identified in the image and finally followed by the
UAV by defining a sequence of control points. The approach recently proposed in [42] relies
on the availability of well-described streets in urban environments for UAV navigation and
path tracking: while the drone position is continuously computed using visual odometry,
scene matching is used to correct the position drift.

Visual servoing has rarely been applied to UAV navigation over large PV plants. This
may be due to the complexity of the scenario, which may have different characteristics
in terms of the number of PV module rows, their dimension, and mutual arrangement.
Nevertheless, some attempts in this direction have been made in recent years. For example,
in [9], the authors propose a vision-based guidance law to track PV module rows based on
PV modules’ edge detection. The approach extracts vertical edges from RGB images using
a Hough transform. Then, the detected misalignment between the PV row observed from
images and the actual UAV position is fed to the navigation control law. Unfortunately, this
approach has only been tested in simulation. An edge detection technique was also pro-
posed in [43], where the metallic profile of the PV module rows is detected and segmented
by combining color and feature extraction using the Hough transform and a hue–saturation–
value (HSV) model. Once the panels have been segmented, the velocity orthogonal to the
PV module row is controlled to keep the UAV aligned. Both approaches rely on the tuning
of parameters for edge extraction: notwithstanding this limitation, it is worth noting that,
in the “era of deep learning”, many of the approaches noted above [9,39,40,43] rely on
model-based vision techniques for feature segmentation. In structured environments whose
model is a priori known, such as PV plants, a model-based formulation of the problem may
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offer advantages in predictable and explainable behavior [44] and possibly robustness to
adversarial attacks [45] that cannot be ignored. As an aside, this is also confirmed by AI
in aviation (particularly machine learning) still in its infancy. Even if AI is widespread in
subdomains such as logistics and fuel consumption estimation [46,47], AI techniques in
flight control are rarely found in real-world application scenarios.

3. System Architecture

The system can autonomously perform UAV-based PV inspection centered on the
following core elements:

• A procedure for detecting PV modules in real time using a thermal or an RGB camera
(or both);

• A procedure for correcting errors in the relative position of the PV midline, initially
estimated through GPS, by merging thermal and RGB data;

• A navigation system provided with a sequence of georeferenced waypoints defining
an inspection path over the PV plant, which uses the estimated position of the PV
midline for making the UAV move along the path through visual servoing.

The software architecture implemented in ROS [48] is shown in Figure 2. ROS nodes (1)
and (2) acquire and process raw frames from the RGB and the thermal camera and perform
PV module segmentation (see Sections 4.1 and 4.2). As an output of this process, each node
returns the parameters, in the image frame, of the straight lines running in the middle of the
detected PV module rows. To increase segmentation accuracy with varying environmental
conditions, node (3) implements an optimization procedure to find the best parameters
for segmentation: some details about this procedure are in Section 4.3. Node (4) merges
subsequent observations, independently performed by the two cameras in subsequent
time instants. Because the parameters of straight lines independently extracted by (1)
and (2) may be affected by errors, an EKF is used to estimate the PV midline by merging
the observations provided in real time by nodes (1) and (2) with a priori knowledge (see
Sections 5.1 and 5.2). Finally, node (5) uses the estimated reference path to control the UAV
through visual servoing (Section 5).

Figure 2. System architecture implemented in ROS.

PV module row tracking is insufficient: node (5) also needs rules to instruct the UAV
to move to the next row when the previous one has been completed. This means we need
a waypoint-based reference path defining the order according to which PV module rows
shall be inspected. Remember that waypoints can be labeled as PV start or PV end and
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are acquired before the inspection through Google Earth or other georeferenced images
(possibly affected by positioning errors) (Figure 1). They are connected in a sequence
such that

• the path goes from a PV start to a PV end waypoint when moving along a PV row: in
this case, the distance between PV start and PV end defines how far a PV midline shall
be followed before moving to the next one;

• the path goes from a PV end to a PV start waypoint when jumping to the next PV row:
in this case, the position of PV start relative to PV end defines the start of the new row
with respect to the previous one.

Currently, waypoints are manually chosen, but this process might be automated
starting from a georeferenced image of the whole plant.

As already discussed, real-time segmentation and visual tracking of PV module rows
may play a key role in successful navigation. Indeed, waypoint-based navigation relying on
the embedded positioning system of the UAV (typically merging GPS, IMUs, and compass)
has well-known limitations: the absolute position of PV start and PV end waypoints, as well
as GPS data, may be affected by large errors in the world frame. In contrast, by using
visual servoing to move along a PV row, we only need to ensure that the relative position
of adjacent waypoints and the small UAV displacement from a PV module row to the next
one performed with GPS only are sufficiently accurate. Figure 3 shows this concept: the
colored part of the figure represents a priori computed waypoints; the gray part represents
the observed position of PV module rows while tracking them. The proposed solution
works even when the absolute error between the a priori computed and the observed
position of PV module rows is huge, given that ∆l ≈ ∆l′ and ∆p ≈ ∆p′ (the additional
requirement l ≈ l′ holds if one uses GPS to measure the length of the PV module row
instead of implementing some sort of “end-of-row detector”). These assumptions look
reasonable, as georeferenced waypoints computed from Google Earth images and GPS data
may be affected by large biases (which, in the case of GPS, vary with time) but tend to be
locally coherent—i.e., the relative error of waypoints (respectively, GPS data) with respect
to previous waypoints (respectively, GPS data acquired in nearby locations) is small.

Figure 3. A priori computed waypoints (colored circles) and PV module row’s position observed
during the mission (shown in gray).

