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Abstract: In many aero gliding vehicles, achieving the maximum gliding range is a challenging task.
A frequent example is the breakdown of an engine during flight or the use of unpowered stand-off
weapons. When an unpowered stand-off weapon begins gliding at a given height, it eventually
strikes the ground after some distance, and height is considered a stopping constraint in this general
condition. To avoid the time-scaling approach for the free time optimal problem, the maximum stop-
pable time with a stopping constraint is addressed to attain the maximum glide range. This problem
can be chosen as an optimal gliding range problem which can be solved by direct or indirect methods.
In this paper, the inverted Y-tail joint stand-off weapon is selected as the subsonic unpowered gliding
vehicle (SUGV). After being released from dispersion points, the SUGV has to face fluctuating gliding
flight because of flight phase transition that causes gliding range reduction. To achieve a damped and
steady gliding flight while maximizing the gliding range, we propose a non-uniform control vector
parameterization (CVP) approach that uses the notion of exponential spacing for the time vector.
When compared with the maximum step input and conventional uniform CVP approach, simulations
of the proposed non-uniform CVP approach demonstrate that the SUGV exhibits superior damping
and steady gliding flight, with a maximum gliding range of 121.278 km and a maximum horizontal
range of 120.856 km.

Keywords: subsonic; unpowered gliding vehicle; gliding range maximization; control vector
parametrization; stopping time; stopping constraint

1. Introduction

Due to various controversies, the idea of aerial gliding vehicles (GVs) has evolved and
matured over the time. Developments in the aviation industry led to the creation of both
powered and unpowered GVs, where an unpowered GV relies on the dynamic interaction
of the air with its wings and tail for gliding, and the velocity regime determines whether
an unpowered GV is subsonic, transonic, supersonic, or hypersonic [1–4]. Nowadays,
to convert a general purpose bomb (MK series) to a subsonic unpowered GV (SUGV),
a wing adaptation kit or range extension kit is installed [5,6]. Figure 1 displays a further
illustration of an SUGV known as the joint stand-off weapon (JSOW) [7].

Due to lack of propulsion, an SUGV is unable to follow the ballistic trajectories, result-
ing in limited gliding range and precision. Therefore, the aircraft has to get closer to solve
these problems and neutralize the target, which decreases the aircraft’s chances of evading
enemy surveillance systems. To earn dispersion points, the pilot has to perform a series
of aerobatic maneuvers and exercises to dodge enemy surface-to-air missiles and guns and
to achieve the maximum glide range [8]. Factors such as incomplete adversary coordinate
information, inaccurate dispersion points, variations in mass distribution, the center of grav-
ity, aerodynamic characteristics, meteorological conditions, and the time delay between
the practiced mission and the actual mission for the release of the SUGV reduce the gliding
range. Consequently, accuracy and gliding range maximization are the most desirable objec-
tives, and both objectives are linked to terminal guiding and gliding trajectory optimization.
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As a problem of trajectory optimization, maximizing the SUGV’s gliding range can be
accomplished using either the direct or indirect method. The indirect method relies on Pon-
tryagin’s principle, which transforms an optimal problem into a two-point boundary value
problem. On the other hand, the direct method transforms an optimal problem into a non-
linear programming problem by parameterizing the control or state variables and then
calculating the problem using numerical methods. The main advantages of the direct
method are that the necessary conditions are avoided and the parameterized variables are
directly calibrated to optimize the performance index.

Figure 1. Joint stand-off weapon (JSOW).

