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Abstract: This paper investigates the problem of rotating formation control for multi-spacecraft
systems with prescribed performance in the presence of model uncertainties. Firstly, The spacecraft
dynamics containing unmodelled parts is described in a polar coordinate system, which is to solve the
problem of the controllable angular velocity of rotating formation. Then, the prescribed performance
control method is improved by developing new prescribed performance functions. Based on the
improved prescribed performance control method, the distributed controller is designed for multi-
spacecraft systems to achieve rotating formations with prescribed performance, i.e., the formations
error converges to a predefined arbitrarily small residual set, with convergence time no less than
a prespecified value. And an RBF neural network is used to fit the unmodelled components of the
spacecraft dynamics. Compared with the existing works of literature, this paper not only solves
the robust prescribed performance rotating formation control of multi-spacecraft system, but also
acheives rotating formation with adjustable angular velocity. Finally, the Lyapunov approach is
employed for convergence analysis, and simulation results are provided to illustrate the effectiveness
of the theoretical results.

Keywords: rotating formation; leader-following; finit-time control; prescribed performance control;
controllable angular velocity

1. Introduction

With the advancement of technology, the international community pays more and
more attention to space development, consequently, the cluster of small satellites are closely
followed [1–3]. For example, in 2016, NASA plans to launch a cluster of small satellites into
orbit around the Earth in order to conduct more in-depth studies of the Earth’s climate and
weather patterns (see Figure 1), the program known as “Time-Resolved Observations of
Precipitation structure and storm Intensity with a Constellation of Smallsats” (TROPICS) [4].
To this day, the project is being slowly progressed. One of the key technologies for the cluster
of small satellites is rotating formation of multi-satellites, i.e, Multiple following satellites
in a formation configuration rotating around the leader satellite under the influence of
gravity. It is used in a wide range of tasks such as surveillance, exploration, communication,
combat, etc. However, as space mission requirements became more complex, electronics
and communications technologies became more advanced, and professionals were placing
higher demands on the quality of rotating formation, specifically its steady-state error,
overshoot, and convergence speed, as well as its robustness. Those are both essential to the
task’s success.

The rotating formation problem [5] refers to multi-spacecraft systems in a formation
configuration rotating around the center of a circle under the action of an actuator. There
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are already some research results. Lin and Jia [5] defined the concepts of rotating consensus
and rotating formation in a complex coordinate system using a second-order integrator as
a study firstly, and designed a control protocol to implement rotating formation motion of
multi-agent systems using kinematic knowledge of circular motion. And the results were
extended to three dimensions in [6]. The aforementioned rotating formation controller [5,6]
was based on undirected network topology, especially, the rotating formation motion under
directed network topology was studied in [7]. With mixed uncertainties and communication
delay between agents, a distributed rotating formation control scheme was presented for
multi-spacecraft systems based on H∞ control theory in [8]. Further, the problem of
rotating formation with nonuniform delays was investigated in [9,10]. Founded on [7],
article [11] investigated the rotating consensus of multi-spacecraft systems with signed
directed graphs. article [12] addressed the rotating consensus of multi-agent systems with
restricted communication, and article [13] studied rotating encirclement formations of
second-order multi-agent systems with communication noises.

The results of the survey indicate the outstanding contribution of scholars on rotating
formations in terms of communication topology and time delay, while the quality of the
rotating formation is equally important, it affects the accuracy of satellites operations such
as surveillance [14–16], communications [17,18], combat [19,20], etc. Literature [21] was
concerned with the Control problem of a single-link flexible-joint robotic manipulator
with dynamic uncertainties, considering the problem of pre-defined steady-state error and
overshoot of the control system. Article [22] investigated the multi-agent formation problem
with pre-defined steady-state error and overshoot. Formation of underwater unmanned
aerial vehicles with pre-determined steady-state error and overshoot was investigated
in [23]. And paper [24] studied formation control problem of underactuated surface vessels
(USVs) with prescribed performance. There have also been many studies [25–27] in preset
the steady-state error and overshoot of control systems, but these are few considered in
rotating formations problems.

In addition, robustness is also an indicator of the quality of the rotating formation.
The literature [8] first considers the problem of robustness of multi-agent consensus, which
takes into account the effect of external disturbances. But there are still many problems
need to be solved, such as the model uncertainties of nonlinear systems. Therefore,
there is an urgent requirement to study control schemes that can improve the quality
of rotating formations.

Figure 1. TROPICS project.

In summary, the problem of prescribed performance and uncertainties from unmod-
elled parts in each spacecraft’s dynamics in leader-following rotating formations are con-
cerned in this paper. Prescribed performance control methods are used to ensure that
the rotating formation control system meets the preset overshoot, steady-state error and
convergence time. RBF neural networks are used to approximate uncertainties. The main
contributions of this article are as follows:
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(1) This paper deals with the prescribed performance robust rotating formation prob-
lem of multi-spacecraft systems with controllable angular velocity. To realize rotating
formation motion with controlled angular velocity, spacecraft dynamics in a polar coordi-
nate system including unmodelled parts is established. The dynamics contain the angular
velocity state of the spacecraft. Compared with the existing works of [5–8] where the
angular velocity is assumed to be a fixed value “1”, the formation in this paper can achieve
any specified angular velocity rotating.