Eventually, even if it is not the focus of this article, note that additional high-resolution
thermal images (not used for navigation) are captured and stored in the onboard storage of
the UAV for defect detection (possibly performed after the UAV has ended the mission).
In this case, the UAV’s flying height and speed determine the acquisition frequency to
guarantee that images overlap.
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4. Detection of PV Modules
4.1. Segmentation of PV Modules via Thermal Camera

Each image captured by the thermal camera can be represented as a matrix. The image
frame I is in the upper-left corner of the image plane, and i(u, v) is a function that associates
a thermal value to each pixel (u, v): thermal cameras return the thermographic image as a
mono-channel grayscale intensity matrix, where the intensities of the pixels may assume
values between 0 and 255.

As a first step, a mask F is applied to the image after choosing two thresholds th1 and
th2. That is, each image pixel is processed as follows:

f (u, v) =

{
i(u, v), if th1 < i(u, v) < th2

0, otherwise.
(1)

Although the values of th1 and th2 may be a priori chosen based on the analysis of
previously acquired images (in our case, a dataset of images of a PV plant through a DJI
Zenmuse H20T camera, composed of 430 640× 512 thermal images) by manually inspecting
the range of thermal values that will likely allow for the segmenting of panels from the
ground under different daylight conditions, there may be the need to fine-tune them when
environmental conditions change. Please refer to Section 4.3 concerning the strategy used
for this purpose. As expected, and visible in Figure 4a, this mask is not sufficient to make
the PV modules emerge unambiguously: in some regions, the ground may have the same
temperature as the panels.

Figure 4. Pipeline for PV module detection from thermal images: (a) thresholded image; (b) distance
matrix; (c) binarized image; (d) segmentation and regression line extraction; (e) clustering and PV
midline estimation.

As a second step, we filter out the noise by exploiting a priori domain knowledge: even
if pixels with thermal intensity in the selected range can also be found outside PV panels,
the panels are characterized by a higher density of pixels falling within the thresholds.
Then, the entire image is filtered by computing a distance matrix D, storing the Euclidean
distance of each pixel in F from the closest pixel whose value is zero. That is, for each pixel
(u, v), we compute:

d(u, v) =
√
(uzero − u)2 + (vzero − v)2 (2)
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where uzero and vzero are, respectively, the row and the column of the zero value pixel
nearest to (u, v); see Figure 4b.

As a third step, each pixel of the distance matrix D is transformed into a binary
intensity value as follows:

b(u, v) =

{
1, if d(u, v) > th3

0, otherwise
(3)

where th3 can be interpreted as a distance threshold to determine whether a pixel (u, v)
in the original image belongs to a high-density region; see Figure 4c. As for th1 and
th2, the threshold th3 is set a priori and then fine-tuned with the optimization procedure
described in Section 4.3. Groups of neighboring pixels are clustered into N polygonal
regions Si: during the process, only the regions larger than a given number of pixels
survive, whereas smaller clusters are deleted (OpenCv function findcontours.). The
distance matrix D is quite a powerful tool for estimating the position of the PV modules in
the image. Nevertheless, the figure shows that it can fail, especially when the surface of the
panels is not equally heated, presenting regions with different temperatures. The next step
addresses this problem.

As a fourth step, we compute, for each segmented region Si, a regression line through
polynomial curve fitting (OpenCv function fitLine.): starting from regions Si, N regression
lines are computed, each described by a point pi = (ui, vi) and a unitary vector li defining
a direction in the image plane I; see Figure 4d.

As a fifth step, the detection algorithm requires clustering all regions Si that are likely
to correspond to PV modules aligned in the same row by using their corresponding regres-
sion lines. That is, starting from a subset of individual shapes Si and the corresponding
regression lines, a unique cluster Cj (more robust to noise) is computed. Specifically, two
regions Si and Sk are clustered in Cj if

• the corresponding regression lines tend to be parallel;
• the average point–line distance between all pixels in the image plane belonging to the

first line and the second line is below a threshold, i.e., the two lines tend to be close to
each other.

The clustering technique is iteratively applied for all the shapes Si: then, a new
regression line is computed for each cluster Cj; see Figure 4e. The final output of the process
is a set of J lines, each possibly corresponding to multiple PV modules belonging to the
same row. Each observed PV midline is represented in the image frame through a couple of
points p′j = (u′j, v′j) and p′′j = (u′′j , v′′j ) corresponding to the intersection of the line with the
borders of the image.

4.2. Segmentation of PV Modules via RGB Camera

The algorithm developed to process thermal images is almost completely reused
for RGB images, except for the initial steps required for PV module segmentations; see
Figure 5a,b.

When using RGB images, the rows of PV modules can be detected due to their color in
contrast with the background. Then, as a first step, the original image I is transformed into
the hue–saturation–value (HSV) color space: Figure 5a shows the result, RGB-rendered by
using H values for the R channel, S for G, and V for B. As a second step, the PV modules are
segmented from the background by thresholding the image in all the three HSV channels;
see Figure 5b. The lower HSV thresholds th4, th5, th6 and the higher HSV thresholds th7,
th8, th9 are manually chosen based on a priori domain knowledge and then fine-tuned
before operations, as explained in Section 4.3.
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The result is a binary image defined as follows:

b(u, v) =


1, if th4 < H(u, v) < th7

∧ th5 < S(u, v) < th8

∧ th6 < V(u, v) < th9

0, otherwise

(4)

Please remember that, in the HSV color space, hue is measured in degrees from 0
to 360 and is periodic (In OpenCV, hue is encoded in a byte and ranges from 0 to 179):
red takes negative and positive values around zero, which means that the first condition
in (4) must be changed to “if not(th4 ≤ H(u, v) ≤ th7)” in case we need to segment areas
characterized by a reddish color.

The final steps of the process, as for thermal images, require segmenting polynomial re-
gions Si, . . ., SN in b(u, v), each associated with a regression line, which are finally clustered
into J clusters Cj, each corresponding to an observed line oj = (p′j, p′′j ); see Figure 5c,d.