Sheu et al. [9,10] attempted to determine the maximum horizontal range for unpow-
ered GVs in a three-dimensional space. The authors of these publications intended to give
a comparison of the singular perturbation method and the second-order gradient approach
linked with Pontryagin’s maximum principle. The second technique involves using closed-
loop control to modify high-speed conditions such as the altitude and flight path angle
to maximize productivity. Chern et al. [11] studied gliding flight for its maximum range
while taking the horizontal distance and endurance into account and arrived at a solution
based on Pontryagin’s maximimum principle. To maximize the glide distance of an unpow-
ered guided projectile, the effects of fin deployment and autopilot delay were examined
in [12], and the Hamiltonian boundary value problem was solved using a variational cal-
culus technique. To govern the flight, Yu et al. [13] suggested range optimization-guiding
legislation that suppressed phugoid oscillations with angle-of-attack feedback. A combined
guidance algorithm for gun-launched, rocket-assisted guided projectiles was developed
to maximize the flight range and endurance in [14]. Zhang et al. [15] released an investiga-
tion of the maximum gliding range along with a guidance scheme based on the flight path
angle for SUGVs. They also established an inverse relationship between the lift/drag ratio
and dynamic pressure to calculate the optimum lift/drag ratio responsible for the maxi-
mum glide range. Using the Radau pseudospectral approach, Yuan et al. [16] explored
the maximum glide range of a glide-guided bomb. In this work, the principle of covector
mapping is applied to compute the optimal gliding trajectory. To optimize the gliding
trajectory of a gun-launched unpowered gliding weapon, the hp-adaptive pseudospectral
technique, a trajectory optimization approach, was studied in [17]. After disconnecting
the booster, Qiu et al. [18] addressed the problem of the GV’s maximum downrange.
By considering the Legendre–Gauss–Radau collocation points, the nonlinear optimization
issue was converted into a nonlinear programming problem. Then, to optimize the down-
range, a pseudospectral technique with adaptive mesh refinement was used. Gao et al. [19]
created virtual control derivatives for gliding vehicles in re-entry to calculate the best
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control solution and acquire the optimal range solution using the hp-adaptive pseudospec-
tral approach. Xiao et al. [20] introduced an enhanced version of the adaptive Gaussian
pseudospectral approach to tackle the nonlinear constraint management issue and increase
the glide vehicle’s downrange, and they showed the feasibility of this novel approach by
comparing it to the standard adaptive Gaussian pseudospectral method. An et al. [21]
sought to tackle the problem of maximizing the gliding trajectory of a boost-glide vehicle.
They separated the total technique into two stages. In the first stage, a pitch angle-based
climb guidance law and descent guidance legislation based on the angle of attack are
formulated, and in the second stage, a Legendre–Gauss–Radau orthogonal collocation
approach is used to discretize the state and control variables, after which the optimization
problem is converted into a nonlinear programming problem, and then sequential quadratic
programming is used to optimize the gliding range.

Shapira et al. [22] introduced the singular perturbation theory to optimize the range
by taking timescale separation and dynamic effects into consideration. They also used
a dichotomic basis method to build an indirect solution for optimum control over two
timescales. Considering an engine failure scenario, Feng et al. [23] paid attention to increas-
ing the gliding range as well as endurance through the FALCON.m tool. In the gliding
range, wind or ground influences may reduce the gliding range [24]. Ben Asher et al. [25]
employed the pseudo-spectral technique based on the GPOPS tool to improve the gliding
profile while taking into consideration the impact of the wind to cater to the engine cutoff is-
sue. In the presence of along-track wind, Franco et al. [26] used the optimal control singular
arc theory to obtain the maximum range. Moreover, the implications of the average wind
and wind shear on the optimal outcomes were investigated. However, they did not take
into account crosswinds and the unpowered descent trajectory, which are treated as state
inequality constraints. The Chebyshev pseudospectral technique was applied to calculate
the maximum glide range of an aircraft in the presence of wind in [27]. Segal et al. [28]
released a glide range maximization algorithm for engine-out aircraft that ensured a con-
stant heading and velocity during descent flight. They also developed a relationship for the
maximum glide speed that depends on the speed of the aircraft in the presence of still air
and windy environments.

Creating wings, tails, and fins with precise geometry also helps to enhance the standoff
distance. Using empirical and non-empirical approaches, the unpowered aerodynamic
model is optimized to yield the maximum glide range [29,30]. Elsherbiny et al. [31] pub-
lished a solution for optimal aerodynamic lifting surfaces to increase the gliding range
using hybrid optimization algorithms integrated with missile DATCOM. A particle swarm
optimization approach was employed in conjunction with missile DATCOM to optimize
the shape, fin size, and position of the control surfaces for a given projectile’s gliding
range [32]. Under the guise of machine learning and neural networks, artificial intelligence
has demonstrated promising results in optimal theory [33]. Reinforcement learning, a sub-
type of machine learning, has the capacity to learn through trial and error as a consequence
of rewards from the system dynamics. As the dynamics of the system change, the reward is
optimized. To obtain the optimal gliding performance of a subsonic, fixed-wing, unmanned
aerial vehicle, Din et al. [34–36] applied reinforcement learning algorithms such as DDPG,
TRPO, PPO, and MRL.

The gliding path of an SUGV can be considered an optimal control problem with
inequality constraints and highly nonlinear dynamics. A direct method, specifically control
vector parameterization (CVP) [37], can be used to deal with the optimal gliding trajectory
and optimal path planning problems [38,39]. Because of its high performance, simplicity,
and flexibility, CVP is very appealing. Therefore, several fields have recently successfully
incorporated the CVP approach [40–43]. The time vector’s division, which may be uniform
or non-uniform, is a key factor in the CVP approach [44–48]. To extend the downrange
of a hypersonic unpowered GV, Liu et al. [49] developed a constraint handling method with
a smoothing methodology based on a uniformly distributed CVP approach. Teo et al. [50]
employed a uniformly distributed time vector-based CVP approach to solve the challenge
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of optimizing the range of a subsonic flying object and succeeded by combining the CVP
approach with Pontryagin’s principle. Liu et al. [51] proposed employing an adaptive
control arc length-based trajectory optimization methodology that combines the CVP
method with a Gauss time grid distribution and an adaptive time grid refinement procedure
to increase the downrange performance of a hypersonic GV after the re-entry phase. To
increase the hypersonic unpowered GV range, Hui et al. [52] combined the conventional
CVP approach with an improved sparrow search algorithm and a time-scaling approach.
They also used the golden sine update strategy and tent chaotic sequence mapping to obtain
the initial guess efficiency and optimality.

