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Abstract: The increasing demands of several emergent services brought new communication prob-
lems to vehicular networks (VNs). It is predicted that the transmission system assimilated with
unmanned aerial vehicles (UAVs) fulfills the requirement of next-generation vehicular network.
Because of its higher flexible mobility, the UAV-aided vehicular network brings transformative and
far-reaching benefits with extremely high data rates; considerably improved security and reliability;
massive and hyper-fast wireless access; much greener, smarter, and longer 3D communications
coverage. The clustering technique in UAV-aided VN is a difficult process because of the limited
energy of UAVs, higher mobility, unstable links, and dynamic topology. Therefore, this study intro-
duced an Enhanced Artificial Gorilla Troops Optimizer–based Clustering Protocol for a UAV-Assisted
Intelligent Vehicular Network (EAGTOC-UIVN). The goal of the EAGTOC-UIVN technique lies in
the clustering of the nodes in UAV-based VN to achieve maximum lifetime and energy efficiency.
In the presented EAGTOC-UIVN technique, the EAGTO algorithm was primarily designed by the
use of the circle chaotic mapping technique. Moreover, the EAGTOC-UIVN technique computes a
fitness function with the inclusion of multiple parameters. To depict the improved performance of the
EAGTOC-UIVN technique, a widespread simulation analysis was performed. The comparison study
demonstrated the enhancements of the EAGTOC-UIVN technique over other recent approaches.

Keywords: vehicular networks; unmanned aerial vehicles; clustering; gorilla troops optimizer;
fitness function

1. Introduction

Transport commuting becomes a ubiquitous part of day to day lives; the vehicular
network (VN) plays a positive role and increases the quality of life [1]. VN technology is
advantageous in information applications, automatic toll collection, public safety, automatic
driving, traffic coordination, event-driven safety message broadcasting, and so on. VN
accesses the location where a traffic accident occurs, timely notifies the pertinent vehicle to
adopt security measurement, and then offers quality of service of multimedia information
for the tourist during the journey. Regarding the data services, VN is applied for the
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remainder of services with respect to infectious diseases, carbon emissions, pollution
levels of the haze, and other related services that could enhance the living environment of
humans [2]. Moreover, traffic-flow coordination could be benefitted by VN. People timely
obtain present traffic data on the road of the vehicle and select the optimum path. These data
are particularly effective for the best travel experience for the passenger and for preventing
congested sections. Intelligent transport systems benefited considerably from VN [3]. It
provides data with respect to restaurants, petrol stations, weather information, navigation,
service areas, and every desirable datum regarding the neighboring environments. VN is
employed to automated driving, namely the distance detection among velocity estimation,
vehicles, road-condition perception, self-parking, and location service [4]. VN is employed
to realize automated charging of the vehicle. In V2I transmission, RSU could automatically
sense the journey mileage of a vehicle, the entrance location, and exit location, later realizing
the automated charging that could decrease the congestion at the charging place and
enhance the charging efficiency [5]. Figure 1 depicts the framework of UAV-assisted
vehicular network.
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A data-distribution technique is broadly employed in different circumstances, namely
emergency collision avoidance [6], the data acquirement of public entertainment, and
traffic-flow management that could decrease the number of traffic accidents, which promote
the urban building of a smart city and discharge urban traffic congestion [7]. In certain
scenarios, the timeliness of data dissemination is crucial. To accomplish the objective,
unmanned aerial vehicle (UAV) is applied to help with data distribution. Due to better
maneuverability of the UAV, it is widely used for completing the data dissemination task
in certain scenarios [8]. For instance, in certain locations, once the transmission framework
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is damaged, the UAV could be deployed rapidly as the mobile base station to help the
transmission network. Network lifetime is a significant parameter in UAV network that is
based on whether a specific number of nodes die due to energy consumption [9]. In mobile
UAV networks, topology control is the major aspect for extending network lifetime and
reducing communication interference. A hierarchical network based on clustering model
is widely employed in mobile networks. The cluster head (CH) selection and clustering
process are major factors in the hierarchical network [10–12].

