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Abstract: AbstractThe problem of quadrotor attitude and position control is considered in the pres‑
ence of generally lumped disturbances: external disturbances andmodel uncertainty. The improved
active disturbance rejection controller (ADRC) for quadrotor trajectory tracking is proposed for com‑
pensating the lumped disturbances. Firstly, the improved sigmoid tracking differentiator (ISTD),
combining improved Sigmoid function and sliding mode terminal attractor is proposed, which can
accelerate the global convergence rate and effectively reduce the chattering. Secondly, a novel vari‑
able gain finite‑time extended state observer (VGFESO) approach is proposed to effectively estimate
the lumped disturbances, while the observation errors are convergent to zero in finite time. Then,
a super‑twisting sliding model controller (STWSMC) is utilized for tracking control of the desired
position and attitude. Finally, the convergence of VGFESO and the closed‑loop stability of the con‑
trol system are proved. The results show that the convergence time of the proposed control scheme
is the shortest, and the integral absolute error of improved ADRC is reduced from 2.64 to 0.91. The
anti‑disturbance capability of the proposed controller is fully illustratedwhen comparedwithADRC
and robust adaptive nonsingular fast terminal sliding‑mode controller (RANFTSMC).

Keywords: quadrotor trajectory tracking; active disturbance rejection control; tracking differentiator;
finite‑time extended state observer; super‑twisting sliding model control

1. Introduction
Quadrotor unmanned aerial vehicles (UAVs) have attracted much attention due to

the advantages of great flexibility, low cost, autonomous control, and vertical take‑off [1].
Presently, many kinds of repetitive, dangerous, or different missions can be achieved by
quadrotors, such as military surveillance [2], disaster search and rescue [3], aerial mailing
and delivery [4], desert surveying [5] and pesticide spraying [6]. However, the uncertainty
of the quadrotor control system and external disturbances are the fundamental reasons for
the difficulty of its tracking control. The quadrotor dynamics system has nonlinearity char‑
acteristics, strong coupling, modeling uncertainty, and under‑actuation [7]. Meanwhile,
there always exist uncertain external disturbances [8] during flight missions, such as dis‑
ordered winds and variable loads. Therefore, the high‑precise control problem becomes
more complex and challenging.

There are many significant results that have been proposed in the field of quadrotor
UAV tracking control, such as proportional‑integral‑differential (PID) control [9,10], back‑
stepping control [11,12], sliding mode control (SMC) [13,14], and active disturbance rejec‑
tion control (ADRC) [15]. However, the PID control systems rely on an accurate dynamics
model, and its performance drops when it is far from the equilibrium point. To overcome
the nonlinear characteristics of quadrotor UAVs, nonlinear control strategies are widely
used to obtain good tracking performance. Backstepping control has the problem of di‑
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mensional explosion as the system’s complexity increases. SMC has strong robustness to
disturbances and model uncertainty, but the chattering problem is challenging to avoid.

To overcome the difficulties mentioned above in the trajectory tracking controller, the
ADRC was first proposed by Han [16,17], which mainly consists of three parts: tracking
differentiator (TD), extended state observer (ESO), and nonlinear feedback. Since then, the
unique performance of ADRC when dealing with model uncertainty and external distur‑
bances has attracted significant interest from researchers. However, the theoretical sta‑
bility proof of ADRC has been lagging for quite some time. Furthermore, the chattering
phenomenon of TD is obvious, and the convergence speed is slow away from the equi‑
librium point. To simplify the engineering application, Gao [18] developed a bandwidth
parameter tuning method by linearizing the ADRC and analyzed the stability of linear
ADRC (LADRC) in the time domain and frequency domain. The convergence of the gen‑
eral nonlinear ADRC (NADRC) was proved for certain types of MIMO systems with large
uncertainty [19]. By using the sigmoid function, the nonlinear sigmoid TD (STD) [20] is
constructed to attenuate the sensitivity to noise. However, fast convergence in finite time
is not guaranteed and parameter tuning is complex.

The anti‑interference and finite‑time convergence abilities are considered the main
performance metrics of a controller [21]. The model uncertainty and external disturbances
of the UAV dynamic system have fast time‑varying characteristics. The adaptive control
cannot solve the time‑varying perturbation problem effectively, and the error‑driven adap‑
tive perturbation compensation is not sufficient for a fast and accurate attitude response.
The ADRC based on extended state observer provides a new solution for real‑time sys‑
tem state and disturbance estimation. A linear extended state observer (LESO) [22] is con‑
structed to improve the robustness performance of the control system by adjusting the
observer gain properly. However, the peaking phenomenon appears in the case of large
gains, which is not conducive to closed‑loop stability. In [23], a finite‑time extended state
observer (FTESO) is utilized to improve the estimation accuracy effectively, but the con‑
vergence time still depends on the initial conditions. To solve this problem, a fixed‑time
extended state observer (FXESO) [24] is proposed, which is convergent in a fixed timewith‑
out relying on the initial conditions. However, the constant high gain observer may cause
a “peaking value problem” in the initial time stage. In [25], the improved ESO with time‑
varying gain [25] is proposed, in which the peaking value can be significantly reduced.

The design of nonlinear feedback controllers is still of great significance in ADRC.
SMC and backstepping control [26,27] are integrated to improve the performance of the
control system. A nonsingular fast terminal sliding mode controller (NFTSMC) with an
adaptive integral backstepping method [28] is proposed to overcome external and inter‑
nal disturbances, but the “complexity explosion” problem in backstepping control has not
been effectively solved. Combined with the extended observer and adaptive rule, the ro‑
bust adaptive backstepping fast terminal sliding mode controller (RABFTSMC) [29] is pro‑
posed, in which the parameter uncertainty could be well estimated. Iterative learning slid‑
ing mode control (ILSMC) [30,31] is designed to improve the anti‑disturbance ability in
UAV trajectory tracking. Mofid proposed an adaptive terminal sliding mode controller for
tracking control of quadrotor UAVs in the existence of external disturbance [32]. To solve
the problem of obstacle avoidance in the presence of environmental and systematic uncer‑
tainties, path planning and trajectory tracking control are integrated [33]. A computation‑
ally light navigation algorithm is developed for quadrotor UAVs to autonomous collision‑
free guide control [34]. However, the estimation error for the fast time‑varying distur‑
bances is relatively large. With fast convergent performance, finite‑time controllers [35,36]
have attracted great attention. However, there is little research on the combination of dis‑
turbance estimation and finite‑time controllers. Meanwhile, it should be noted that the
performance of the ADRC system relies heavily on ESO [37] inmost of the current research.
At the same time, ESO has the following two limitations. On the one hand, the derivative
of the disturbance needs to be bounded since the disturbance is regarded as an extended
state in ESO. On the other hand, the ESO requires the disturbance to have slow variation,
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and a high gain or discontinuous function is generally utilized in the ESO to counteract
such disturbance [38].