(2) A prescribed performance rotating formation controller is designed for the uncer-
tain multi-spacecraft system, which can not only comply with the preset overshoot and
steady-state error metrics of the closed-loop error system but also make the convergence
time less than the preset value. By modifying the exponential function to a power-of-two
function, a novel prescribed performance function is developed, which not only decreases
computational complexity but also can provide the preset time metric. Compared with the
works of [22,24,25,28–30] which can only guarantee control system stability. The proposed
prescribed performance function-based controller in this paper is constructed to ensure
various performance metrics for the rotating formation of the multi-spacecraft system.

(3) The neural networks-based approximator is constructed to estimate the lumped
nonlinear model uncertainties of spacecraft. Meanwhile, the adaptive laws of neural
network parameters are updated online. To this end, the robustness of the closed-loop error
system is effectively enhanced. Compared with the works of [5–9,12] which only achieve
the rotating formation of linear normal systems.

The rest of this paper is organized as follows: Section 2 introduces some prelimi-
naries and presents the dynamics model of the spacecraft in the polar coordinate system.
In Section 3, the main results of distributed rotating formation control based on the pre-
scribed performance control method and RBF neural networks are proposed. In Section 4,
simulation examples are designed to verify the effectiveness of the controller. Finally,
Section 5 concludes the whole paper and discusses the future research work.

2. Preliminaries and Dynamics Model

In this section, some preliminary knowledges of graph theory, coordinate frame,
and RBF neural networks are introduced. Then, the spacecraft dynamics model in the polar
coordinate system is given.

2.1. Preliminaries
2.1.1. Graph Theory

Let G ∈ (V , E) be a undirected graph with n nodes, where V = {v1, · · · , vn} is the
set of nodes, E = V × V is the set of edges, and A = [aij] ∈ Rn×n, aij ≥ 0 is a adjacency
matrix. The node indexes belong to a finite index set I = {1, · · · , n}. An edge of G is
represented as eij = {vi, vj}. If eij ∈ E , aij > 0, else aij = 0. The set of neighbors of node
vi is denoted by Ni = {vj|(vi, vj) ∈ E}. The Laplacian matrix of the undirected graph is
L = D − A ∈ Rn×n, where D = diag(D1, · · · ,Dn) is a diagonal matrix, and Di = ∑

j∈Ni

aij.

If there exists a path between any two nodes, the undirected G is connected. And the
corresponding Laplacian matrix L of graph G is semi-definite [31].

Assumption 1. Assuming that there are n spacecraft in multi-spacecraft systems and that the
communication topology of the system is connected in this paper.

2.1.2. Coordinate Frame

For the purpose of the following analysis, two coordinate systems is defined:
Inertial coordinate system ol xlyl : Multi-spacecraft systems rotation center ol is chosen

as the origin of the coordinate system. The x-axis(ol xl) points in a fixed direction and the
direction does not change with time. the y-axis(olyl) is perpendicular to the x-axis and
satisfies the right-hand rule with x-axis.
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Polar coordinate system oexeye: The spacecraft center of mass oe is chosen as the origin
of the coordinate system. oexe points from the origin of the inertial coordinate system to the
origin of the polar coordinate system. oeye and oexe form a right-handed coordinate system.
The inertial coordinate system is stationary, but the polar coordinate system is bound to the
spacecraft, and moves with the spacecraft all the time, like the body coordinate system of
a drone.

2.1.3. RBF Neural Network

The RBF neural networks are widely used to approximate uncertainties [32–35]. As in-
dicated in [36], any continuous function f (x) : R → R can be approximated by an RBF
neural network over a compact set Ωx as

f (x) = W Tϕ(x) + δ(x) ∀x ∈ Ωx.

where W ∈ Rs represents the neural networks weight, δ(x) ∈ R denotes the fitting
error, |δ(x)| can become arbitrarily small as the number of basis functions increases [35],
ϕ(x) ∈ Rs indicates the basic function vector.

2.1.4. Notions

The following notions will be used throughout this paper. The variable subscripts l, e
represent the projection of the vector in the inertial or polar coordinate system, respectively,
unless otherwise specified. LetR,Rn andRn×n be the real number set, n-tuple real vector
space and n×m real matrix space. ‖ ∗ ‖ is the 2-norm of a vector or a matrix. In is an n× n
identity matrix [37,38]. The diagonal matrix is denoted as diag(∗). ⊗ means the Kronecker
product, | ∗ | is the absolute value of a real number.