This study introduces an Enhanced Artificial Gorilla Troops Optimizer based Clus-
tering Protocol for UAV-Assisted Intelligent Vehicular Network (EAGTOC-UIVN). The
goal of the EAGTOC-UIVN technique lies in the clustering of the nodes in UAV-based
VN to achieve maximum lifetime and energy efficiency. In the presented EAGTOC-UIVN
technique, the EAGTO algorithm is primarily designed by the use of circle chaotic map-
ping technique. Moreover, the EAGTOC-UIVN technique computes a fitness function
with the inclusion of multiple parameters. To depict the improved performance of the
EAGTOC-UIVN technique, a widespread simulation analysis was performed.

2. Literature Review

In Reference [13], an efficient routing technique depending upon a flooding method
was developed for robust route identification. It assures an alternate path during path-
failure scenarios. In addition, a forecasting approach is employed for anticipating the
expiration time of every discovered route. The authors in Reference [14] considered the
issue of content distribution to the vehicles on roadways with overloaded or no available
communication structure. Incoming vehicles demand service from a library of content
which is partially cached at the UAV; the content of the library is also considered for
modifying new vehicles carrying more popular content. A non-orthogonal multiple ac-
cess (NOMA)-enabled double-layer airborne access vehicular ad hoc networks (DLAA-
VANETs) architecture was designed in Reference [15], which consists of a high-altitude
platform (HAP), multiple unmanned aerial vehicles (UAVs), and vehicles. For the designed
DLAA-VANETs, the UAV deployment and network optimization problem is addressed.
Particularly, the UAV deployment method, depending upon particle swarm optimization,
is presented. Next, the NOMA model is introduced into the designed model for improving
the transmission rate.

Khabbaz et al. [16] aimed at enhancing the ground vehicle connectivity in the frame-
work of an alternating vehicle-to-UAV (V2U) transmission condition, whereas vehicles
create time-limited connectivity with transient by UAV served as flying BSs responsible
to route arriving vehicle information on backbone network or Internet. Zheng et al. [17]
used cyclic-flight UAVs for assisting RSU by offering video download services to vehicles.
With the utilization of UAV, seamless communication coverage and stable broadcast con-
nections ensure the optimum quality of services to vehicle. Moreover, the authors present a
model-free technique dependent upon DQN for determining an optimum UAV decision
procedure for achieving the minimization of stalling time. Raza et al. [18] examined a
UAV-assisted VANET communication structure, whereas UAVs fly over the used region
and offer communication service to basic coverage region. UAV-assisted VANET aims
for the benefits of line-of-sight (LOS) communication, flexibility, load balancing (LB), and
cost-effectual deployment.

Wu et al. [19] examined a deep supervised learning system to enable intelligence edge
for making decisions on the extremely dynamic vehicular network. Specifically, the authors
initially presented a clustering-based two-layered (CBTL) technique for solving the JCTO
problem offline. Afterward, they planned a deep supervised learning structure of CNN for
making fast decisions online. Ghazzai et al. [20] established a mobility- and energy-aware
data routing protocol for UAV-supported VANETs. Most UAVs perform as a flying RSU,
gathering information in ground vehicles, but another UAV role is the play of relays for
providing the information to mobility service center (MSC). The UAV is modifying its 3D
places in an existing range if required for ensuring reliable communication links.
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A UAV-helped data dissemination system dependent upon network coding was
presented in Reference [21]. Initially, the graph concept for modeling the occurrence of
data loss of the vehicles was utilized; the data dissemination issue was changed to the
maximal clique issue of graphs. With the coverage of directional antenna being restricted, a
parallel system for determining the maximal clique dependent upon the area separation
was presented. Alioua et al. [22] examine a new distributed SDN-related structure for UAV-
support-structure-less vehicular networks. An important purpose is to fill the gap in which
no SDN-based infrastructure was presented for these networks. The author’s concentrated
mostly on a road safety use-case that integrated UAVs for assisting emergency vehicles
in the exploration of affected regions from crucial emergency conditions. In addition, the
authors examined an effectual data processing strategy with shared decision-making or
computation-offloading problems. Though several models are available in the literature,
the network efficiency in UAV-assisted VNs still needs to be improved. In addition, the
inclusion of multiple parameters for optimal UAV selection is important as CHs become
essential.