Figure 5. Pipeline for PV module detection from RGB images: (a) transformation into HSV space;
(b) binarized image; (c,d) segmentation, regression line extraction and clustering, PV midline estimation.

4.3. Threshold Tuning

PV module detection needs appropriate thresholding. For thermal images, we must
choose the lower and upper bounds th1 and th2 of thermal intensity in (1) and the distance
threshold th3 in (3); for RGB images, we need to choose the minimum th4, th5, th6 and the
maximum th7, th8, th9 values for each HSV channel in (4). Thresholds are chosen using a
procedure that maximizes the number of PV modules detected in thermal and RGB images
separately taken as well as the matches between the PV modules detected in both images.
The following assumes that thermal and RGB images overlap, which can be ensured
through rototranslation and scaling if needed. Under this constraint, despite the segmented
PV module shapes being slightly different depending on the acquisition method used (in
thermal images, the temperature of the junctions between adjacent PV panels is usually
different from the PV panels themselves, resulting in a sequence of smaller rectangular
shapes; in RGB images, this never happens: segmentation returns larger rectangular areas
composed of multiple panels), they are expected to roughly correspond to rectangular
shapes, whose dimensions can be predicted depending on the geometry of PV panels and
the UAV’s flying height, which occupy the same regions in pairwise images.

The algorithm used to minimize the cost function is L-BFGS-B [49], a limited-memory
algorithm that can be used to minimize a non-linear cost function subject to simple bounds
on the variables. The algorithm is particularly appropriate for solving large non-linear,
non-convex optimization problems in which the Hessian is difficult to compute.

We assume that the UAV reaches the start position of the first PV module, possibly
remotely controlled by a human operator, with its front oriented towards the direction of
the PV module row. Then, the following non-linear, non-convex optimization problem on
variables thi, i = 1 . . . 9, is solved:

min
th1−th9

−
NT

∑
i=1

(cT
i + rTR

i )−
NR

∑
i=1

(cR
i + rRT

i ) (5)
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where (5) is the cost function, whose value expresses the “quality” of the segmentation
algorithm given a set of thresholds th1 − th9 subject to disequality constraints.

Mathematical details of the cost are not discussed for the sake of brevity. Intuitively,
please remember that the thermal camera computes a set of NT segmented regions Si,
i = 1 . . . NT , and the RGB camera computes a set of NR segmented regions Si, i = 1 . . . NR.
Then, the first sum in the cost function refers to regions extracted from the thermal camera,
and the second sum refers to regions extracted from the RGB camera. For each region Si
extracted from thermal images, the cost function comprises two terms cT

i and rTR
i . The term

cT
i intuitively considers how close Si is to a rectangular shape oriented along the current

direction of motion and how close Si’s extension is to a value that depends on the PV
module geometry and the UAV height from the ground. The term rTR

i measures the pixel-
wise correlation between the region Si and the binary mask extracted from the paired RGB
image covering the same area: rTR

i is higher if the region Si segmented from the thermal
image is also present in the RGB image. The two terms cR

i and rRT
i are computed similarly,

starting from regions extracted from RGB images.
Please note that jointly optimizing all variables might be time-consuming: for this

reason, during experiments in PV plants, we decompose problem (5) into two sub-problems.
First, we only consider RGB images and search for the minimum of −∑NR

i=1 cR
i : that is, we

ignore correlation with thermal images. Second, we consider thermal images only and
search for the minimum of−∑NT

i=1(c
T
i + rTR

i ). This simplification seems a good compromise
to reduce computation time if we want to repeat the procedure, e.g., at the PV start of each
new row.

5. UAV Navigation
5.1. From the Image Frame I to the Camera Frame C

To describe the motion of the UAV body in the world frame, we define a mobile
camera frame C with origin in the center of the camera lens, xy−plane parallel to the
uv-image plane at a distance f (focal length), x-axis pointing to the UAV front, and z-axis
downward (that is, x heads towards −v in the image plane, and y heads towards u; see
Figure 6). The origin of the camera frame moves as the UAV moves along the PV module
row: because the UAV is endowed with a gimbal mechanism that keeps the xy−plane of
the camera frame parallel to the xy−plane of the world frame W, all the transformations
involving the image, world, or camera frame (respectively, I, C, W) are simpler, as the
camera is always looking perpendicularly to the ground in a nadiral position.

Given a point pi = (ui, vi) expressed in pixel coordinates in the image frame I,
by supposing that the point corresponds to a feature on the ground, its position (xC

i , yC
i , zC

i )
in the camera frame C can be computed as:

xC
i = − k

f
(vi −

V
2
)zg (6)

yC
i =

k
f
(ui −

U
2
)zg (7)

zC
i = zg (8)

where U and V denote, respectively, the axes of the image frame, k converts the pixel
size in meters, zg > 0 is the distance of the ground from the origin of the camera frame,
and f < 0 is the focal length. The thermal and RGB cameras are typically mounted on
the same rigid body a few centimeters apart in commercial products. Then, if we set C’s
origin in the thermal camera lens, all observations done in the RGB image frame should
ideally undergo a transformation to map them in C. This is not noted in the following for
brevity’s sake. Using the formula above, for every observed line described by p′i = (u′i, v′i)
and p′′ = (u′′i , v′′i ) in the image frame I returned by the procedure in Section 4 (either
by the thermal or RGB camera), we compute the corresponding points in the camera
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frame C and then the parameters oC
i = (aC

i , bC
i ) of an observed line yC − aC

i xC − bC
i = 0

in C through simple geometrical considerations. Please note that we can ignore the zC

coordinate here because the xy plane of the camera frame is parallel to the ground due to
gimbal stabilization: the UAV altitude will be separately controlled through an independent
mechanism. Then, the equation yC − aC

i xC − bC
i = 0 should be better interpreted as the

equation of a plane perpendicular to the xy plane of the camera frame C.