The concept of practical finit-time stable is defined in the following:

Definition 1 (Practical Finit-time Stable [39]). Consider the nonlinear system ẋ = f (x(t)),
x(0) = x0, where f : L → Rn is continuous on an open neighbourhood of the origin. The equilib-
rium x = 0 of nonlinear system is practical finit-time stable if for all x(t0) = x0, there exists ε > 0
and a time T(ε, x0) < ∞ to make ‖x(t)‖ < ε, for ∀t ≥ t0 + T.

Lemma 1 ([40]). For ∀η1 ∈ R and ∀δt > 0, the following inequality always holds:

0 ≤ |η1| − η1tanh(
η1

δt
) ≤ 0.2785δt.

Lemma 2. For ∀e ∈ R2 and e 6= 02, 02 = [0, 0]T , there exists h ∈ R2 such that

eTh = 1. (1)

Proof. Let e = [e1, e2]
T , h = [h1, h2]

T .
(1) If e1 = 0, e2 6= 0: Since e1h1 + e2h2 = 1, we have h2 = 1

e2
and h1 can take any value.

(2) If e1 6= 0, e2 = 0: Since e1h1 + e2h2 = 1, we have h1 = 1
e1

and h2 can take any value.
(3) If e1 6= 0, e2 6= 0: We take the value of h2 to be 0. Since e1h1 + e2h2 = 1, we have

h1 = 1
e1

.
Thus, Lemma 2 is proved.

2.2. Dynamics Model

In many cases the formation spacecraft will operate in the same plane. Therefore,
to simplify the analysis, this paper considers spacecraft dynamics in multi-spacecraft
systems modeling in the two-dimensional plane, and each spacecraft is represented by a
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mass point, then the dynamics model of the ith spacecraft in the polar coordinate system
can be described as:

ṙi = vi

θ̇i = wi

v̇i = ueiv + riw2
i + deiv(ri, θi, vi, wi, t)

riẇi = ueiw − 2viwi + deiw(ri, θi, vi, wi, t) , i ∈ I .

(2)

The index set of an n-spacecraft system is defined as I = {1, · · · , n}. ri ∈ R+, vi ∈ R
denote the distance of the spacecraft i from the origin of the inertial system to the space-
craft i and its derivative, respectively. θi, wi ∈ R denotes the angle between the po-
lar coordinate system x-axis of the spacecraft i and the inertial system x-axis and an-
gular velocity, respectively. ueiv, ueiw ∈ R denotes the projection of the control input
of the spacecraft i on the x-axis and y-axis of the polar coordinate system, respectively.
deiv(ri, θi, vi, wi, t), deiw(ri, θi, vi, wi, t) denote unmodelled parts of the spacecraft i.

Remark 1. The states ri, θi of the ith spacecraft in (2) indicates the polar axis and polar angle.
The polar axis refers to the distance from the current position of the spacecraft to the center of
rotation, which is the origin of the inertial system. And the polar angle refers to the angle between
the line connecting the position of the spacecraft and the center of rotation and the x-axis of the
inertial coordinate system. When the rotating formation is realized, although the positions of the
spacecraft are changing at all times, their polar axes are fixed, and since the formation configuration
is generally fixed, the polar angle difference between any spacecraft is also fixed, which transforms the
rotating formation problem into the traditional consensus formation problem. Besides, the angular
velocity wi is included in the (2), thus rotating formation with controllable angular velocity will be
achieved when the states in (2) can track the desired information under the action of the designed
controller. In addition, ri less than or equal to 0 has no physical meaning. So the constraint ri > 0
should be noted when designing the controller.

Remark 2. The dynamics of the spacecraft in this study are based on the Newtonian dynamics
of a mass in a polar coordinate system. In order to study spacecraft rotating formation control
problems, many researchers simplified the spacecraft dynamics to a second-order integrator [5–9],
however two questions were highlighted. The inability to create controllers that produce rotating
formation with controllable angular velocity is the first issue. Consequently, the simplified spacecraft
dynamics model in the inertial system is transformed into the polar coordinate system in this article.
The oversimplified spacecraft dynamics is the second issue. The Newtonian dynamics of a mass
in the polar coordinate system cannot be easily adapted to the spacecraft dynamics model since
the latter is nonlinear. And a nonlinear factor that is unknown and challenging to analyze will
be present in the spacecraft dynamics when it is immediately transformed to the polar coordinate
system. Consequently, this article extends the mass point dynamics under the polar coordinate
system to include an uncertainties element deiv(ri, θi, vi, wi, t), deiw(ri, θi, vi, wi, t) in order to get
closer to the actual spacecraft dynamics.