3. The Proposed Model

In this study, a new EAGTOC-UIVN technique was developed for clustering the
UAV-assisted VN. The major aim of the EAGTOC-UIVN technique exists in the grouping
of the nodes in the UAV-based VN to achieve maximum lifetime and energy efficiency. In
the presented EAGTOC-UIVN technique, the EAGTO algorithm is primarily designed by
the use of the circle chaotic mapping technique.

3.1. System Model

In the presented model, the types of UAVs considered could be middle-size drones or
mini drones. A simple collision process is utilized for collision avoidance [23]. In this work,
the UAV changed altitude for possible collision. The UAV’s maximum speed could reach up
to 30 m/s. Every UAV device relies on a location-aware component. This location-conscious
mechanism allows the routing method to function efficiently and precisely. In general,
location data can be attained from an alternative scheme. In the presented method, inertial
measurement units and GPS are given for the motion sensing and positioning of the UAV.
Each UAV is aware of its ground station and neighbors’ positions. Each UAV is equipped
with long- and short-range wireless transmission. Long-range wireless transmission can be
utilized for inter-cluster transmission with the ground station and other CHs. Short-range
wireless transmission is utilized for intra-transmission with its peers in the cluster.

3.2. Design of EAGTO Technique

With other metaheuristics, AGTO’s stability and convergence accuracy suffer as the
optimization problem to be resolved grows in variety and complexity. This flaw requires
the further development of novel mechanisms to perform exploitation and exploration and
help accomplish improved performance [24]. A troop comprises a dominant adult male
gorilla (silverback), numerous dominant adult females, and their offspring. A silverback
gorilla is over 12 years old and obtains the name from the distinct hairs that grow on his
back while he attains puberty. Furthermore, the silverback is the leader of the entire troop
and is accountable for ensuring everyone’s safety, planning and executing group travel,
allocating food and other resources, and making each decision, mediating any conflicts that
arise. Male gorillas between the ages of 8 and 12 are considered “black” since the silver
fur is not fully grown. It is common for gorillas to leave the birth group for joining a third.
However, some male gorillas decide to stick around and keep following the silverback. Such
males might fight viciously for controlling the group and accessing adult females when the
silverback is killed. The idea of group behaviors in wild gorillas acts as the motivation for
the AGTO algorithm. Initialization, local exploitation, and global exploration are the three
phases that make up AGTO, the same as they are in other intelligent techniques.
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3.2.1. Initialization Phase

Consider the D-dimension space has N gorillas. To specify where i-th gorillas are in
the universe, we could formulate Xi = (xi,1, xi,2, . . . xi,D), whereas I = 1, 2, . . . N, and it
can be defined as follows:

XN×D = rand(N, D)× (ub− lb) + lb (1) (1)

where rand () lies between 0 and 1. The search range can be determined by using the
upper and lower limits, ub and lb, respectively; and the matrix, X, has a random value, A,
within [0, 1] that is allocated to all the elements of the N rows and D columns in the matrix
represented as rand (N, D).

3.2.2. Exploration Phase

GX(t + 1) = (ub− lb)× r2 + lb, r1 < p

(r3− C)× XA(t) + L× Z× X(t), r1 ≥ 0.5

X(t)− L× (L× (X(t)− XB(t)) + r4× (X(t)− XB(t)))r1 < 0.5 (2)

In the above equations, t signifies iteration times, X(t) indicates the gorilla’s existing
location vector, and GX(t + 1) denotes the potential search agent position for the following
iteration. Furthermore, the random numbers r1, r2, r3, and r4 denote a number value
between zero and one. Two locations among the existing population of gorillas, XA(t)
and B(t), are selected randomly; p is a predetermined value. By utilizing the problem
dimension as an index, Z denotes the row vector where the component value was derived
randomly from [−C, C]. Additionally, C can be defined as follows:

C = ( cos (2× r5) + 1)×
(

1− t
Maxiter

)
(3)

where cos (•) denotes the cosine function, r5 indicates positive real numbers amongst [0, 1],
and Maxiter denotes the maximal iteration number. It is possible to evaluate L, the value
of variable, as follows:

L = C× l (4)

where l indicates the arbitrary value within [−1, 1]. Afterward, every probable GX(t + 1)
solution is produced, owing to the exploration, and the fitness value is compared. If
GX outperformes X, it is kept and utilized in the location of X. This is represented as
the condition (GX) < F(X), whereas F indicates the fitness function for the problem in
question (t). Additionally, the better option available at the time is now considered to be
the silverback.