Inspired by the STD and the time‑varying ESOs proposed in [20,25], an improved
sigmoid TD (ISTD) and a novel variable gain finite‑time ESO (VGFESO) approach are pro‑
posed to address the trajectory tracking control problem. The main contributions of this
article are summarized as follows:
• Combining improved sigmoid function and sliding mode terminal attractor, the im‑

proved sigmoid TD is proposed. The ISTD could not only accelerate global conver‑
gence, but also reduce the chattering of high‑frequency noise. The stability of ISTD is
proved theoretically, and the frequency characteristic analysis provides a theoretical
basis for the subsequent parameters design.

• A variable gain finite‑time ESO is proposed to weaken the “peak phenomenon”. With
the aid of the finite‑time stability theory, the proposed VGFESO can also achieve esti‑
mate performance and asymptotic stability in a finite time.

• The novel ADRC scheme based on ISTD, VGFESO, and STWSMC achieves high preci‑
sion for quadrotor trajectory tracking. The results demonstrate that the proposed con‑
troller could converge in finite time and has higher tracking accuracywhen compared
to robust adaptive nonsingular fast terminal sliding‑mode control (RANFTSMC) [7]
and novel ADRC (NADRC) [39].

2. Dynamic Model Description
The accurate nonlinear kinematic and dynamic models are fundamental to quadrotor

tracking control. To describe the attitude and position of quadcopter, the proper coor‑
dinate system is established and the right‑hand rule is followed. The earth‑fixed frame
Oexeyeze is used to describe motion relative to the ground. The body‑fixed frameObxbybzb,
connected to the quadrotor body, and its originOb is taken at the center of gravity. The atti‑
tude vectorΘ ≜ [ϕ, θ,ψ]T in the body‑fixed frame are the roll, pitch, and yawof the quadro‑
tor, respectively. ωb ≜ [ωbx, ωby, ωbz]

T is the angular velocity inObxbybzb. Pe ≜ [xe, ye, ze]
T

and Ve ≜
[
vx, vy, vz

]T are the position and velocity in x, y, z in Oexeyeze. The quadrotor
configuration frame with body fixed and earth fixed frame is shown in Figure 1.
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Figure 1. Quadrotor configuration frame with body fixed and earth fixed frame. 
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Figure 1. Quadrotor configuration frame with body fixed and earth fixed frame.

The following equations can describe the kinematic model of the quadrotor UAV{ .
P

e
= Ve

ωb = Rω

.
Θ

(1)

where Rω is the transformation matrix between the attitude rate and the angular velocity
of the aircraft body. It can be given as

Rω =

1 0 −Sθ

0 Cϕ CθSϕ

0 −Sϕ CθCϕ

 (2)
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The rotation matrix Re
b, which represents the rotation from the aircraft‑body coordi‑

nate frame to the earth‑fixed coordinate frame, is expressed as follows:

Re
b =

 CψCθ CψSθSϕ − SψCϕ CψSθCϕ + SψSϕ

SψCθ SψSθSϕ + CψCϕ SψSθCϕ − CψSϕ

−Sθ CθSϕ CθCϕ

 (3)

where Si = sin(i), Ci = cos(i), i = ψ, θ, ϕ, and the roll and pitch angles are limited in
(−π/2, π/2), and yaw is limited in (−π, π). The attitude dynamics model is established by
the Euler equation as follows:

J· .
ω

b
= −ωb ×

(
J·ωb

)
+ Ga + τ + nΘ(t) (4)

where J ≜ diag
(

Jx, Jy, Jz
)
is the rotational inertiamatrix of the quadrotorwith respect to the

obxb, obyb, obzb axes; Ga ≜ [Ga,ϕ, Ga,θ , Ga,ψ]
T represents the gyroscopic torques;

τ ≜ [τx, τy, τz]
T are the torques generated by the propellers in the body; × represents

cross multiplication operation; nΘ(t) ≜ [nd,ϕ, nd,θ , nd,ψ]
T are the time‑varying external dis‑

turbance torques. Gyroscopic torques Ga caused by the rotation of a single propeller are
defined as

Ga =

−Jrωby(Ω1 − Ω2 + Ω3 − Ω4)
Jrωbx(Ω1 − Ω2 + Ω3 − Ω4)

0

 (5)

where Ωi(i = 1, 2, 3, 4) represents the rotary speed of the i‑th propeller. For a quadrotor,
the Ωr = Ω1 − Ω2 + Ω3 − Ω4 denotes the total angular speed of the four propellers. Jr
represents the total moments of inertia of the entire rotor, including the propeller. The
torques τ includes roll torque τϕ with respect to the obxb axis, pitch torque τθ with respect
to the obyb axis, the yaw torque τψ with respect to the obzb axis. It can be calculated as

τ =

 τϕ

τθ

τψ

 =

 lκ
(
Ω2

4 − Ω2
2
)

lκ
(
Ω2

3 − Ω2
1
)

cN
(
Ω2

1 − Ω2
2 + Ω2

3 − Ω2
4
)
 (6)

where l denotes the quadrotor arm length, which is the distance from each rotor to the
center of the mass of the quadrotor. κ is the drag force coefficient and cN is the reverse
moment coefficient, which can be determined experimentally. With the assumption of
small rotations, the dynamic equation of the attitude subsystem is given by

..
ϕ = (

.
θ

.
ψ(Jy − Jz)− JrΩr

.
θ + τϕ + Nd,ϕ)/Jx..

θ = (
.
ϕ

.
ψ(Jz − Jx)− JrΩr

.
ϕ + τθ + Nd,θ)/Jy

..
ψ = (

.
ϕ

.
θ(Jx − Jy) + τψ + Nd,ψ)/Jz

(7)

where Nd,ϕ, Nd,θ , Nd,ψ are external disturbances. By analyzing the forces on a quadrotor,
the dynamic of the position subsystem can be obtained from Newton’s second law.

m
..
P

e
= K f

.
P

e
− G + Re

bUT + dp(t) (8)

where m is the mass of the quadrotor; K f = −diag
(
kx, ky, kz

)
is the matrix of airframe

drag coefficient; G = [0, 0, g]T is the acceleration of gravity; dp(t) =
[
dx, dy, dz

]T is the
interference drag force on the x, y, z axes. The total thrust that acts on the quadrotor is
Fi = κΩ2

i . The total force UT of the three axes can be obtained as UT =
[
0 0 uT

]T
=



Drones 2022, 6, 350 5 of 21

[
0 0 κ

(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4
)]T . The equations for the position subsystem can be ex‑

pressed as 
..
x = − kx

m
.
x + 1

m
(
CϕSθCψ + SϕSψ

)
uT + dx

..
y = − ky

m
.
y + 1

m
(
CϕSθSψ − SϕCψ

)
uT + dy

..
z = − kz

m
.
z − g + 1

m
(
CϕCθ

)
uT + dz

(9)

Define the system state as X1 = [x, y, z]T , X2 =
[ .
x,

.
y,

.
z
]T , X3 = [ϕ, θ, ψ]T , X4 =[ .

ϕ,
.
θ,

.
ψ
]T
. Due to the external disturbances and the uncertain model parameters, the dy‑

namic models are transformed into the following state space forms with the lumped dis‑
turbances [20].

.
X1 = X2

(m + ∆m)
.