Define that pi = [ri, θi]
T , qi = [vi, wi]

T , then (2) can be simplified as the following
compact form:

ṗi = qi,

Biq̇i = ui + f i + di.
(3)

where

Bi =

[
1 0
0 ri

]
, f i =

[
riw2

i
−2viwi

]
, ui =

[
ueiv
ueiw

]
, di =

[
deiv(ri, θi, vi, wi, t)
deiw(ri, θi, vi, wi, t)

]
.

Since ri > 0, Bi is positive definite.
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2.3. Problem Description

There are n spacecraft and a leader, some of the spacecraft can receive information
from the leader’s states, but most of them just know the relative desired state between
themselves and their neighbors. Our main objective is to design a distributed controller
to make multi-spacecraft systems form a certain configuration to do the circular motion
with desired angular velocity in the presence of uncertainties, and the rotating formation
control system satisfies various preset performance indicators, such as overshoot, steady
state error, convergence time, etc. Before giving the main results, we need to make the
following definitions.

Definition 2. multi-spacecraft systems is said to achieve rotating formation with prescribed per-
formance if the value of T, ∆1, ∆2 is predetermined by the user and the states of all the spacecraft
satisfy that

lim
t→T
|ri − rj − rijd| ≤ ∆1,

lim
t→T
|θi − θj − θijd| ≤ ∆2,

lim
t→∞
|vi| ≤ ∆3,

lim
t→∞
|wi − wj| ≤ ∆4.

(4)

where rijd, θijd are the deviations of desired relative state between spacecraft i and spacecraft j. rid
denotes the desired length of spacecraft i, then rijd = rid − rjd, we have rijd = −rjid. Similarly,
the desired angle of the spacecraft i is θid, then θijd = θid − θjd. wid denotes the desired angular
velocity of the spacecraft i, and T represents the preset convergence time, and ∆1, ∆2 represent the
preset metrics of steady-state error, ∆3, ∆4 indicates very small positive numbers.

Remark 3. The physical meaning of (4) is that the difference between any two spacecraft’s polar
axes ri − rj and their polar angles θi − θj, as time tends to a preset value T, tends to the desired
difference rijd and θijd, and the error between the actual difference and desired difference |ri − rj −
rijd|, |θi − θj − θijd| is smaller than the preset value ∆1, ∆2. Additionally, the derivative of the polar
axes vi and the difference of their angular velocities wi −wj, when time approaches to infinity, tends
to a neighborhood containing 0. Only the performance of the errors about the polar axis and the
polar angle are preset in Definition 2 because for actual systems, we commonly expect the spacecraft
to reach a given position in a preset time T. If the performance of the angular velocity was further
prescribed in the Definition 2, it would be more challenging to build the controller.

The conditions in (4) mean that multi-spacecraft systems will achieve rotating forma-
tion in a preset time, and the formation error is less than the preset value finally. In contrast
to the literature [5], the definition in this paper does not require exponential and complex
calculations. As shown in Figure 2, the three spacecraft and a leader have realized a rotating
formation, and the interrelationship between the spacecraft can be visually represented.
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Figure 2. The rotating formation illustration of multi-spacecraft systems.

3. Main Results
3.1. Controller Design

Since only certain spacecraft can obtain the leader’s states p0 = [r0, θ0] and the majority
of spacecraft only know the desired relative state between themselves and their neighbors,
the rotating formation error is defined as follows:

epi = ci(pi − p0 − pi0d) +
n

∑
j=1

aij(pi − pj − pijd),

eqi = ci(qi − q0 − qi0d) +
n

∑
j=1

aij(qi − qj − qijd).
(5)

where ci indicates whether spacecraft i can receive the leader’s states, and if it can, ci = 1,
otherwise ci = 0. pijd = [rijd, θijd]

T , qijd = ṗijd. And assume the leader is moving along the
desired path, the following dynamic equation is satisfied by the leader’s states:

ṙ0 = 0, θ̇0 = w0d, r0(0) = r0d, θ̇0(0) = 0. (6)

where w0d denotes desired rotating formation’s angular velocity, and r0d represents the
desired radius of rotation.

As a convenience for the stability proof following, define desired state of spacecraft i
as pid = [rid, θid]

T and its derivative is qid = ṗid, then, there have pijd = pid − pjd, qijd =
qid − qjd. Since the leader is now following the planned trajectory, i.e., p0 = p0d, q0 = q0d,
there have pid = pi0d + p0d = pi0d + p0 and qid = qi0d + q0d = qi0d + q0. Define that

ep = [eT
p1, · · · , eT

pn]
T , eq = [eT

q1, · · · , eT
qn]

T , p = [pT
1 , · · · , pT

n ]
T , q = [qT

1 , · · · , qT
n ]

T ,

pd = [pT
1d, · · · , pT

nd]
T , qd = [qT

1d, · · · , qT
nd]

T , C = diag(c1, · · · cn), H = (C + L)⊗ I2.

where I2 ∈ R2×2 denotes the unit matrix. Then

ep = H(p− pd),

eq = H(q− qd).
(7)

According to Assumption 1, H is positive definite, so ‖p− pd‖, ‖q− qd‖will converge
to 0 when ‖ep‖, ‖eq‖ converges to 0, then the Equation (4) will hold, therefore the system
will realize the rotating formation. But due to the problems of uncertainties, calculation
accuracy, and actuator output accuracy, it is difficult for ‖ep‖, ‖eq‖ to converge to 0 exactly,
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so if ‖ep‖, ‖eq‖ can finally satisfy the preset metrics of steady-state error, it is also said that
the system achieves the rotating formation.