3.2.3. Exploitation Phase

Once the new troop of gorillas is formed, the silverback is the dominant male and is at
the peak of his health and strength. They follow the silverback gorilla since they forage
for food. Unavoidably, the silverback will age and die, and in his location, a younger
blackback in the troop might engage in fighting over mating and leadership with other
males. AGTO’s exploitation stage follows the silverback and competes for adult female
gorillas. W is presented for controlling these transitions. When C in Equation (4) is higher
than W, this follows the silverback’s initial model:

GX(t + 1) = L×M× (X(t)− Xsilverback) + X(t) (5)
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In such cases, the optimum solution found so far is indicated as X silverback, the
existing location vector is represented as (t), and L is estimated by means of Equation (5).
The values of M are defined as follows:

M =

∑n
i=1 xi(t)

N| xi(t)
N
|2l

 1
2l

(6)

where N denotes the overall individual number, and Xi(t) indicates a vector demonstrating
the gorilla’s position:

GX(t + 1) = Xsilverback− (Xsilverback×Q− X(t)×Q)× A (7)

Q = 2× r6− 1 (8)

A = φ× E, (9)

E =

{
N1, r7 ≥ 0.5
N2, r7 < 0.5

(10)

It is the existing location, represented as (t), and the impact force, Q, that are eval-
uated by Equations (7) and (8). A random value within zero and one is utilized for r6
in Equation (4). Additionally, Equation (9) is utilized for assessing the efficiency of the
coefficient. A is utilized for stimulating the level of violence in the game. With the equation
denoting a constant, we could define what number represents Equation (10). Equation (6)
involves r7, which is a value selected randomly within zero and one. Standard distribu-
tion, E(1, D), is when r70.5 is a coincidental event, and D indicates the number of spatial
dimensions. However, if r7 is less than half, E is equivalent to the random quantity that fits
neatly into the standard distribution. Afterward, the exploitation stage is complete, and the
value of candidate fitness for the recently generated GX(t + 1) problems is calculated. GX
is preserved if F(GX)F. Figure 2 depicts the flowchart of GTOA.
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In this work, the EAGTO algorithm was primarily designed by the use of the circle
chaotic mapping technique. To increase the population diversity and exploit the data in the
solution space, the circle chaotic function is proposed to increase the initialization mode of
the GTOA. Additionally, it can be mathematically expressed as follows:

zk+1 = zk + b− a
2π
· sin(aπzk)mod(1), zk ∈ (0, 1) (11)

whereas a = 0.5 and b = 0.2, the circle mapping and random search mechanism are chosen
to be independently implemented 300 times. The traversal of circle chaotic mapping is
more homogeneously distributed and wider in the range of [0, 1]. Thus, after integrating
circle chaotic mapping, the presented technique has a robust global exploration capability.

3.3. Clustering Process Involved in EAGTOC-UIVN Technique

The EAGTOC-UIVN technique computes a fitness function with the inclusion of
multiple parameters. The EAGTOC-UIVN method is proposed with the existence of 4
fitness variables, namely energy efficacy of cluster node density, UAV nodes, distance in
CH to sink, and average distance of UAV for CH enclosed by their sensing series [25]. The
data on fitness parameters was provided by the following:

Energy efficiency: The CH executes various events, such as gathered, sense, data
broadcast, aggregation, and so on; hence, CH intakes the greatest amount of energy when
compared to other nodes. Then it is vital for defining an FF that shared the load among
each UAV from the network. The fitness variable for effective deployment of network
energy is given below:

Re = e(ni)

Aνge =
1
n

n

∑
i=0

e(ni)

f1 = CHopt ∗
Re

Avge
=

CHopt ∗ e(ni)
1
n Σn

i=0e(ni)
∀CHopt = 5% o f n, e(ni)

= 0.5J or 1.25J or 1.75J (12)

In Equation (12), Re, Aνge, and ni denote the node RE, network average energy, and
whole quantity of UAV nodes, respectively. CHopt shows the optimum percentage of CHs.