X2 =
(

K f + ∆K f

)
X2 − G +

(
B1 + ∆B1

)
UT + dp(t)

.
X3 = X4(

J + ∆J
) .
X4 =

(
Π1 + ∆Π1

)
F1(X4)−

(
Π2 + ∆Π2

)
X4 + τ + nΘ(t)

(10)

where (·) is the measured values of the model parameter, ∆(·) is the uncertain values of
the model parameter, m = m + ∆m, J = J + ∆J , B1 =

[
CψSθCϕ + SψSϕ, SψSθCϕ − CψSϕ, CθCϕ

]T, Π1 =

diag
(

Jy − Jz, Jz − Jx , Jx − Jy
), Π2 = diag(−JrΩr , JrΩr , 0), and the continuous smooth term F1(X4) =[ .

θ
.
ψ,

.
ϕ

.
ψ,

.
ϕ

.
θ
]T
is obtained by the transformation of Equation (7). The lumped disturbances are

defined as{
Dp =

[(
K f + ∆K f

)
X2 − G + ∆B1uT + dp(t)

]
/m − ∆m

.
X2

NΘ = J−1[(Π1 + ∆Π1
)

F1(X4)−
(
Π2 + ∆Π2

)
X4 + nΘ(t)

]
− ∆J

.
X4

(11)

Finally, the dynamic model of the quadrotor UAV is obtained as{ ..
P

e
=

(
B1UT + Dp

)
/m

..
Θ = J−1

(τ + NΘ)
(12)

The main purpose of this paper is to design a robust controller to generate a total
thrust UT and three torques τi(i = ϕ, θ, ψ), which makes the quadrotor track the refer‑
ence trajectory in a finite time and maintain stable flight. The quadrotor UAV has six
outputs Pd = [Xd, Yd, Zd]

T , Θd = [ϕd, θd, ψd]
T , but only four inputs

[
uT , τϕ, τθ,, τψ

]T . To
solve the nonlinear coupling problem, the virtual variable V = [Vx, Vy, Vz]

T is adopted as
follows [40]: 

Vx =
(
CψSθCϕ + SψSϕ

)
uT/m

Vy =
(
SψSθSϕ − CψSϕ

)
uT/m

Vz =
(
CθCϕ

)
uT/m

(13)

The desired Euler angle (ϕd, θd) and the total thrust uT is obtained as [41]:
θd = arctan(CψVx+SψVy

VZ
)

ϕd = arctan(Cθ ·(SψVx−CψVy)
Vz

)

uT = m
√

V2
x + V2

y + V2
z

(14)

3. Improved ADRC Scheme
This section presents an improved ADRC scheme for quadrotor trajectory tracking

using ISTD and VGFESO. The block diagram of the improved ADRC scheme is shown
in Figure 2. The ISTD is proposed mainly to provide the transient profile of the refer‑
ence signal and extract its derivative signal with improved transient and steady‑state per‑
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formance, while the VGFESO is proposed to estimate both the system state and the lum‑
ped disturbances.
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3.1. Preliminaries 

For simplicity, some notations are defined as ⌊𝑥⌋𝛼 = 𝑠𝑖𝑔𝑛(𝑥)|𝑥|𝛼 , |𝑥|𝛼 =

[|𝑥1|
𝛼 , |𝑥2|

𝛼 , … , |𝑥3|
𝛼]𝑇 , 𝑠𝑖𝑔𝑛(·) is a sign function with 𝑠𝑖𝑔𝑛(0) = 0. 

Consider the following nonlinear system 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡)), 𝑥(0) = 𝑥0, 𝑓(0) = 0, 𝑥 ∈ 𝑅𝑛 (15) 

where 𝑓: 𝑈 → 𝑅𝑛 is a continuous function in an open neighborhood 𝑈 of the origin. 

Lemma 1. [19] On the convergence theorem of general tracking differentiator. Let 𝑓: ℝ𝑛 → ℝ is 

a locally Lipschitz continuous function, 𝑓(0,0) = 0. Suppose the equilibrium point (0,0) of the 

following system is globally asymptotically stable: 

{
𝑥̇1(𝑡) = 𝑥2(𝑡), 𝑥1(0) = 𝑥10
𝑥̇2(𝑡) = 𝑓(𝑥1(𝑡), 𝑥2(𝑡)), 𝑥2(0) = 𝑥20

 (16) 

where (𝑥10, 𝑥20)  is any given initial state. If 𝑣(𝑡)  is differentiable and satisfies 𝐴 =

𝑠𝑢𝑝𝑡⊂[0,∞]|𝑣̇(𝑡)| < ∞, then the solution of the following tracking differentiator 

{

𝑧̇1R(𝑡) = 𝑧2R(𝑡), 𝑧1(0) = 𝑧10

𝑧̇2R(𝑡) = 𝑅
2𝑓 (𝑧1R(𝑡) − 𝑣(𝑡),

𝑧2R(𝑡)

𝑅
) , 𝑧2(0) = 𝑧20

 (17) 

is convergent in the case that: for any 𝑎 > 0, 𝑧1R  is uniformly convergent to 𝑣(𝑡) on 

[𝑎,∞] as 𝑅 → ∞, where (𝑧10, 𝑧20) is any given initial value. 

Lemma 2. [42] Consider the nonlinear system in Equation (15), and suppose there exists a Lya-

punov function denoting its initial value. The trajectory of the system is finite-time uniformly ul-

timately bounded stable within the region of 𝑄1 = {𝑥|𝑉(𝑥)
𝛼1−𝛼2 <

𝛽2

𝜖1
}, if 𝑉̇(𝑥) ≤ −𝛽1𝑉(𝑥)

𝛼1 +

𝛽2𝑉(𝑥)
𝛼2  for 0 < 𝛼1 < 1, 𝛼1 > 𝛼2, 𝛽1 > 0, 𝛽2 > 0, 𝜖1 ∈ (0, 𝛽1). The settling time for the states 

reaching the stable residual set is subject to the constraint as 𝑇1 ≤
𝑉(𝑥0)

1−𝛼1

(𝛽2−𝜖1)(1−𝛼1)
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Figure 2. The block diagram of the improved ADRC scheme.

3.1. Preliminaries
For simplicity, some notations are defined as xα = sign(x)|x|α, |x|α =

[
|x1|α, |x2|α, . . . , |x3|α

]T,
sign(·) is a sign function with sign(0) = 0.

Consider the following nonlinear system
.
x(t) = f (x(t)), x(0) = x0, f (0) = 0, x ∈ Rn (15)

where f : U → Rn is a continuous function in an open neighborhood U of the origin.

Lemma 1. [19] On the convergence theorem of general tracking differentiator. Let f : Rn → R
is a locally Lipschitz continuous function, f (0, 0) = 0. Suppose the equilibrium point (0, 0) of the
following system is globally asymptotically stable:{ .

x1(t) = x2(t), x1(0) = x10.
x2(t) = f (x1(t), x2(t)), x2(0) = x20

(16)

where (x10, x20) is any given initial state. If v(t) is differentiable and satisfies A = supt⊂[0,∞]∣∣ .
v(t)

∣∣ < ∞ , then the solution of the following tracking differentiator{ .
z1R(t) = z2R(t), z1(0) = z10
.
z2R(t) = R2 f

(
z1R(t)− v(t), z2R(t)

R

)
, z2(0) = z20

(17)

is convergent in the case that: for any a > 0, z1R is uniformly convergent to v(t) on [a, ∞] as
R → ∞ , where (z10, z20) is any given initial value.