To achieve the rotating formation motion with prescribed performance, according to
the prescribed performance control theory [41], the inequality describing the performance
of the rotating formation error is defined as:

− v1i,m p(t) < epi,m < v2i,m p(t), m = 1, 2,

v1i,m =
r + 1

2
+ sign

(
epi,m(0)

) r− 1
2
∈ R,

v2i,m =
r + 1

2
+ sign

(
epi,m(0)

)1− r
2
∈ R.

(8)

where epi,m ∈ R denotes the mth element of the vector epi and p(t) ∈ R denotes the perfor-
mance function that constrains the transient-state convergence process and steady-state error
of the control system, which is designed as p(t) = (p0 − p∞)e−lt + p∞ in [22,25,26,42–44].
r ∈ [0, 1] is a constant that constrains the maximum overshoot of the error. p∞ can constrain
the steady-state error of the rotating formation error. And e−lt can constrain the transient-
state convergence process of the rotating formation error. sign(x) is the signum function,
which described as:

sign(x) =
{

1, x ≥ 0
−1, x < 0

The conditions in (8) can be graphically depicted by Figure 3. e(0) ∈ R is greater than
0, then v1i,m = r, v2i,m = 1. If (8) is satisfied, e(t) will be contained within the function
envelope consisting of p(t) and −rp(t) over the entire time domain. Then the whole
response process of e(t) will satisfy the user-set performance metrics such as overshoot,
convergence speed, steady-state error, etc.

Figure 3. curve of prescribed performance function.

From the formula of p(t) in [22,25,26,42–44], we have p(t)→ p∞ when t→ ∞. Then
only when t → ∞, there is ‖e(t)‖ < p∞. According to Definition 1, the control system is
not finite time convergence. To solve this problem, a new prescribed performance function
in this paper is described as:

p(t) =

{
p0(1− t

T )
2 + p∞, t < T

p∞, t ≥ T.
(9)

The performance function defined by (9) is p(t)→ p∞ when t→ T, then when t→ T,
there is ‖e(t)‖ < p∞, According to Definition 1, e(t) is the practical finit-time stable.

For the convenience of controller design, the constraint of the rotating formation error
defined by (8) is transformed into an unconstrained form by an error transformation. The error
transformation function is defined as:

epi,m(t) = p(t) f
(
εpi,m

)
. (10)
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Let Λpi,m =
epi,m(t)

p(t) ∈ R, then the inverse of f
(
εpi,m

)
can be written as:

εpi,m = f−1
( epi,m(t)

p(t)

)
= f−1(Λpi,m

)
. (11)

f−1(·) is taken to be in logarithmic functional form and is written as:

εpi,m = ln

(
v2i,m

(
v1i,m + Λpi,m

)
v1i,m

(
v2i,m −Λpi,m

)) ∈ R, m = 1, 2. (12)

Its definition domain is:
Θ := (−v1i,m, v2i,m). (13)

The equation in (12) shows that if εpi,m is bounded, then Λpi,m will satisfies:

−v1i,m < Λpi,m < v2i,m.

Consequently, epi,m satisfies (8), and the problem is then transformed into designing
the controller so that εpi,m is bounded.

Then, we can obtain the derivative of (11) as:

ε̇pi,m =
dεpi,m

dΛpi,m

dΛpi,m

dt
= ζpi,m

(
ėpi,m(t) + ηepi,m(t)

)
. (14)

where

0 ≤ η = − ṗ(t)
p(t)

<
2
T

,

0 < ζpi,m =
v1i,m + v2i,m(

v1i,m + Λpi,m
)(

v2i,m −Λpi,m
) 1

p(t)
.

(15)

Define εpi =
[
εpi,1, εpi,2

]T as the transformed rotating formation error, the derivative
of which is:

ε̇pi=ξpi
(
ėpi+ηepi

)
. (16)

where ξpi = diag
(
ξpi,1, ξpi,2

)
.