Cluster node density: In intra-cluster communication, the cost is a crucial parameter
for the high energy effectiveness of the network. Next, the network energy deployment
was larger when the cost function of cluster was determined as follows:

f2 = max
(
n(CH1), n(CH2), n(CH3)n

(
CHj

))
∀n = 2 To 95, j = 1 to 15 (13)

From the expression, n
(
CHj

)
denotes the number of UAVs from the range of jth CH(

CHj
)
. The values of objective function f2 are greater than able choice of CH and exploits

from reducing the energy reduction.
The average distance of UAVs to the CH within its sensing range: In intra-cluster

communication, UAVs transmit information to the CH. When the CH is farther from the
CM, the energy of the UAV diminishes; when the CH is closer to the member UAV nodes
afterward, there is a deployment of minimal energy.

f3 =
1

nsτ

nsr

∑
i=0

disT(CH, i) ∀dist(CH, i) = 1 to 35 m, nsr = 1 to 100 (14)

where nsr and dist(CH, i) indicate the number of UAVs from the sensing sequence and
Euclidean distance in node and CH from the sensing series of the cluster. Thus, the value of
f3 is minimal; however, the intra-cluster communication power is lessened.
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Distance from CH to BS: The distance between the BSs and CHs takes a basic function,
as if the CHS is farther from the sink and exploits energy quickly that is evaluated by the
following:

f4 =
1

CH

CH

∑
i=0

dist(BS, CHi) ∀dist(BS, CHi) = 1 to 70m, CH = 1 to 15 (15)

In Equation (15), dist(BS, CHi) indicates the Euclidean distance among the BS and
CHi. Minimizing the f4 objective function specified that the CHS is not farther from the BS.

Once the f1, f2, f3, and f4 function parameters were evaluated, the objective function
was also named FF and calculated as follows:

F = Maximize Fitness = α ∗ f1 + β ∗ f2 + γ ∗ 1
f3

+ δ ∗ 1
f4

(16)

In Equation (16), α, β, γ, and δ denote the weight coefficient for the f1, f2, f3, and f4 FF
parameters, correspondingly. The range of weight coefficient ranges from 0 to 1.

4. Results and Discussion

The proposed model was simulated by using MATLAB R2019a. The simulation
parameters are listed in Table 1. In this section, a detailed experimental validation of
the EAGTOC-UIVN approach is investigated under distinct UAVs. Table 2 and Figure 3
report an overall PDR examination of the EAGTOC-UIVN model under several UAVs,
with existing models such as swarm-intelligence-based clustering (SIC), EALC, ant-colony
optimization (ACO), GBLADSR, and genetic algorithm (GA) [23].

Table 1. Parameter settings.

Parameter Value

Network area 1000 m*1000 m

UAV transmission range 250–300 m

Number of UAVs 150

Number of ground station 1

Traffic type CBR

CBR rate 2 Mbps

Speed 10–30 m/s

UAV transmission power 5 W

Table 2. PDR analysis of EAGTOC-UIVN approach with other systems under varying UAVs.

Packet Delivery Ratio (%)

Number of UAVs EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 90.15 85.00 71.21 67.81 64.83 64.00

60 94.37 88.19 77.28 74.09 68.74 66.27

90 96.12 90.46 84.49 79.96 73.47 69.87

120 98.18 92.52 87.89 82.84 77.39 73.58

150 98.90 95.09 87.78 84.49 80.89 78.52
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The experimental value implies that the EAGTOC-UIVN technique obtained a better
performance under all UAVs. For example, on 30 UAVs, the EAGTOC-UIVN method
reached an increased PDR value of 90.15%. On the other hand, the SIC, EALC, ACO,
GBLADSR, and GA approaches accomplished decreased PDR values of 85%, 71.21%,
67.81%, 64.83%, and 64%, correspondingly. Meanwhile, on 150 UAVs, the EAGTOC-UIVN
technique attained an improved PDR value of 98.90%. In contrast, the SIC, EALC, ACO,
GBLADSR, and GA techniques attained reduced PDR values of 95.09%, 87.78%, 84.49%,
80.89%, and 78.52%, correspondingly.