Figure 6. Converting pi = (ui, vi) to its position (xC
i , yC

i , zC
i ) in the camera frame.

5.2. Path Estimation through EKF

The sequence of observations oC
k = (aC

k , bC
k ) acquired in subsequent time steps k, either

extracted from the same image or subsequent images, are iteratively merged to estimate
the actual PV midline in the world frame. Specifically, we represent the actual PV midline
through parameters mW = (aW , bW), which describe a straight line in W with implicit
equation yW − aW xW − bW = 0 (once again, this should be better interpreted as a plane
perpendicular to the ground). For this purpose, an extended Kalman filter [50] is used.
Please note that the state mW = (aW , bW) of the PV midline is described in the world frame
W to keep the system dynamics constant: due to this choice, the state mW to be estimated
does not change with respect to W as the UAV moves along the PV module row. However,
the observations oC

k = (aC
k , bC

k ) acquired through cameras at steps k are expressed in the
camera frame C; to correct the state’s estimate mW through observations oC, the system will
need to map observations onto the world frame W through the EKF observation matrix H,
which, in turn, requires knowing the UAV pose.

In this work, we assume that the pose xW , yW , and yaw θW of the camera frame in the
world frame is computed by the low-level flight controller embedded in the UAV, which
typically merges GPS, IMUs, and compass. Once again, due to the gimbal mechanism and
the fact that we control the altitude through an independent mechanism, zW is ignored
because the pitch and roll of the camera can be approximated to be zero. Using the
embedded UAV positioning system may be counter-intuitive, as we repeatedly stated that
it is affected by absolute errors. However, similar to what happens in the passage from
one PV module row to the next one (Figure 3), it is deemed appropriate as we are not
interested in knowing the absolute UAV pose with high accuracy. It is sufficient that the
pose error slowly changes in time and that it is almost constant along one PV module row
(which typically happens with GPS low-frequency errors) to guarantee that subsequent
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observations are coherent with each other when mapped to the world frame without
producing abrupt changes in the state estimate. (Ideally, we could attempt to estimate the
UAV pose in the world frame by merging the sensors above with the observations made
with cameras, by hypothesizing an augmented state vector including both the PV midline
and the UAV pose [51]. However, this possibility is not explored in this work.)

The EKF allows for merging observations acquired at different times from the thermal
and RGB cameras. In the following, we use the notation m̂W

k+1|k = m̂W
k|k to describe the

evolution of the state at the prediction step k + 1 due to control inputs (which, as already
noted, is constant), and the notation oC

k+1 = (aC
k+1, bC

k+1) to describe the observation made
at the update step k + 1 by the thermal or RGB sensor.

During the update step, we need a measurement model ôC
k+1 = Hk+1m̂W

k+1|k, where
Hk+1 is the Jacobian of the non-linear observability function h(m), which allows for ob-
taining the expected measurement ôC

k+1 from the estimated state m̂W
k+1|k given the current

camera position and yaw xW , yW , θW . Specifically, h(mW) has two components:

h1(mW) =
aW − tan θW

1 + aW tan θW

h2(mW) =
xW aW + bW − yW

cos θ + sin θaW

(9)

whose Jacobian with respect to (aW , bW) needs to be evaluated in âW , b̂W , xW , yW , and θW .
The EKF is a recursive algorithm consisting of two steps: state prediction and update. The
prediction at step k + 1 can be expressed as:

m̂W
k+1|k = Am̂W

k|k + Buk|k, (10)

where A, in our case, is the identity matrix, and B = 0 because the state mW is invariant
over time when expressed in world coordinates. The state equations are linear, and the EKF
is needed only because of the non-linearity of the observation model. The error covariance
matrix is

Pk+1|k = APk+1|k AT + Q, (11)

where the process noise Q ≈ 0. As the state is not evolving, Q should be null: nevertheless,
we empirically add a very small contribution to the error covariance matrix to ensure that
new observations will continue to contribute to the state estimate.

Only the actual observations oC
k+1 that are “sufficiently close” to the expected obser-

vations ôC
k+1 (in the same spirit adopted for clustering in Section 4) are considered during

the update step. In contrast, outliers are rejected to avoid undesired corrections due to the
detection of neighboring PV rows running in parallel to the tracked one. Finally, in the cor-
rection step, the Kalman gain is computed starting from the covariance of the measurement
noise R and P as usual:

Kk+1 = Pk+1|k HT
k+1(Hk+1Pk+1|k HT

k+1 + R)−1. (12)

The a posteriori estimate is updated as:

m̂W
k+1|k+1 = m̂W

k+1|k + Kk+1(oC
k+1 − ôC

k+1), (13)

Pk+1|k+1 = (I − Kk+1Hk+1)Pk+1|k. (14)

The covariance matrix R relative to the thermal or RGB cameras is evaluated experi-
mentally and takes into account both segmentation errors due to the procedure in Section 4
and the fact that, during an inspection, the GPS error may be subject to minor variations,
therefore partially conflicting with the assumption of a constant GPS error in (9).
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The EKF is initialized with m̂W
0|0 = (aW , bW) estimated at step k = 0 by considering the

two waypoints PV start and PV end of the initial PV module row.

5.3. Path Following

Path following works in two different phases: (i) when the UAV is moving from PV
start to PV end along a PV module row; (ii) when it is moving from PV end of the current
row to PV start of the next one (Figure 3).

In phase (i), navigation is based on PV midline tracking through visual servoing.
After each iteration of the EKF, the estimated parameters describing the PV midline in the
world frame are mapped back onto the camera frame for path-following, yielding (aC

re f , bC
re f ).