From Lemma 2, there exsits hi ∈ R2, we get eT
pihi = 1 when epi 6= 0. For the purpose

of controller design, the vector function is defined as:

gi = −kεεpi + ξpiεpi + B−1
i di − q̇id + ηεT

piξpiepihi. (17)

Fitting ‖gi‖ using the RBF neural networks:

‖gi‖ = W i
Tϕi + δi,

ϕi = e−
(‖epi‖1s−µ)

2

2 − (‖eqi‖1s−µ)
2

2 − (‖εpi‖1s−µ)
2

2 ∈ Rs.
(18)

where µ is the center of the receptive field, and 1s denotes s-dimensional 1-vector.
To achieve rotating formation, the controller of the spacecraft i is designed as:

ui = −Bi
(
kεεpi + kqeqi + uti

)
− f i,

uti = Ŵ T
i ϕi tanh(

Ŵ T
i ϕieqi

δt
),

˙̂W i = γ
∥∥eqi

∥∥ϕi.

(19)
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where kε > 0, kq > 1
2 , δt > 0, γ > 0.

Remark 4. Bi, f i in ui are used to linearize the spacecraft dynamics model. The nonlinear terms
Containing the unmodelled parts are fitted using the RBF neural networks uti. The consensus
control term kεεpi + kqeqi is used to achieve the rotating formation motion with the prescribed
performance and controllable angular velocity.

Since ϕi ≥ 0, then ˙̂W i ≥ 0, and the initial value of the weight Ŵ i in this paper is vector 0s,
thus, we have

Ŵ iϕi ≥ 0. (20)

3.2. Stability Analysis

Theorem 1. Consider multi-spacecraft systems of n spacecraft with a connected communication
topology. With the controller (19), the performance metric defined by (8) can be satisfied for all time,
and multi-spacecraft systems will achieve rotating formation with prescribed performance according
to Definition 2, i.e., the states of each spacecraft satisfy (4) with (21):

∆1 = 4np∞

∥∥∥H−1
∥∥∥,

∆2 = 4np∞

∥∥∥H−1
∥∥∥,

∆3 =
∥∥∥H−1

∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
,

∆4 = 2
∥∥∥H−1

∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
.

(21)

Proof: According to (3) and (7), we have

ėp = eq,

ėq = H(q̇− q̇d) = H
(

B−1( f + u + d)− q̇d

)
.

(22)

where

f = [ f T
1 , . . . , f T

n ]
T

, d = [dT
1 , . . . , dT

n ]
T

, B = diag(B1, . . . , Bn),

ut = [uT
t1, · · · , uT

tn]
T

, u = [uT
1 , . . . , uT

n ]
T
= −B

(
kεεp + kqeq + ut

)
− f .

Define that εp = [εT
p1, . . . , εT

pn]
T , then εp=ξp

(
eq+ηep

)
, where ξp = diag

(
ξp1, . . . , ξpn

)
.

The Lyapunov function is written

V =
1
2

εT
p εp +

1
2

eT
q H−1eq +

1
2γ

n

∑
i=1

W̃ T
i W̃ i (23)

where W̃ i = W i − Ŵ i, then we have
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V̇ =εT
p ε̇p + eq

T B−1( f + u + d)− eq
T q̇d −

1
γ

n

∑
i=1

W̃ T
i

˙̂W i

=εT
p ξp
(
eq+ηep

)
− eq

T(kεεp + kqeq + ut
)
+ eq

T B−1d− eq
T q̇d −

1
γ

n

∑
i=1

W̃ T
i

˙̂W i

=− kqeq
Teq + eq

T
(
−kεεp + ξpεp + B−1d− q̇d

)
− eq

Tut + ηεT
p ξpep −

1
γ

n

∑
i=1

W̃ T
i

˙̂W i

=
n

∑
i=1

eqi
T
(
−kεεpi + ξpiεpi + B−1

i di − q̇id

)
+

n

∑
i=1

ηεT
piξpiepi −

1
γ

n

∑
i=1

W̃ T
i

˙̂W i

− kq

n

∑
i=1

eqi
Teqi −

n

∑
i=1

eqi
Tuti.

(24)

Substituting (1), (17) and (19) into (24), we have

V̇ =− 1
γ

n

∑
i=1

W̃ T
i

˙̂W i +
n

∑
i=1

eqi
T
(
−kεεpi + ξpiεpi + B−1

i di − q̇id + ηεT
piξpiepihi

)
− kq

n

∑
i=1

∥∥eqi
∥∥2−

n

∑
i=1

Ŵ T
i ϕieqi

T tanh(
Ŵ T

i ϕieqi

δt
)

=−
n

∑
i=1

W̃ T
i ϕie

T
qi tanh(

W̃ T
i ϕieqi

δt
)− 1

γ

n

∑
i=1

W̃ T
i

˙̂W i +
n

∑
i=1

eqi
T gi − kq

n

∑
i=1

∥∥eqi
∥∥2.

(25)

Under Lemma 1 and (20), (25) is simplified as

V̇ ≤−
n

∑
i=1

Ŵ T
i ϕi

2

∑
j=1

∣∣eqi,j
∣∣+ 0.2785 · 2 · nδt +

n

∑
i=1

∥∥eqi
∥∥‖gi‖

− 1
γ

n

∑
i=1

W̃ T
i

˙̂W i − kq

n

∑
i=1

∥∥eqi
∥∥2.