In Table 3 and Figure 4, a brief average end-to-end delay (AETED) assessment of the
EAGTOC-UIVN with recent techniques is given. The results implied that the GA model
failed to portray effectual outcomes with maximum values of AETED. At the same time,
the EALC, ACO, and GBLADSR models reached closer AETED values. Although the
SIC model tried to show a reasonable AETED value, the EAGTOC-UIVN model gained
effectual outcomes with minimal AETED values. Notice that the EAGTOC-UIVN model
reached an AETED value of at least 0.078 s under 30 UAVs.

Table 3. AETED analysis of EAGTOC-UIVN approach with other systems under varying UAVs.

Average End-to-End Delay (s)

Number of UAVs EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 0.078 0.091 0.110 0.111 0.111 0.122

60 0.093 0.105 0.135 0.152 0.171 0.179

90 0.102 0.129 0.166 0.182 0.194 0.216

120 0.121 0.143 0.227 0.229 0.242 0.269

150 0.136 0.174 0.262 0.268 0.286 0.302
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Figure 4. AETED analysis of EAGTOC-UIVN algorithm under varying UAVs.

In Table 4 and Figure 5, a brief cluster overhead (COH) assessment of the EAGTOC-
UIVN with recent techniques is given. The result implies that the GA technique failed to
represent effectual outcomes with a maximal value of COH. Simultaneously, the EALC,
ACO, and GBLADSR techniques attained closer COH values. Even though the SIC method
tried to demonstrate a reasonable COH value, the EAGTOC-UIVN technique obtained
effectual outcomes with minimal COH values. Note that the EAGTOC-UIVN methodology
attained a minimum COH value of 0.153 under 30 UAVs.

Table 4. COH analysis of EAGTOC-UIVN technique with other systems under varying UAVs.

Cluster Overhead

Number of UAVs EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 0.153 0.160 0.168 0.174 0.177 0.195

60 0.179 0.197 0.209 0.218 0.228 0.247

90 0.195 0.219 0.240 0.250 0.258 0.274

120 0.198 0.227 0.268 0.278 0.291 0.309

150 0.216 0.253 0.290 0.300 0.307 0.329

In Table 5 and Figure 6, a brief cluster building time (CBT) assessment of the EAGTOC-
UIVN with recent approaches is given. The result implies that the GA approach failed to
represent effectual outcomes with maximal value of CBT. Simultaneously, the EALC, ACO,
and GBLADSR techniques attained closer CBT values. Even though the SIC approach tried
to demonstrate a reasonable CBT value, the EAGTOC-UIVN technique obtained effectual
outcomes with the lowest CBT values. Note that the EAGTOC-UIVN method has attained
a minimum CBT value of 0.51 s under 30 nodes.
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Table 5. CBT analysis of EAGTOC-UIVN technique with other systems under varying nodes.

Cluster Building Time (s)

Number of Nodes EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 0.51 2.90 7.87 10.46 14.03 17.41

60 5.29 8.07 12.05 13.44 19.80 30.14

90 5.68 10.46 14.63 21.19 28.15 36.90

120 5.49 10.86 17.02 23.38 39.88 52.01

150 6.08 9.26 19.01 29.74 49.82 60.36

Table 6 and Figure 7 show the cluster average lifetime (CALT) analysis of the EAGTOC-
UIVN technique under various nodes. The experimental value implies that the EAGTOC-
UIVN approach attained an improved performance under all nodes. For example, on
30 nodes, the EAGTOC-UIVN technique attained an improved CALT value of 67.61 s. On
the other hand, the SIC, EALC, ACO, GBLADSR, and GA systems attained minimized
CALT values of 66.21 s, 65.20 s, 63.17 s, 54.66 s, and 47.81 s, correspondingly. Meanwhile,
on 150 nodes, the EAGTOC-UIVN approach gained an improved CALT value of 55.04 s.
In contrast, the SIC, EALC, ACO, GBLADSR, and GA techniques attained reduced CALT
values of 50.35 s, 46.03 s, 40.45 s, 37.02 s, and 30.30 s, correspondingly.