Lemma 2. [42] Consider the nonlinear system in Equation (15), and suppose there exists a Lya‑
punov function denoting its initial value. The trajectory of the system is finite‑time uniformly ulti‑
mately bounded stable within the region of Q1 =

{
x
∣∣∣V(x)α1−α2 < β2

ϵ1

}
, if

.
V(x) ≤ −β1V(x)α1 +

β2V(x)α2 for 0 < α1 < 1, α1 > α2, β1 > 0, β2 > 0, ϵ1 ∈ (0, β1). The settling time for the states
reaching the stable residual set is subject to the constraint as T1 ≤ V(x0)

1−α1

(β2−ϵ1)(1−α1)
.

Lemma 3. [43] Consider the system in Equation (15), and suppose there exists a Lyapunov function
V(x) defined on a neighborhood U ⊂ Rn of the origin, and

.
V(x) + β1V(x)α1 ≤ 0 with

x ∈ U\{0}, 0 < α1 < 1, β1 > 1. Then the system is locally finite time stable, and T1 ≤
1

β1(1−α1)
V(x0)

1−α1 is the time needed to reach V(x) = 0, with V(x0) denoting the initial value of
the Lyapunov function V(x).
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3.2. ISTD Design and Analysis
To balance the tracking performance and parameter tuning of the tracking differen‑

tiator, the novel sigmoid function and sliding mode terminal attractor are adopted. Se‑
lecting an appropriate acceleration function is an efficient way to make the ISTD integrate
both linear andnonlinear characteristics. The appropriate acceleration function is designed
as follows:

isig(x) =
2

1 + e−x − 1 (18)

The function is mainly linear near the zero point. The approximate linear interval
width of the function can be adjusted by introducing the parameter β. Then, the accelera‑
tion function is expressed as

isig(βx) =
2

1 + e−βx − 1 (19)

where β is a constant. The smaller the β is, the wider the linear interval width of
Equation (19) is. Obviously, isig(βx) is a continuous odd function with boundaries{

isig(βx) + isig(−βx) = 0
lim

x→+∞
isig(βx) = 1, lim

x→−∞
isig(βx) = −1 (20)

The Taylor expansion with the remaining term of Equation (19) at zero point is ex‑
pressed as

isig(βx) = isig(βx)|x=0 + isig(βx)′|x=0x + . . . + Rn(x) = βx − β3

4
x3 + O

(
x3
)

(21)

where O
(

x3) denotes the higher order of x3.

Theorem 1. With the proposed ISTD Γ1 as follows.
.
xr

d,1(t) = xr
d,2(t)

.
xr

d,2(t) = −R2
{

α
∣∣∣xr

d,1(t)− v(t)
∣∣∣σisig(βx)

(
xr

d,1(t)− v(t)
)
+ γ isig

(
xr

d,2(t)
R

)}
(22)

where σ = p/q, p < q, and p, q are odd numbers, α > 0, γ > 0, R > 0. v(t) is the input signal,
xr

d,1(t) and xr
d,2(t) are the tracking signal and differential signal of v(t). Then, the system (22) is

globally uniformly asymptotically stable in (0,0).

Proof. Step 1: Prove the following system Γ0 is globally asymptotically stable with respect
to the zero point. { .

z1 = z2.
z2 = −α|z1|σisig(βz1)− γ isig(z2)

(23)

Consider the following Lyapunov function candidate:

V(z1, z2) =

z1∫
0

α|ξ|σisig(βξ)dξ +
1
2

z2
2 (24)

As isig(βξ) is a monotone increasing odd function, and the variable ξ is always the
same sign as function isig(βξ), then∫ z1

0
α|ξ|σisig(βξ)dξ +

1
2

z2
2 ≥ 0 (25)
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The equal sign is satisfied only when z1 ̸= 0, z2 ̸= 0. On the other hand, taking the
derivative V(z1, z2) with regard to time yields

.
V(z1, z2) = α|z1|σisig(βz1)

.
z1 + z2

.
z2

= α|z1|σisig(βz1)z2 + z2
{
−α|z1|σisig(βz1)− γ isig(z2)

}
= −γz2 isig(z2) ≤ 0

(26)

The equal sign is satisfied only when z2 = 0. Therefore, Γ0 is globally asymptotically
stable with respect to the zero point.

Step 2: Proof system Γ1 is the perturbation form of Γ0. Let τ = Rt, y1(τ) = xr
d,1(t)−

v(t), y2(τ) = xr
d,2(t)/R. y = [y1, y2]

T is the solution to the system

dy(τ)
dτ

= F[y(τ)] + g(τ) (27)

where F[y(τ)] =
[
y2(τ)− α|y1(τ)|σisig(βy1(τ))− a1isig(y2(τ))

]T, g(τ) =
[
− .

v(τ/R)/R, 0
]T. Replace t

with τ to obtain .
y(t) = F[y(t)] + g(t), and z = [z1, z2]

Tis the solution to the system
.
z(t) = F[z(t)].

From Lemma 1, the signal v(t) is differentiable and satisfies A = supt⊂[0,∞]

∣∣ .
v(t)

∣∣ < ∞. Because
.
v(t) has boundaries, when R → ∞ , − .

v(τ/R)/R → 0 , the system Γ0 and the system Γ1 is
equivalent and has global asymptotic stability. According to Lemma 1, the system Γ1 is the
perturbation form of Γ0, and the proposed ISTD is uniformly convergent. □

3.3. VGFESO Design and Stability Proof
The general adaptive ESO expression in [44] is designed as

.
x̂1 = x̂2 − l1(t)(x̂1 − x1).
x̂2 = x̂3 − l2(t)(x̂1 − x1) + b0u
.
x̂3 = −l3(t)(x̂1 − x1)

(28)

where x̂i(i = 1, 2, 3) are the estimates of states xi, the total disturbance d is taken as an
extended state x3. The estimation error is defined as Ẽ = [e1, e2, e3]

T = [x̂1, x̂2, x̂3]
T −

[x1, x2, x3]
T. A new ESO with variable gains is designed to estimate the disturbance with

improved transient performance, and VGFESO is designed as
.
x̂1 = x̂2 − l1(t)⌊e1⌋λ1
.
x̂2 = x̂3 − l2(t)⌊e1⌋λ1 + b0u
.
x̂3 = −l3(t)⌊e1⌋λ2

(29)

where 0.5 < λ1 < 1, λ2 = 2λ1 − 1. The varying gains are designed as l1(t) =
√

L(t), l2(t) =
L(t)/2, l3(t) = L(t), and L(t) is adapted according to the following rule

.
L(t) =

{
k|e1| i f |e1| ≤ ϵ

0 otherwise
(30)

where k > 0 is a constant, and ϵ > 0 is a constant that determines the accuracy of the obser‑
vation errors. According to the following stability proof, L(t) is designed as 1

2 k|e1|2 i f |e1| ≤ ϵ,

and
(

5
(λ1+1)

) 2
3 for otherwise, with k = 2

(
5

(λ1+1)ϵ3

)2/3
.