(26)

From Young-inequality and (18), (26) can be reduced to:

V̇ ≤−
n

∑
i=1

Ŵ T
i ϕi
∥∥eqi

∥∥+ 0.2785 · 2 · nδt

+
n

∑
i=1

∥∥eqi
∥∥(W i

Tϕi + δi

)
−

n

∑
i=1

W̃ T
i
∥∥eqi

∥∥ϕi − kq

n

∑
i=1

∥∥eqi
∥∥2

=
n

∑
i=1

W̃ T
i ϕi
∥∥eqi

∥∥− n

∑
i=1

W̃ T
i
∥∥eqi

∥∥ϕi + 0.2785 · 2 · nδt +
n

∑
i=1

∥∥eqi
∥∥δi − kq

n

∑
i=1

∥∥eqi
∥∥2

≤−
(

kq −
1
2

) n

∑
i=1

∥∥eqi
∥∥2

+ 0.2785 · 2 · nδt +
n

∑
i=1

1
2

δi
2.

(27)

If (28) holds, (
kq −

1
2

) n

∑
i=1

∥∥eqi
∥∥2 ≤ 0.2785 · 2 · nδt +

n

∑
i=1

1
2

δi
2. (28)

We may have V̇ > 0, then ε, eq will become unstable and increase with time, if eqi
keeps increasing until (29) holds,(

kq −
1
2

) n

∑
i=1

∥∥eqi
∥∥2

> 0.2785 · 2 · nδt +
n

∑
i=1

1
2

δi
2. (29)
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Then V̇ becomes negative definite and ε, eq will decrease with time until (28) holds.
Therefore, as time tends to infinity, ε, eq will converge within the bounded region and the
(30) holds (kq > 1

2 ).

lim
t→∞

√
n

∑
i=1

((vi − vid)2 + (wi − wid)2)

= lim
t→∞
‖q− qd‖ ≤ lim

t→∞

∥∥∥H−1
∥∥∥‖H(q− qd)‖

= lim
t→∞

∥∥∥H−1
∥∥∥√ n

∑
i=1

∥∥eqi
∥∥2 ≤

∥∥∥H−1
∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
.

(30)

Consequently,

lim
t→∞
|vi − vid| ≤

∥∥∥H−1
∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
,

lim
t→∞
|wi − wid| ≤

∥∥∥H−1
∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
.

Since vid = 0, we have

lim
t→∞
|vi| ≤

∥∥∥H−1
∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
,

lim
t→∞
|wi − wj − wijd| ≤ lim

t→∞
(|wi − wid|+ |wj − wjd|) ≤ 2

∥∥∥H−1
∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
.

Since ε converges to within the bounded region, then (8) holds, so we have lim
t→T

∣∣epi,m
∣∣ <

p∞. And then lim
t→T

∥∥ep
∥∥ < 2np∞, i.e., when the time t→ T, the rotating formation error ep

converges to within the preset steady-state error region. Since ep = H(p− pd), then there
must be:

lim
t→T

√
n

∑
i=1

((ri − rid)2 + (θi − θid)2)

=lim
t→T
‖p− pd‖

≤lim
t→T

∥∥∥H−1
∥∥∥‖H(p− pd)‖ ≤ 2np∞

∥∥∥H−1
∥∥∥.

(31)

Consequently,
lim
t→T
|ri − rid| ≤ 2np∞

∥∥∥H−1
∥∥∥,

lim
t→T
|θi − θid| ≤ 2np∞

∥∥∥H−1
∥∥∥.

Then, we have

lim
t→T
|ri − rj − rijd| ≤ lim

t→T
(|ri − rid|+ |rj − rjd|) ≤ 4np∞

∥∥∥H−1
∥∥∥,
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lim
t→T
|θi − θj − θijd| ≤ lim

t→T
(|θi − θid|+ |θj − θjd|) ≤ 4np∞

∥∥∥H−1
∥∥∥.

In summary, the following inequality holds:

lim
t→∞
|vi| ≤

∥∥∥H−1
∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
,

lim
t→∞
|wi − wj − wijd| ≤ 2

∥∥∥H−1
∥∥∥
√√√√√0.557nδt +

n
∑

i=1

1
2 δi

2

kq − 0.5
,

lim
t→T
|ri − rj − rijd| ≤ 4np∞

∥∥∥H−1
∥∥∥,

lim
t→T
|θi − θj − θijd| ≤ 4np∞

∥∥∥H−1
∥∥∥.

(32)

The relationship between 4np∞

∥∥∥H−1
∥∥∥ and p∞ allows us to infer that 4np∞

∥∥∥H−1
∥∥∥

represents the steady-state error that has been prescribed. As a result, the multi-spacecraft
system can accomplish rotating formations with prescribed performance.