Table 7 and Figure 8 show the number of alive nodes (NOAN) investigation of the
EAGTOC-UIVN technique under various rounds. The experimental value implies that the
EAGTOC-UIVN approach gained improved performance under all rounds. For example,
on 400 rounds, the EAGTOC-UIVN system reached an improved NOAN value of 100. In
contrast, the SIC, EALC, ACO, GBLADSR, and GA approaches attained reduced NOAN
values of 98, 95, 93, 92, and 83, correspondingly. Meanwhile, on 1800 rounds, the EAGTOC-
UIVN model gained an improved NOAN value of 71. In contrast, the SIC, EALC, ACO,
GBLADSR, and GA methods attained improved NOAN values of 44, 20, 11, 4, and 0,
correspondingly.
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Table 6. CALT analysis of EAGTOC-UIVN method with other techniques under varying nodes.

Cluster Average Lifetime (s)

Number of Nodes EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 67.61 66.21 65.20 63.17 54.66 47.81

60 67.10 64.56 61.14 57.96 48.57 41.59

90 61.77 54.28 53.52 51.24 44.00 34.61

120 58.22 51.24 48.95 46.03 36.01 31.06

150 55.04 50.35 46.03 40.45 37.02 30.30

Table 7. NOAN analysis of EAGTOC-UIVN technique with other systems under varying rounds.

No. of Alive Nodes

No. of Rounds EAGTOC-UIVN SIC EALC ACO GBLADSR GA

0 100 100 100 100 100 100

200 100 100 99 96 95 92

400 100 98 95 93 92 83

600 99 98 90 85 76 70

800 97 92 88 77 62 61

1000 95 87 83 60 55 51

1200 94 75 68 52 43 30

1400 89 69 59 38 33 15

1600 80 55 45 24 15 3

1800 71 44 20 11 4 0

2000 58 28 9 0 0 0
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Figure 7. CALT analysis of EAGTOC-UIVN algorithm under varying nodes.

In Table 8 and Figure 9, a brief total energy consumption (TECON) assessment of the
EAGTOC-UIVN technique with recent approaches is given. The outcomes imply that the
GA technique has failed to describe effectual outcomes with maximal values of TECON.

Table 8. TECON analysis of EAGTOC-UIVN technique with other systems under varying rounds.

Total Energy Consumption (J)

No. of Rounds EAGTOC-UIVN SIC EALC ACO GBLADSR GA

0 0.00 0.00 0.00 0.00 0.00 0.00

200 38.61 70.97 80.92 100.84 123.24 247.68

400 98.35 165.55 200.39 225.28 250.17 466.71

600 182.97 265.11 337.29 392.04 441.82 568.76

800 270.09 369.64 476.67 553.83 563.78 643.43

1000 377.11 511.51 578.72 630.98 708.14 718.10

1200 494.09 578.72 660.85 787.79 812.68 790.28

1400 603.61 693.21 770.37 862.46 899.79 884.86

1600 673.30 795.26 867.44 912.24 952.06 937.13

1800 755.43 859.97 917.22 949.57 979.44 976.95

2000 770.37 869.93 947.08 954.55 984.42 996.86

Simultaneously, the EALC, ACO, and GBLADSR techniques obtained closer TECON
values. Even though the SIC system tried to show a reasonable TECON value, the EAGTOC-
UIVN approach attained effectual outcomes with minimal TECON values. Note that the
EAGTOC-UIVN method attained a minimum TECON value of 38.61 J under 200 rounds.
From these results, it is evident that the presented model improves the overall network
efficacy.



Drones 2022, 6, 358 14 of 16Drones 2022, 6, x  14 of 17 
 

 
Figure 8. NOAN analysis of EAGTOC-UIVN algorithm under varying rounds. 

In Table 8 and Figure 9, a brief total energy consumption (TECON) assessment of the 
EAGTOC-UIVN technique with recent approaches is given. The outcomes imply that the 
GA technique has failed to describe effectual outcomes with maximal values of TECON.  