Then, given the equation yC − aC
re f xC + bC

re f = 0 in the camera frame, the distance error

e = −bC
re f /(aC2

re f + 1)1/2 (15)

is computed, as well as the parallel and the perpendicular vectors to the path

VC
‖ = (1/aC

re f , 1), VC
⊥ = (−1, 1/aC

re f ). (16)

Once the quantities above have been computed, different approaches can be used to
control the distance from the PV midline. In this work, we adopt a simple “carrot chasing”
approach [52]: the parallel and perpendicular vectors are added to compute the position of
a virtual moving target using the distance error e as a weighting factor for VC

⊥ , and a PID
controller is used to tune the UAV velocities to regulate the distance from the target to zero.

In phase (ii), the UAV uses the pose information xW , yW , θW returned by the onboard
flight controller (merging GPS, IMU, and compass) to move from PV end to the next PV start.
In both phases, the altitude is separately controlled using embedded sensors returning the
height from the ground (a method to automatically control the UAV altitude depending on
the difference between the actual and expected dimensions of PV modules on the image
plane was implemented, but it is not discussed in this work).

6. Material and Methods

This and the following sections present the experiments conducted in a real PV plant
and a realistic simulation environment.

Real-world experiments in a PV plant were conducted using a DJI Matrice 300 aircraft
equipped with a DJI Zenmuse XT2 camera; see Figure 7. The camera has a field of view of
57.12× 42.44 degrees and a gimbal mechanism. An onboard DJI Manifold PC equipped
with an NVIDIA Jetson TX2 and 128GB of internal memory performs all the computations
described in previous sections to process the acquired images and control the UAV.

The simulation environment deserves more attention (Figure 7). In addition to the
onboard DJI Manifold performing the core computations, two programs were running in
parallel to simulate, respectively, the dynamics and the perception of the UAV:

• The DJI Matrice Simulator embedded in the DJI Matrice 300. When the DJI Manifold
is connected to the drone and the OSDK is enabled, this program simulates the UAV
dynamics based on the commands received from the ROS nodes executed on the
DJI Manifold.

• The Gazebo Simulator, running on an external Dell XPS notebook with an Intel i7
processor and 16 GB of RAM, integrated with ROS. Here, only the thermal and RGB
cameras and the related gimbal mechanism are simulated to provide the DJI Manifold
with images acquired in the simulated PV plant.
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Figure 7. During real-world experiments, images are acquired through a DJI Zenmuse XT2 camera
and used to control a DJI Matrice 300. During simulated experiments, images are acquired in a
simulated PV plant in Gazebo and used to control the UAV’s dynamics in the 300 DJI simulator.
The positions of the RGB (looking upward) and thermal (looking downward) cameras are updated
accordingly to the UAV’s simulated dynamics.

The cameras’ position inside Gazebo is linked to the UAV position returned by the
DJI Matrice Simulator to guarantee coherence in the simulated images returned during the
simulated flight.

Specifically, RGB textures are placed “above in the sky”, whereas thermal textures are
placed “below on the ground”. By adding two cameras in Gazebo, one directed towards
the sky and the other directed towards the ground, we can simulate the acquisition of RGB
and thermal images of the same PV plant. Textures were produced from images captured
by the DJI Zenmuse XT2 during a PV plant inspection in northern Italy.

Both in real-world experiments and in simulation, we initially compute the “reference
waypoint path” to be followed by the UAV by considering PV module rows one after the
other in boustrophedon mode. Once the UAV has reached the PV start of the first PV row,
we execute the optimization process for tuning thresholds depending on environmental
conditions by letting the UAV hover at a certain height over the PV module. Then, the
UAV starts moving using both cameras and the EKF for iteratively extracting the PV
midline, correcting the reference path, and moving along it. When the UAV reaches PV end,
the visual tracking stops, and the UAV moves to the next PV start. We consider the mission
completed when the UAV has inspected the required number of parallel PV module rows.

The thermal and RGB images are processed, at an approximate frequency of 3 and
5 fps, respectively, both in the simulated and real experiments (computations can likely be
made more efficient to achieve a higher frame rate). Observations are used to correct the
estimate of the PV midline through the EKF. Then, velocity commands for path-following
are computed and sent to the onboard controller of the DJI Matrice 300 approximately
with a 5 Hz frequency in simulation (due to heavy computations performed in Gazebo)
and a 30 Hz frequency in real cases. Simulated experiments (Section 7.2) were mainly
aimed at validating the proposed approach and assessing the system’s reliability in the
presence of inaccurate waypoint positioning. Experiments in the real scenario (Section 7.3)
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had the primary purpose of comparing the proposed approach’s robustness and assessing
advantages deriving from combining thermal and RGB cameras.

7. Results
7.1. Threshold Optimization Time

We analyzed the time required to perform the optimization procedure described in
Section 4.3 on RGB and thermal images collected during different flights with different day-
light conditions. Table 1 shows, for five subsequent tests in different environmental conditions
from early morning to mid-afternoon, the time tHSV required for HSV optimization (thresh-
olds th4 − th9), the time tthermal required for thermal optimization (thresholds th1 − th3),
and the overall time ttot required by the L-BFGS-B algorithm to complete the process.

As visible from the results, the optimization algorithm is reasonably fast in finding
a suitable range of threshold values to detect and cluster PV module rows in the images,
even in the presence of possible misalignments between the two images. Tests show that
the optimization time can vary depending on the number of PV module rows in each image
and daylight conditions, but only minimally. However, please observe that appropriate
light conditions also play a crucial role in defect detection (not addressed in this article).
Flying during cloudy days or at night does not deserve to be explored because the detection
of defects in the PV modules can be unreliable due to the low temperature reached by
the panel surface. Consider that the time range between 9 am and 7 pm is known to be
appropriate for thermal image acquisition only in summer. In contrast, this time range is
much shorter at other times of the year, which is compatible with the results achieved in all
navigation tests.