The proof of Theorem 1 is complete.

4. Simulation Results

To illustrate the obtained theoretical results, numerical simulations will be given in
this section. Figure 4 is a communication topology for multi-spacecraft systems that have
four spacecraft and a leader, where only spacecraft 1 can receive the leader’s states.

Figure 4. The communication topology among the multi-spacecraft system.

The angular velocity of the leader is w0d = 0.4, and radius of rotation of the leader is
r0d = 7. Four spacecraft form an equilateral triangle configuration for rotating formation
around the center of the circle, then, the system’s parameter are shown in Table 1.

Table 1. parameter of multi-spacecraft system.

Spacecraft Number Initial States (pi(0))
Derivative of

Desired States (pid(0))the Initial States
(qi(0))

1 [6, π
3 ]

T [3, 0]T [4, 0.4t]T

2 [8,−π
3 ]

T [1, 7]T [4
√

3, 0.4t + π
6 ]

T

3 [6, 0]T [4,−2]T [4, 0.4t + π
3 ]

T

4 [10, π
6 ]

T [0, 5]T [2
√

3, 0.4t + π
6 ]

T
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The desired difference pijd and qijd can be calculated from the desired states pid and qid.
The number of basis functions is s = 80, select µ evenly from [−5, 5], and Both all

spacecraft’s parameters in the controller (19) are chosen as follows:

kε = 8, kq = 15, δt = 0.1, γ = 0.5.

The parameter in (8) is defined as r = 1. The parameters of (9) are chosen as

p0 = 20, p∞ = 1.5× 10−4, T = 10. (33)

According to (33), the control system’s maximum steady-state error should be less
than 1.5× 10−4, its convergence time should be less than 10, and its maxmum overshot
should be less than 100%.

Assuming that the unmodelled components of the spacecraft i is

di =

 0.2i cos(0.1t) + 5wi · sin
(

0.01t + iπ
5

)
+ 0.05i sin(0.3t + 2.5)

wi · cos
(

0.05t + iπ
6

)
+ (5 + 0.1i) sin(0.02t) + vi · sin(0.1t + 1.5)

.

Simulation results are shown in Figures 5–7. Figure 5 shows the trajectory of all
spacecraft in 30 s, from which it is clear that multi-spacecraft systems eventually forms
desired configuration to do circular motion around the origin. Figure 6 shows the time
response curves of the rotating formation error epi for all the spacecraft. The response
process of this error reflects various performances of the system such as steady-error and
convergence time of the formation control system, the convergence time and steady-error
of rotating formation error are set in this paper at (33), and it can be seen from the Figure 6
that the system can achieve the rotating formation motion within 10 seconds and the steady-
error of the rotating formation is less than 10−4, which fully satisfies the performance preset
above, and there is no overshoot in the response process of the error. Figure 7 shows the
angular velocity response curves of all spacecraft, from which it can be seen that the final
convergence error of angular velocity is less than 10−5. For perspective, the performance
metrics of the rotating formations of the multi-spacecraft system are summarized in Table 2.
Therefore, the controller designed in this paper not only resists uncertainties but also can
meet various preset performance indicators, and finally achieve rotating formation with
high precision and controlled angular velocity in preset time.

Table 2. performance indicators of multi-spacecraft system.

Spacecraft Limited Practical Desired
Number Overshot Overshot Steady-State Error

1 100% 0.01% 1.5× 10−4

2 100% 0.01% 1.5× 10−4

3 100% 0.0075% 1.5× 10−4

4 100% 0.175% 1.5× 10−4

Spacecraft
Number

Practical
Steady-State Error

Desired
Convergence

Time(s)

Practical
Convergence Time(s)

1 1.2× 10−5 10 9.82
2 1.4× 10−5 10 9.88
3 9.2× 10−6 10 9.83
4 8× 10−6 10 9.86
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Figure 5. Trajectory of all spacecraft under the inertial coordinate system.
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Figure 6. Rotating formation error time response curve of all spacecraft under the controller (19).
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Figure 7. Angular velocity response curves for all spacecraft.
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5. Conclusions

This paper studied the problem of rotating formation of multi-spacecraft systems
with prescribed performance and controllable angular velocity in the presence of model
uncertainties. The spacecraft dynamics is presented in a polar coordinate system for
the realization of rotating formation with controlled angular velocity. The prescribed
performance control method is used to solve the problem of rotating formation with
prescribed performance, i.e, the rotating formation error converges to a preset region in a
preset time and the transient and steady-state response curves meet preset performance.
And an RBF neural network is used to approximate model uncertainties. Finally, simulation
results demonstrate the effectiveness of the controller.

In future work, we will consider the problem of controlled angular velocity rotating
encirclement control, such as, In the presence of non-matching interference, the controller is
designed to make multi-spacecraft systems form a configuration to rotate around a moving
target for surveillance or attack.
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