Theorem 2. The observer errors of the VGFESO in Equation (29) converge to zero in a finite time

when the adaptive gains l1(t), l2(t), l3(t) satisfy L(0) ≤
(

48
5(λ1+1)

)2/3
.
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Proof. The errors of the VGFESO can be expressed under the following form
.
e1 = e2 − l1(t)⌊e1⌋λ1
.
e2 = e3 − l2(t)⌊e1⌋λ1

.
e3 = −l3(t)⌊e1⌋λ2 −

.
d(t)

(31)

Assuming the total disturbance d is continuously differentiable and its differential
.
d(t) is bounded with

.
d(t) ≤ ρ. Define the following variation:

ζ = [⌊e1⌋λ1 , e2, e3]
T (32)

Derivative ζ, yields to

.
ζ =

 λ1⌊e1⌋λ1−1(e2 − l1(t)⌊e1⌋λ1
)

e3 − l2(t)⌊e1⌋λ1

−l3(t)e1
λ2 −

.
d(t)


= diag

(
−λ1⌊e1⌋λ1−1,−1,−⌊e1⌋λ1−1) l1(t) −1 0

l2(t) 0 −1
l3(t) 0 0

ζ +

 0
0
1

 .
d(t)

≜ ΛÃ(t)ζ + B
.
d(t) ≜ A(t)ζ + B

.
d(t)

(33)

If l1(t), l2(t), l3(t), λ are chosen properly at time t, and satisfy
λ1|e1|λ1−1l1(t) > 0
λ1|e1|λ1−1l2(t) > 0
λ1|e1|λ2 l3(t) > 0
λ1l1(t)l2(t)− l3(t) > 0

(34)

Then it can be considered that A is Hurwitz; there exists a positive definite matrix Q
such that the equation has a solution P

AT P + PA = −Q (35)

where

P(t) =

 2l1(t)
λ1+1 + l22(t) + l32(t) −l2(t) −l3(t)

−l2(t) 2 0
−l3(t) 0 2


Consider the following Lyapunov candidate function

V(ζ) =
1

L(t)2 ζT P(t)ζ (36)

Let χ represent the eigenvalue sequence, and the Equation (36) satisfying

χmin{P}∥ζ∥2
2 ≤ V(ζ) ≤ χmax{P}∥ζ∥2

2 (37)

The time derivative of V(ζ) can be expressed as

.
V(ζ) = d

dt

[
1

L(t)2 ζT P(t)ζ
]
= d

dt

[
ζT 1

L(t)2 P(t)ζ
]

=
.
ζ

T 1
L(t)2 P(t)ζ + ζT d

dt

[
1

L(t)2 P(t)
]
ζ + ζT 1

L(t)2 P(t)
.
ζ

= ζT d
dt

[
1

L(t)2 P(t)
]
ζ + 1

L(t)2

[
.
ζ

T
P(t)ζ + ζT P(t)

.
ζ

] (38)
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Let
.

V1 = ζT d
dt

[
1

L(t)2 P(t)
]
ζ,

.
V2 = 1

L(t)2

[
.
ζ

T
P(t)ζ + ζT P(t)

.
ζ

]
. According to the defini‑

tion of the varying gains in Equation (30), with the constant k = 0.5, the first component
.

V1 can be expressed as follows:

.
V1 = ζT d

dt

 2L−3/2(t)
λ1+1 + 1

4 + 1 − 1
2 L−1(t) −L−1(t)

− 1
2 L−1(t) 2L−2(t) 0

−L−1(t) 0 2L−2(t)

ζ

= ζT

 − 3L−5/2(t)
λ1+1

1
2 L−2(t) L−2(t)

1
2 L−2(t) −4L−3(t) 0
L−2(t) 0 −4L−3(t)

 .
Lζ

≜ ζTT
.
Lζ

(39)

where |T| = − 48
λ1+1 L−17/2 + 5L−7,

.
L ≥ 0. The determinant of T satisfying |T| ≤ 0 when

|L(0)| ≤
(

48
5(λ1+1)

)2/3
. Then, we have

.
V1 ≤ 0,

.
V(ζ) ≤

.
V2. Replacing

.
ζ in the expression

in Equation (33),
.

V2 leads to

.
V2 = 1

L(t)2

[
.
ζ

T
P(t)ζ + ζT P(t)

.
ζ

]
= 1

L(t)2

{[
A(t)ζ + B

.
d
]T

P(t)ζ + ζT P(t)
[

A(t)ζ + B
.
d
]}

= 1
L(t)2

{
ζT(AT P + PA

)
ζ +

(
B

.
d
)T

Pζ + ζT PB
.
d
}

= 1
L(t)2

{
−ζTQζ + 2

.
dBT Pζ

}
(40)

where BT P = [−l3(t), 0, 2]T , ∥BT P∥2 =
√

l2
3 + 4. According to Equation (40), we can obtain

.
V2 ≤ − 1

L(t)2

{
−χmin{Q}∥ζ∥2

2 − 2
.
d
√

l2
3 + 4∥ζ∥2

}
≤ − 1

L(t)2

{
χmin{Q}∥ζ∥2 − 2

.
d
√

l2
3 + 4

}
∥ζ∥2

(41)

Note that AT P + PA = −Q, and Q is positive definite and nonsingular, then

χmin{Q} ≥ 2χmin{A}χmin{P}
≥ 2min

{
λ1⌊e1⌋λ1−1, 1

}
χmin

{
Ã
}

χmin{P} (42)

On the one hand, it can be obtained that ∥ζ∥2 > |e1|λ1 , χmin{Q} ≥ 2λ1|e1|λ1−1χmin

{
Ã
}

χmin{P}
when |e1| > 1, thus

χmin{Q}∥ζ∥2 − 2
.
d
√

l2
3 + 4 ≥ 2λ1|e1|2λ1−1χmin

{
Ã
}

χmin{P} − 2
.
d
√

l2
3 + 4

≥ 2λ1χmin

{
Ã
}

χmin{P} − 2
.
d
√

l2
3 + 4

(43)

.
V(ζ) ≤ − 1

L(t)2

{
χmin{Q}ζ2 − 2

.
d
√

l2
3 + 4

}
∥ζ∥2

≤ −
(

2λ1χmin

{
Ã
}

χmin{P} − 2
.
d
√

l2
3 + 4∥ζ∥2

)√
V(ζ)

χmax{P}

≤ − 2λ1χmin{Ã}χmin{P}−2
.
d
√

l2
3+4∥ζ∥2√

χmax{P}
V1/2(ζ) ≤ 0

(44)
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According to Lemma 3, the error system can converge to the region |e1| ≤ 1, and
satisfy |ζ| ≤ 1 in finite time. On the other hand, |e1|λ1 < ∥ζ∥2 < 1χmin{Q} ≥ 2λ1χmin

{
Ã
}

χmin{P}
when |e1| ≤ 1, thus

χmin{Q}∥ζ∥2 − 2
.
d
√

l2
3 + 4 ≥ 2λ1|e1|λ1 χmin

{
Ã
}

χmin{P} − 2
.
d
√

l2
3 + 4 (45)

If the observer gains are correctly chosen, the error system can converge to the region
in finite time, and the convergence time is

Tf ≤
2
κ1

V1/2(ζ0) (46)

where κ1 =
2λ1χmin{Ã}χmin{P}−2

.
d
√

l2
3+4∥ζ∥2√

χmax{P}
. □

3.4. Nonlinear Controller Design
Consider the dynamic model in the form of the second‑order plant as Equation (12)

by denoting X1 = Pe, X2 =
.
P

e
, X3 = Θ, X4 =

.
Θ.