Finally, the experiments described in the following sessions were performed with
images collected at different times and on different days. In all experiments, we noticed
that the choice of the thresholds th1− th9, once performed, tends to work well for the whole
experiment duration, making it possible to execute the optimization algorithm only at the
beginning of each flight.

Table 1. Threshold selection times in different tests.

Test # tHSV [s] tthermal [s] ttot [s] Month Time of Day

1 78.2 34.7 112.9 Jun 9:25 am
2 85.1 55.2 140.3 Oct 10:26 am
3 72.3 49.0 121.3 Jul 12:09 pm
4 68.6 38.9 107.6 Oct 1:20 pm
5 82.3 44.5 126.8 Mar 3:19 pm

7.2. Results in Simulation

Two classes of experiments were performed in the simulation:

• Section 7.2.1 reports the simulated experiments with the thermal camera only, RGB
camera only, and both cameras for PV module detection. Here, we do not consider
errors in waypoints, which are correctly located on the midlines of the corresponding
PV rows.

• Section 7.2.2 reports the simulated experiments with both cameras to assess the ro-
bustness of the approach in the presence of errors in waypoint positioning.

7.2.1. Navigation with Thermal Camera Only, RGB Camera Only, and Both Cameras

The mission consisted of inspecting four parallel PV rows. The waypoints were as-
sumed to be correctly placed at each row’s start and end without errors. During navigation,
the UAV velocity had a constant value of 0.6 m/s, and the UAV flew at a constant height of
15 m from the take-off point. Please note that, at a 15 m height, a speed lower than 2 m/s is
appropriate to prevent blurred images and ensure image overlapping.
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Experiments were initially performed with the thermal camera only. In Figure 8,
the projection on the xy−plane of the path followed by the UAV along four parallel PV
rows (blue line) and the reference path determined by the waypoints (red dashed line) are
shown. After take-off, the UAV autonomously reached the first PV start, and hovered there
for some seconds before moving along the panels, collecting observations to estimate the
PV midline. Navigation performance can be evaluated by measuring the convergence of the
UAV position to the midline of PV module rows.

-20 0 20 40

-10
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10

20

30

40

Figure 8. Projection on the xy−plane of the UAV path (thermal camera).

In Figure 9, the error between the real PV midline described by m = (aW , bW) (the
ground truth is known in simulation) and the estimated state m̂ = (âW , b̂W) returned by
the EKF is shown. Green vertical lines correspond to PV start; red vertical lines correspond
to PV end of the same row. Because the UAV moved from the end of one row to the start of
the next one by using positioning information provided by the onboard flight controller,
the plots included between a red vertical line and the subsequent green line are ignored, as
they correspond to a change of PV module row.
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Figure 9. EKF estimation error of the PV midline parameters âW and b̂W (thermal camera).
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In Figure 10, the control error e between the UAV position and the PV midline estimated
with the EKF is shown, with average µe = 0.022 m and standard deviation σe = 0.031 m
(we consider only values included between a green vertical line and the subsequent red
vertical line).
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Figure 10. Control error e from the estimated PV midline (thermal camera).

In Figure 11, the navigation error ξ between the UAV position and the actual PV
midline (the ground truth is known in simulation) is shown. The evaluated RMSEξ (root
mean squared error) during navigation, computed from ξ, is 0.178 m. The figure shows that
the navigation error tends to be larger when the UAV starts to track the PV module row
after reaching PV start, the green vertical line. This is coherent with the fact that PV start is
considered to be reached when the UAV position is within a 1 m distance, thus producing
an initial error that is recovered later.
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Figure 11. Navigation error ξ from the real PV midline (thermal camera).

Next, experiments were performed with the RGB camera only. The projection on
the xy−plane of the UAV path using the RGB camera is not reported, as it is difficult to
appreciate differences from the previous experiment. Figure 12 reports the error between
the actual and the estimated state of the PV midline. Figure 13 reports the control error,
with average µe = 0.032 m and standard deviation σe = 0.036 m (i.e., performance is worse
than those obtained during the experiment with the thermal camera). Figure 14 reports the
navigation error, with an RMSEξ of 0.246 m.
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Figure 12. EKF estimation error of the PV midline parameters âW and b̂W (RGB camera).
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Figure 13. Control error e from the estimated PV midline (RGB camera).

6
.6

6

 2
9
.1

6

3
5
.7

3

5
8
.4

0

6
4
.6

6

8
6
.8

3

9
3
.4

6

1
1
5
.4

6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 14. Navigation error ξ from the real PV midline (RGB camera).
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Eventually, experiments were performed with both cameras. Figure 15 reports the
error between the actual and the estimated state of the PV midline. Figure 16 reports the
control error, with average µe = 0.026 m and standard deviation σe = 0.036 m. Figure 17
reports the navigation error with an RMSEξ of 0.153 m.

By considering the estimated parameters âW and b̂W of the PV midline with thermal,
RGB, and both cameras (Figures 9, 12 and 15), we can compute the root mean squared error
RMSEa and RMSEb performed in estimating the actual parameters aW and bW .
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Figure 15. EKF estimation error of the PV midline parameters âW and b̂W (both cameras).
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Figure 17. Navigation error ξ from the real PV midline (both cameras).

Table 2 reports a summary of the control, navigation, and PV midline estimation errors
with thermal, RGB, and both cameras. The RMSEξ values in the table show that using
both cameras has a slightly positive impact on navigation errors. Similarly, the RMSEa and
RMSEb values show that using both cameras positively impacts the estimated straight-line
intercept b̂W and has a negligible negative impact on the estimated slope âW .