Table 8. TECON analysis of EAGTOC-UIVN technique with other systems under varying rounds. 

Total Energy Consumption (J) 
No. of Rounds EAGTOC-UIVN SIC EALC ACO GBLADSR GA 

0 0.00 0.00 0.00 0.00 0.00 0.00 
200 38.61 70.97 80.92 100.84 123.24 247.68 
400 98.35 165.55 200.39 225.28 250.17 466.71 
600 182.97 265.11 337.29 392.04 441.82 568.76 
800 270.09 369.64 476.67 553.83 563.78 643.43 
1000 377.11 511.51 578.72 630.98 708.14 718.10 
1200 494.09 578.72 660.85 787.79 812.68 790.28 
1400 603.61 693.21 770.37 862.46 899.79 884.86 
1600 673.30 795.26 867.44 912.24 952.06 937.13 
1800 755.43 859.97 917.22 949.57 979.44 976.95 
2000 770.37 869.93 947.08 954.55 984.42 996.86 

Figure 8. NOAN analysis of EAGTOC-UIVN algorithm under varying rounds.

Drones 2022, 6, x  15 of 17 
 

 
Figure 9. TECON analysis of EAGTOC-UIVN algorithm under varying rounds. 

Simultaneously, the EALC, ACO, and GBLADSR techniques obtained closer TECON 
values. Even though the SIC system tried to show a reasonable TECON value, the 
EAGTOC-UIVN approach attained effectual outcomes with minimal TECON values. 
Note that the EAGTOC-UIVN method attained a minimum TECON value of 38.61 J under 
200 rounds. From these results, it is evident that the presented model improves the overall 
network efficacy.  

5. Conclusions 
In this study, a new EAGTOC-UIVN technique was developed for clustering the 

UAV-assisted VN. The major aim of the EAGTOC-UIVN technique exists in the grouping 
of the nodes in UAV-based VN to achieve maximum lifetime and energy efficiency. In the 
presented EAGTOC-UIVN technique, the EAGTO algorithm is primarily designed by the 
use of the circle chaotic mapping technique. Moreover, the EAGTOC-UIVN technique 
computes a fitness function with the inclusion of multiple parameters. To depict the im-
proved performance of the EAGTOC-UIVN technique, a widespread simulation analysis 
was performed. The comparison study reported the enhancements of the EAGTOC-UIVN 
technique over other recent approaches. In the future, data aggregation and localization 
techniques can be designed to increase the overall network effectiveness of the UAV-
based VNs. 

Author Contributions: Conceptualization, H.A.; methodology, J.S.A.; software, M.M.A.; validation, 
J.S.A., A.S.A.A. and A.M.H.; formal analysis, M.A. and M.M.A; investigation, M.M..; resources, 
H.A.; data curation, A.Q.; writing—original draft preparation, H.A., J.S.A., M.M., M.A. A.Q., 
A.S.A.A. and A.M.H.; writing—review and editing, M.M.A.; visualization, A.M.H.; supervision, 
M.A.; project administration, A.M.H.; funding acquisition, H.A. All authors have read and agreed 
to the published version of the manuscript. 

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King Kha-
lid University for funding this work through Small Groups Project under grant number (241/43). 
Princess Nourah bint Abdulrahman University Researchers Supporting Project number 

Figure 9. TECON analysis of EAGTOC-UIVN algorithm under varying rounds.

5. Conclusions

In this study, a new EAGTOC-UIVN technique was developed for clustering the
UAV-assisted VN. The major aim of the EAGTOC-UIVN technique exists in the grouping
of the nodes in UAV-based VN to achieve maximum lifetime and energy efficiency. In
the presented EAGTOC-UIVN technique, the EAGTO algorithm is primarily designed by
the use of the circle chaotic mapping technique. Moreover, the EAGTOC-UIVN technique
computes a fitness function with the inclusion of multiple parameters. To depict the
improved performance of the EAGTOC-UIVN technique, a widespread simulation analysis
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was performed. The comparison study reported the enhancements of the EAGTOC-UIVN
technique over other recent approaches. In the future, data aggregation and localization
techniques can be designed to increase the overall network effectiveness of the UAV-
based VNs.
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