.
X1 = X2.
X2 =

(
B1UT + D̂p

)
/m

.
X3 = X4.
X4 = J−1(

τ + N̂Θ
) (47)

The tracking errors are defined as ep = Pd − Pe, eΘ = Θd − Θ. The desired trajectory
and its differential signal are obtained by ISTD. Select the sliding mode surface σ1, σ2 for
the trajectory tracking control law as{

σ1 = c1ep +
.
ep

σ2 = c2eΘ +
.
eΘ

(48)

where c1, c2 are positive numbers. Based on the dynamic model, the trajectory tracking
controllers are obtained as {

UT = −mB1
−1(S1 − Ẑp

)
τ = −J

(
S2 − ẐΘ

) (49)

{
S1 = −k1⌊σ1⌋

1
2 + ηp.

ηp = −w1sign(σ1)
(50)

{
S2 = −k2⌊σ2⌋

1
2 + ηΘ.

ηΘ = −w2sign(σ2)
(51)

where Ẑp and ẐΘ are the estimation of the lumped disturbances by the previous VGFESO,
k1, k2, w1, w2 are positive numbers. Substituting (49), (51) into (48),

.
σ2 leads to

.
σ2 = c2

.
eΘ +

..
eΘ = c2

.
eΘ +

..
Θd − J−1(

τ + N̂Θ
)

= c2
.
eΘ +

..
Θd + S2 − Ẽ

(52)

Substituting (48), (49), (51) and (52), a sliding mode system is obtained as{
.
σ2 = −k2⌊σ2⌋

1
2 + ηΘ + c2

.
eΘ +

..
Θd − Ẽ

.
ηΘ = −w2sign(σ2)

(53)
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According to [39], the following assumptions here: the estimated error of disturbance
Ẽ is bounded. There exists an unknown constant µ1 > 0, which is satisfied with µ1σ2

1
2 >

2
∣∣∣c2

.
eΘ +

..
Θd

∣∣∣. Moreover, there exists an unknown constant µ2 > 0, which is satisfied with

µ2 >

∣∣∣∣ .
Ẽ
∣∣∣∣. Let c2

.
eΘ +

..
Θd = b1σ2

1
2 with |b1| < µ1, and

∣∣∣∣ .
Ẽ
∣∣∣∣ = b2sign(σ2)/2 with |b2| < µ2.

Setting ηΘ = ηΘ + Ẽ, the sliding model system (53) is transferred as follows:{ .
σ2 = −k2σ2

1
2 + ηΘ + b1σ2

1
2

.
ηΘ = −w2sign(σ2)− 1

2 b2sign(σ2)
(54)

Theorem 3. The continuous super‑twisting sliding mode surface σ(t) converges to a small field in
the finite time.

Proof. Take the attitude subsystem, for example, and consider the following Lyapunov
candidate function:

V3(t) = ΞT MΞ (55)

where ΞT =
[
ξ1, ηΘ

]
=

[
σ2

1
2 , ηΘ

]
, M =

[
m11 m12
m21 m22

]
=

[
ϱ + 4ϵ2 −2ϵ
−2ϵ 1

]
.

Derivative Ξ, yields to

.
Ξ =

[
1
2⌊σ⌋2

− 1
2

{
−k2⌊σ⌋2

1
2 + ηΘ + b1⌊σ⌋2

1
2

}
−w2sign(σ2)− 1

2 b2sign(σ2)

]

=

[ 1
2|ξ1|

{
(−k2 + b1)ξ1 + ηΘ

}(
−w2 − 1

2 b2

)
ξ1

2|ξ1|

]
= 1

2|ξ1|

[
−k2 + b1 1
−w2 − 1

2 b2 0

]
Ξ ≜

.
ξ1HΞ

(56)

Then V3(t) is continuous, and the derivative of the Lyapunov function is presented as
.

V3(t) =
.

ξ1ΞT(HT M + MH
)
Ξ

= −
.

ξ1ΞT NΞ
(57)

where

N =

 2(k2 − b1)
(
ϱ + 4ϵ2)− 4ϵ

(
w2 +

1
2 b2

)
−
(
ϱ + 4ϵ2)− 2ϵ(k2 − b1) +

(
w2 +

1
2 b2

)
−
(
ϱ + 4ϵ2)− 2ϵ(k2 − b1) +

(
w2 +

1
2 b2

)
4ϵ


The symmetric matrix N is positive definite with the minimal eigenvalue χmin{N} ≥

2ϵ if appropriate parameters are selected. Since χmin{M}∥Ξ∥2
2 ≤ ΞT MΞ ≤ χmax{M}∥Ξ∥2

2,
where ∥Ξ∥2

2 = ξ2
1 + η2

Θ is the Euclidean norm of Ξ, and

ξ1 ≤ ∥Ξ∥2 ≤
V1/2

3 (t)

χ1/2
min{M}

(58)

We can conclude that

.
V3(t) ≤ − 1

2⌊|σ2|⌋
1
2

2ϵΞTΞ ≤ −
ϵχ1/2

min{M}
χmax{M} V1/2

3 (t) (59)

It is concluded that σ(t) converges to a small field in the finite time according to
Lemma 3. □
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4. Results and Discussion
To testify the effectiveness of the proposed sigmoid tracking differentiator and vari‑

able gain finite‑time extended state observer, numerical simulations are carried out for a
UAV with trajectory tracking control.

4.1. Effect of the ISTD Parameter
The sweep tests based on the least square method could obtain the Bode diagram of

the ISTD more accurately. The relationship between parameters and convergence speed,
tracking accuracy, and noise suppression capability can be clarified through frequency
analysis, which is conducive to the parameter tuning of ISTD. Let xr

d,1(t)− v(t) = Asin(ωt),
and then the nonlinear function is defined as N(A) = (B1 + jA1)/A, Since f1 = a0

∣∣∣xr
d,1(t)− v(t)

∣∣∣q
tsig

(
β
(

xr
d,1(t)− v(t)

))
and f2 = a1tsig

(
xr

d,2(t)/R
)
are both odd functions, then the coefficients of

their descriptive functions are expressed as

A1 = 0, B1 =
∫ 2π

0
a0|Asin(ωt)|qtsig(βAsin(ωt)sin(ωt)d(ωt)/π

A2 = 0, B2 =
∫ 2π

0
a1tsig(βAsin(ωt)sin(ωt)d(ωt)/π.