Table 2. Control, navigation, and PV midline estimation errors with thermal, RGB, and both cameras.

Test # µe [m] σe [m] RMSEξ [m] RMSEa RMSEb [m]

Thermal camera 0.022 0.031 0.178 0.015 0.173
RGB camera 0.032 0.036 0.246 0.018 0.218
Both cameras 0.026 0.036 0.153 0.016 0.122

7.2.2. Navigation with Errors in Waypoint Positions

Tests were performed by considering large errors in the positions of waypoints at
the start and at the end of PV module rows to simulate inaccurate waypoint positions
computed from Google Earth images. An example is shown in Figure 18, with navigation
performed using both cameras: waypoints do not correspond to PV start and PV end of
actual PV module rows, as they are subject to a rototranslation error plus additional noise.

However, observing the actual UAV’s path (blue curve in Figure 18) shows that the
UAV reached the correct PV start on the second, third, and fourth PV row, thus com-
pensating for large errors due to wrong waypoint placement. Figure 19 reports errors
in the PV midline state estimated by the EKF. The control and navigation errors are com-
parable with those of the previous experiments: the control error in Figure 20 has an
average µe = 0.022 m and standard deviation σe = 0.033 m. The RMSEξ computed from
the navigation error in Figure 21 is 0.150 m, comparable with previous experiments.

7.3. Results in Real-World Experiments

Experiments were conducted in a PV plant in Predosa in Northern Italy, exploring
different configurations:

• Section 7.3.1 explores navigation along one PV module row using the thermal camera
only, RGB camera only, and both cameras.

• Section 7.3.2 explore navigation along four PV rows using both thermal and RGB cameras.
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The UAV moved at the desired height from the ground of 15 m and the desired speed
of 1 m/s (first three tests) and 1.2 m/s (fourth test). Please note that the speed is higher
with respect to the simulated experiments presented in the previous sections, due to the
different control frequencies: 30 Hz in the real experiments versus 5 Hz in the simulation.
For the same reason, comparing the system’s performance in simulated versus real-world
experiments is inappropriate.
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Figure 18. Projection on the xy−plane of the UAV path in the presence of waypoint positioning errors
(both cameras).
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Figure 19. EKF estimation error of the PV midline parameters âW and b̂W in the presence of waypoint
positioning errors (both cameras).
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Figure 20. Control error e from the estimated PV midline in the presence of waypoint positioning
errors (both cameras).
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Figure 21. Navigation error ξ from the real PV midline in the presence of waypoint positioning errors
(both cameras).

7.3.1. Navigation along One Row

An example of PV module detection in Predosa obtained using the thermal camera is
shown in Figure 22 on the left (image taken in the month of November at 2:55 pm, Italian
local time).

In Figure 23, the projection on the xy−plane of the UAV path is shown. After take-off,
the UAV was manually guided to the first waypoint: in this phase, the control error e and
the navigation error ξ are not computed, which explains why they are constantly zero in
Figures 24–32. Next, the UAV started collecting observations to estimate the parameters âW

and b̂W of the PV midline. Because the UAV does not move until the estimation error is below
a given threshold at the PV start of each row, the duration of this phase may vary in different
experiments or when tracking different PV rows within the same experiment. The average
control error and the RMSEξ associated with the navigation trajectory are computed only
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after the UAV has reached the speed of 1 m/s after a transit (i.e., the sometimes significant
errors at the start of PV rows are not considered).

Figure 22. PV module detection in Predosa, Italy (15 m from the ground).

Please also note that, in real-world experiments, the UAV path and the position of the
PV module row in the world, Figures 23 and 30, were estimated using a GPS. However,
we did not use this information for path-following but for visualization purposes only.
In all experiments, PV tracking was performed during navigation using the control method
described in the previous sections. The navigation error ξ was computed by manually
inspecting the video stream acquired by onboard cameras (once again because the ground
truth is unavailable in this case). To this end, the video stream was periodically sampled
(with a period of approximately four seconds), and images were manually inspected to
measure the distance in pixels and then in meters (the meters/pixel ratio is computed by
knowing the width in meters of a PV module and measuring its corresponding width in
pixels in the image) between the center of the image and the center of the PV module row
(ξ tends to zero as this distance tends to zero).
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Figure 23. Projection on the xy−plane of the UAV path (thermal camera).
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Figure 24. Control error from the estimated PV midline (thermal camera).

6.66 16.66 33.33 50.0 66.66 83.33 99.76

-0.4

-0.2

0

0.2

0.4

0.6

Figure 25. Navigation error from the real PV midline (thermal camera).

In Figure 24, the control error e is shown (i.e., the distance from the estimated PV mid-
line), with a significant initial error due to inaccurate detection of the PV midline (which was
later recovered), average µe = 0.012 m, and standard deviation σe = 0.010 m. In Figure 25,
the navigation error ξ, computed as described before, is shown (i.e., the distance from the
actual PV midline), with RMSEξ of 0.157 m.

An example of PV module detection using the RGB camera only is shown in Figure 22
on the right (image taken in the month of November at 12:50 pm Italian local time). The
projection on the xy−plane of the UAV path is not reported, as it would be difficult to
appreciate differences with the previous test. In Figure 26, the control error e is shown,
with average µe = 0.023 m and standard deviation σe = 0.019 m. In Figure 27, the
navigation error ξ is shown. The RMSEξ is 0.128 m.
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Figure 26. Control error from the estimated PV midline (RGB camera).
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Figure 27. Navigation error from the real PV midline (RGB camera).

The same test was performed with both the thermal and RGB cameras for PV midline
estimation and navigation. Once again, the UAV path is not reported, as it would be
challenging to appreciate differences from the previous tests. In Figure 28, the control error
e is shown, with µe = 0.010 m and σe = 0.008 m. In Figure 29, navigation error ξ is shown,
with an RMSEξ of 0.055 m. The average navigation error is lower than in the previous cases,
as is also visible in the figure.

Table 3 reports a summary of the control and navigation errors with thermal, RGB,
and both cameras. The table shows that using both cameras has a positive impact in terms
of RMSEξ .
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Figure 28. Control error from the estimated PV midline (both cameras).
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Figure 29. Navigation error from the real PV midline (both cameras).

Table 3. Control and navigation errors with thermal, RGB, and both cameras.

Test # µe [m] σe [m] RMSEξ [m]

Thermal camera 0.012 0.010 0.157
RGB camera 0.023 0.019 0.128
Both cameras 0.010 0.008 0.055

7.3.2. Navigation with Both Cameras along Four Rows

Additional experiments were performed, using both cameras, along a longer path
involving four rows to confirm the capability of the system to autonomously inspect PV
plants. Figure 30 reports the UAV path corresponding to one of these experiments with
a higher speed of 1.2 m/s (test performed in the month of November, at approximately
4:08 pm CET). Figure 31 reports the control error: the error in the first, second, third,
and fourth PV rows has, respectively, average and standard deviation µe = 0.021 m,
σe = 0.020 m; µe = 0.019 m, σe = 0.013 m; µe = 0.020 m, σe = 0.015 m; and µe = 0.042 m,
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σe = 0.024 m. Figure 32 shows the navigation error, with the RMSEξ in the first, second,
third, and fourth PV rows equal to 0.1594 m, 0.1908 m, 0.3863 m, and 0.1549 m.

It can be observed that higher navigation errors can sometimes occur, especially after
moving from a row to the subsequent one without PV module tracking; however, such
error is bounded and the system is able to recover from it.

-40 -20 0 20

-10

0

10

20

30

40

Figure 30. Projection on the xy−plane of the UAV path (both cameras).
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Figure 31. Control error from the estimated PV midline (both cameras).
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Figure 32. Navigation error from the real PV midline (both cameras).

8. Conclusions

This article presented a new approach for autonomous UAV inspection of a PV plant
based on the detection and tracking of PV modules through thermal and RGB cameras,
which is an alternative to traditional approaches based on UAV photogrammetry. The
proposed approach is based on:

• A procedure for detecting PV modules in real time using a thermal or an RGB camera
(or both);

• A procedure to correct errors in the relative position of the PV midline, initially esti-
mated through GPS, by merging thermal and RGB data;

• A navigation system provided with a sequence of georeferenced waypoints defining
an inspection path over the PV plant, which uses the estimated position of the PV
midline to make the UAV move along the path with bounded navigation errors.

The system was tested both in a simulated and in a real PV plant with a DJI Matrice
300. Results suggest that the proposed solution meets the constraints for autonomous
PV inspection. Indeed, it produces navigation errors that are sufficiently small to keep
the PV modules within the camera field of view when flying at a 15 m height, which
allows for acquiring overlapping high-resolution thermal images for defect detection. Most
importantly, navigation errors are small in the presence of errors in waypoint positions.
Georeferenced waypoints computed from Google Earth images and GPS data may be
affected by large biases but tend to be locally coherent. Results confirm that alternating
(i) visual servoing along a PV row with (ii) GPS-based navigation when moving from one
row to the subsequent one turns out to be a feasible solution.

Tests confirmed that combining both cameras tends to reduce average errors. Addi-
tionally, we conjecture that using two sensors based on completely different principles
for PV module segmentation can make the whole process more reliable when thermal or
lighting conditions are suboptimal. Examples include the PV panel heat may not be clearly
distinguishable from the surrounding environment (e.g., early in the morning, especially in
winter) or when sun glare can negatively affect color-based segmentation.

Finally, even if we argue that a model-based approach may offer many advantages in
the considered scenario, we also tested navigation on a single PV module row by substi-
tuting our segmentation method with an ML-based algorithm for PV module detection,
using only thermal images. This new algorithm was based on a neural network trained on
a large dataset of thermal images provided by JPDroni acquired during inspection flights
performed at different hours of the day. Please note that this test is not reported in the
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previous section because it has some major limitations. Because the intellectual ownership
of the NN belongs to a third company (which also manually labeled the PV modules in
each image), we were only given a ROS executable file: the company did not share any
details about the NN’s inner structure.

We integrated the ROS node into the system proposed in this article by removing
the detection and clustering pipeline on thermal images described in Section 4.1 without
considering RGB images during the test. The test was conducted on the same day and
on the same PV module rows as in Section 7.3.1 with similar environmental conditions,
returning a navigation error during the flight with an RMSEξ of 0.368 m. Our model-driven
approach achieved higher accuracy than the tested data-driven approach, but this was
likely due to the fact that we did not have complete control over the NN parameters. More
importantly, we observed the data-driven approach required several manually labeled
images of the plant in the training dataset, a requirement that our approach does not have.
This limitation becomes particularly evident when significantly increasing or decreasing the
flying height of the UAV: if images taken at different altitudes are not part of the training
set, we experimentally observed that segmentation sometimes completely fails. Then,
we conjecture that, although a data-driven approach may be more convenient over the
long term, the segmentation approach presented in this work can help gather a dataset of
images at different heights to train data-driven models every time a new PV plant needs to
be inspected.

In future work, we will explore task allocation and control of teams of drones that
cooperate in monitoring the same PV plant [53,54], the additional use of landmarks for
more accurate navigation between subsequent PV panel rows [55], and, finally, planning
procedures to automatically extract a sequence of georeferenced waypoints from Google
Earth images. Eventually, we plan to develop our own ML-based approach using ther-
mal and RGB cameras, enabling a fairer comparison between model- and data-driven
approaches in autonomous, UAV-based inspection of PV plants.
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