Then the transfer function between the input signal v(t) and its tracking element
xr

d,1(t) is given by G(s) = R2N1(A)/
(
s2 + N2(A)s + R2N1(A)

)
. One of the parameters

R, σ, α, β, γ is chosen as a change parameter, and the other parameters remain unchanged.
Five simulations are carried out to test the influence of different parameters on the perfor‑
mance of the ISTD. The Bode diagrams are plotted in Figure 3. The effect of the ISTD
parameter could be analyzed, and the guide for the parameter selection is given below.
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Effect of acceleration factor R, α: to analyze the effect of acceleration factor on the
frequency performance of ISTD, first we choose the parameter as σ = 0.9, β = 10, γ = 10
with different values of R, α, i.e., R = 10, 20, 25, 30, 50, 100, and α = 3, 5, 7, 9, 12, 15. The
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phase‑frequency characteristic has a very small phase shift below the cutoff frequency, but
near the corner frequency, the phase shift quickly drops to−180◦. It can be concluded from
the Bode diagrams that the bandwidth frequency increases when R, α increase. The larger
the bandwidth, the faster the convergence rate and better high‑frequency range tracking
performance. Simultaneously, more high‑frequency noisewill pass through, which results
in worse filtering performance of ISTD. A balance on the selection of R, α should be made
between the tracking performance and filtering ability of ISTD.

Effect of acceleration factor σ, γ: we choose the parameter as R = 30, α = 8, β = 10
with different values of σ,γ, i.e., σ = 0.9, 0.8, 0.7, 0.5, 0.4, 0.3, and γ = 5, 7, 9, 12, 15, 18.
It can be concluded from the Bode diagrams that the filtering ability is enhanced when
σ, γ increase, but the bandwidth is reduced and the time delay is increased. The de‑
signed parameter is for adjusting the differential performance and σ for suppressing high‑
frequency noise.

Effect of acceleration factor β: we choose the parameter as R = 30, σ = 0.9, α = 8,
γ = 10 with different values of β, i.e., β = 1, 2, 4, 6, 8, 12. It can be concluded from
the Bode diagrams that the tracking accuracy is enhanced when β increases. The designed
parameter is for improving the tracking accuracy to a certain extent.

The parameter tuning rules could be derived. Firstly, select the appropriate R to en‑
sure the overall performance, generally R = 30. Next, choose a larger σ to reduce the
sensitivity to noise. Next is fine adjustment α and β to obtain well tracking and differen‑
tial effects. Finally, the parameters of the proposed ISTD are selected as R = 30, σ = 0.9,
α = 8, β = 10, γ = 10.

4.2. Compared Simulation Results of Different TDs
In this section, the compared simulations are carried out to verify the filtering and

tracking performances of the proposed ISTD with another traditional tracking differentia‑
tor: TD [17] and STD [20].

The TD is given by:{ .
xr

d,1(t) = xr
d,2(t)

.
xr

d,2(t) = −Rsign(xr
d,1(t)− xd,1(t) +

xr
d,2(t)·|xr

d,2(t)|
2R )

(60)

The STD is given by{ .
xr

d,1(t) = xr
d,2(t)

.
xr

d,2(t) = −R2[sig
(

xr
d,1(t)− xd,1(t); µ0, µ1

)
+ sig(xr

d,2(t)/R; µ2, µ3)
(61)

where sig(xr
d,1(t)− xd,1(t); µ0, µ1) = µ0(1 + e−µ1(xr

d,1(t)−xd,1(t)))
−1

− 0.5µ0, sig
(

xr
d,2(t)/r0; µ2, µ3

)
=

µ2(1 + e−µ3(xr
d,2(t)/r0))

−1
− 0.5µ2. The parameters of TD are R = 30; h = 0.001. The parame‑

ters of STD are R = 30; µ0 = 5; µ1 = 5; µ2 = 2; µ3 = 2.
The desired tracking signal is a square‑wave signal containing a Gaussian white noise

with zero mean and covariance of 0.01. We choose the parameter as σ = 0.9, α = 8,
β = 10, γ = 10 with different values of R, i.e., R = 5, 10, 15, 20, 30, 50. It can be seen
from Figure 4 that the parameter R in ISTD is a basic acceleration factor. With the rise
of R, the tracking speed of ISTD is accelerated. But after R > 20, the attenuation speed
is decelerated, and the filtering ability of the differential signal is weakened. The larger
the R is, the faster the tracking rate, but the filtering ability will become worse, which
is consistent with the previous frequency analysis. The compared filtering and tracking
performances are shown in Figure 5. The TDs use optimal parameters with R = 30 for
tracking performance comparisons based on references. It can be seen that TD has slower
tracking convergence, and STD has a large amplitude overshoot after 15 s. On the contrary,
the proposed ISTD could rapidly approach the reference signals with little overshoot and
correctly track the reference signal.
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4.3. Comperated Performance with Different ESOs
The cooperated simulations are carried out to verify the effectiveness of the proposed

VGFESO with LESO [22], FTESO [23], and improved FXESO [24].
The LESO is given by 

z1 = z2 + v1(z1 − x1)
z2 = z3 + v2(z1 − x1) + bu
z3 = v3(z1 − x1)

(62)

The FTESO is given by
z1 = z2 − κ1sig(a+1)/2(z1 − x1)

z2 = z2 − κ2sig(a+1)/2(z1 − x1) + bu
z3 = −κ3siga(z1 − x1)

(63)

The FXESO is given by
z1 = z2 + µ1sigα(z1 − x1) + µ1sigβ(z1 − x1)
z2 = z2 + µ2sig2α−1(z1 − x1) + µ2sig2β−1(z1 − x1) + bu
z3 = µ3sig3α−2(z1 − x1) + µ3sig3β−2(z1 − x1) + γsign(z1 − x1)

(64)
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Take the attitude control subsystem, for example, to verify the performance of the
proposed VGFESO. The state of desired attitude Θ and the lumped disturbances NΘ is
given by

Θ :


ϕ = 2 sin(π/8·t)
θ = 3 sin(π/6·t + π/12)
ψ = π/3

, NΘ :


nϕ = 0.3 sin(0.5t + π/3)
nθ = 0.4 cos(0.5t + π/6) + 0.1
nψ = 0.3 cos(0.5t + π/4) + 0.2

(65)

According to the previous design and stability of VGFESO, the parameter should
meet the following conditions: 0.5 < λ1 < 1, λ2 = 2λ1 − 1. The varying gains are de‑
signed as l1(t) =

√
L(t), l2(t) = L(t)/2, l3(t) = L(t), and L(t) follow the adaptive rule in

Equation (30). The initial conditions of four ESOs are given as zero, and all the parameters
are listed in Table 1.

Table 1. All parameters of four ESOs.

ESOs Parameters

LESO v1 = 5, v2 = 20, v3 = 50
FTESO κ1 = 5, κ2 = 20, κ3 = 50, a = 0.4
FXESO µ1 = 5, µ1 = 20, µ1 = 50, α = 0.8, β = 1.2,γ = 2
VGFESO λ1 = 3/5, k = 50, ϵ = 0.1

The attitude estimation ϕ̂, θ̂, ψ̂ of four ESOs, and the estimation errors are shown
in Figure 6. The setting times of the ϕ̂, θ̂, ψ̂ estimation are 2.630 s, 1.845 s, and 1.405 s
for VGFESO, while they are 3.020 s, 1.935 s, and 1.580 s for FXESO, 3.120 s, 2.430 s, and
1.725 s for FTESO, and 12.010 s, 6.105 s, and 5.515 s for LESO. The setting time of four
ESOs is demonstrated in Table 2. It can be concluded that the setting time of the proposed

VGFESO is the shortest. Figure 7 presents the differential estimation of
.̂
ϕ,

.̂
θ,

.̂
ψ, and the

lumped disturbance estimation n̂ϕ, n̂θ , n̂ψ, respectively. The performance of VGFESO is
the best due to the fastest convergence time and minimal overshoot.
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Table 2. Setting time of four ESOs.

States ϕ θ ψ
.

ϕ
.
θ

.
ψ nϕ nθ nψ

LESO 12.010 6.105 5.515 7.985 11.305 6.525 8.510 6.840 9.285
FTESO 3.120 2.430 1.725 4.910 6.775 2.945 2.685 2.100 5.150
FXESO 3.020 1.935 1.580 3.375 4.555 1.855 2.450 1.625 2.090
VGFESO 2.630 1.845 1.405 3.050 2.815 1.670 1.555 1.330 1.701Drones 2022, 6, x FOR PEER REVIEW 17 of 21 
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[𝐽𝑥̅, 𝐽𝑦̅, 𝐽𝑧̅] = [0.1782, 0.1782, 0.03191] kg.m
2 , motor propeller moment of inertia Jr = 

0.000099 kg.m2, the coefficient of air resistance [kx, ky, kz] = [0.005567, 0.005567, 0.005567]. 

As the proposed feedback control law is relatively simplified and the parameters of the 

super-twisting algorithm in [45,46] have given significant reference value, the designed 

controller parameters are shown in Table 3. At the same time, considering the actuator 

saturation problem, the maximum saturation is set in the controller design.  
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4.4. Trajectory Tracking Control Results
To verify the quadrotor trajectory tracking performance of proposed improvedADRC

scheme, it is compared with the following ADRC [34] RANFTSMC [7] and ILSMC [30].
Quality of quadrotor m = 1.65 kg, gravitational acceleration g = 9.81 m/s2, length between
the center of the quadrotor and the rotor l = 0.225 m, rotational inertia J =

[
Jx, Jy, Jz

]
=

[0.1782, 0.1782, 0.03191] kg·m2, motor propeller moment of inertia Jr = 0.000099 kg·m2,
the coefficient of air resistance [kx, ky, kz] = [0.005567, 0.005567, 0.005567]. As the proposed
feedback control law is relatively simplified and the parameters of the super‑twisting algo‑
rithm in [45,46] have given significant reference value, the designed controller parameters
are shown in Table 3. At the same time, considering the actuator saturation problem, the
maximum saturation is set in the controller design.

Table 3. All parameters of four controllers.

Controllers Parameters

ADRC β1 = 3ω0, β2 = 3ω2
0 , β3 = ω3

0 , ω0 = 50, kz1 = 15, kz2 = 5,
kx1 = 10, kx2 = 2, ky1 = 15, ky2 = 1.5, k1 = 900, k2 = 60.

RANFTSMC ai = 1.2, bi = 8.7, ci = 0.03, di = 2.
ILSMC z1 = 1, ξ1 = ξ2 = ξ3 = 1, c1 = 5, c2 = 10
Proposed c = 2, k1 = 2, k2 = 6, w1 = w2 = 5.5625.

The desired position Pe and the lumped disturbances Dp are given by

Pe :


x = 0.5 cos(π/10·t)
y = 0.5 sin(π/10·t)
z = 0.8 + t/20

, Dp :


dx = 0.2 sin(0.2t) + 0.1 cos(0.3t)
dy = 0.4 cos(0.5t) + 0.2
dz = 0.2 cos(0.1t + π/4) + 0.1

(66)
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The lumped disturbances NΘ and attitude ψ are the same as previously given, and
attitude ϕ, θ are calculated by nonlinear decoupling Equation (14). Figure 8 presents the
position tracking performance of four controllers, and attitude tracking performance, re‑
spectively. It is obtained that the proposed controller could follow the reference trajectory
quickly and with smaller overshooting, while ADRC has large oscillation errors at the ini‑
tial moment. The quadrotor inputs

[
uT , τϕ, τθ , τψ

]T are shown in Figure 9a. Obviously,
the inputs of the proposed controller are more stable. At the same time, ADRC requires a
larger amount of control at the initial moment, and RANFTSMC has an oscillating control
signal, which is detrimental to the life of the actuator. The 3D trajectory tracking perfor‑
mance comparison is demonstrated in Figure 9b. This will more clearly demonstrate the
superior tracking control performance of the proposed controller. To effectively evaluate
the performance of four quadrotor trajectory tracking controllers, Integral Absolute Errors
(IAE) are used. The indicator IAE is defined as [47]

IAE =
∫ t f

ti

eidt (67)
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The comparison of trajectory tracking performance is listed in Table 4. It can be seen
that the IAE of the proposed controller is reduced from 2.64 to 0.91, which fully illustrates
the anti‑disturbance capability and high‑precision tracking control accuracy of the pro‑
posed controller when compared with ADRC, RANFTSMC and ILSMC.

Table 4. Comparison of trajectory tracking performance.

States x y z ϕ θ ψ Sum

ADRC 0.5441 0.1921 0.9744 0.0471 0.0216 0.0698 1.8491
RANFTSMC 0.1607 0.3506 0.7380 0.0430 0.2147 1.1411 2.6481

ILSMC 0.1510 0.4146 0.3043 0.0666 0.0202 0.1205 1.0872
Proposed 0.1002 0.3909 0.3434 0.0131 0.0153 0.0471 0.9100

5. Conclusions
To solve the problem of trajectory tracking under lumped disturbances, a novel con‑

trol scheme is proposed. The designed controller combines the super‑twisting sliding
model controller with ISTD and VGFESO. The ISTD is used for tracking the differential
signal, while VGESO is used to estimate the lumped interference, and the estimation error
converges to zero in finite time. The performance of the proposed controller is validated on
the quadrotor UAV system, and the results are comparedwith theADRC andRANFTSMC.
Simulation results show that the convergence time of the proposedVGFESO is the shortest,
and the IAE of improvedADRC is reduced from 2.64 to 0.91, which fully illustrates the anti‑
disturbance capability of the proposed controller. In the future, moremodifications will be
dedicated to extending the proposed scheme to output feedback‑based flight controllers,
and the effectiveness of the proposed controller will be validated through real‑time flight
experiments on a quadrotor UAV.
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