When the SUGV begins gliding from the dispersion points, it transitions from wing-
level flight to gliding flight. This flight transition causes fluctuations in the gliding flight,
and these fluctuations reduce the gliding range. Damped and steady gliding flight is
required to reduce this effect and maximize the gliding range. In most of the aforemen-
tioned work, the gliding range was enhanced by maximizing the lift/drag ratio, find-
ing the optimal geometric configuration, and employing guidance laws to counteract
the windy effects during gliding flight. The effects of fluctuations caused by flight transi-
tion were not taken into account to maximize the gliding range. To overcome this problem,
we propose a non-uniform CVP approach based on the notion of exponential spacing
for the time vector. The authors of [53] used a uniform CVP to maximize the gliding range.
They solved the optimization problem using a time-scaling approach that introduced a new
variable which should be treated either as an additional control input or as an optimal
variable that increases the complexity of the problem. In this work, instead of a time-
scaling approach, we define a predetermined maximum stoppable time and set the height
as the stopping constraint.

The overall contributions of this work are as follows:

• Fluctuations caused by flight transition are minimized using a non-uniform CVP approach,
and damped and steady gliding flight is achieved to maximize the gliding range;

• By defining the maximum stoppable time with the height as the stopping constraint,
the complexity of the optimization problem is decreased;

• The results of the non-uniform CVP approach are compared with those of the uniform
CVP approach and those of the maximum step input.

The following is a description of the remaining structure of this paper. In Section 2,
a general overview of SUGV modeling is covered. The problem of the maximum glid-
ing range at the maximum stoppable time is detailed in Section 3. Section 4 describes
the proposed CVP approach, which is based on the time vector’s exponential spacing.
The simulations and performance findings between the uniform CVP and the suggested
CVP are shown in Section 5. The conclusions of the work are briefly described in Section 6.

2. SUGV Modeling Overview

The SUGV mathematical model was selected based on the following assumptions:

• A constant mass and gravity field;
• Rigid body dynamics;
• Non-rotating and flat earth.

A longitudinal model was adopted to demonstrate the reliability of SUGVs and
a demonstration of the aerodynamic forces of lift L, drag D, and weight W on an SUGV,
with the pitching moment M along the y-axis and airspeed along the x-axis, are expressed
in Figure 2. Elevators are positioned on the inverted Y-tail and serve as control inputs.
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Figure 2. Representation of forces and moment on SUGV.

2.1. Longitudinal Dynamics

The SUGV longitudinal dynamic model is illustrated as follows:

mV̇ = −D−W sin(θ − α) (1)

mα̇ = − L
V

+
W
V

cos(θ − α) + mQ (2)

Q̇ =
M
Iy

(3)

θ̇ = Q (4)

where V, α, Q, θ, and Iy stand for the airspeed, angle of attack, pitch rate, pitch angle, and
pitching moment of inertia, respectively, and γ shows the flight path angle. D expresses
the drag force, L presents the lift force, W shows the weight during the flight, and M
yields the pitching moment. The path of an unpowered gliding flight is represented by
the following navigation equations:

Ṙ = V cos(θ − α) (5)

ḣ = V sin(θ − α) (6)

where R and h express the distance along the x-axis and the distance along the z-axis, re-
spectively.

2.2. Aerodynamic Forces and Moments

The expressions for the longitudinal aerodynamic forces and the pitching moment are
as follows:

D = 0.5ρV2SCD (7)

L = 0.5ρV2SCL (8)

W = mg (9)

M = 0.5ρV2SC̄CM (10)

where S is the wing reference area, C̄ is the wing mean aerodynamic chord, and ρ signifies
the air’s density, which is represented by

ρ = 1.222− 1.15e−4h + 3.18e−9h2 (11)
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The drag, lift, and pitching moment coefficients are determined using the flying
factors and geometric configuration of the SUGV. Therefore, these coefficients are defined
as follows:

CL = CLα(Mcn, α, h)α + CLQ(Mcn, α, h)Q
C̄

2V
+ CLδe

(Mcn, α, h)δe

(12)

CD =
C2

L
2πeAR

+ CDδe
(Mcn, α, h)δe (13)

CM = CMα(Mcn, α, h)α + CMQ(Mcn, α, h)Q
C̄

2V
+ CMδe

(Mcn, α, h)δe

(14)

where CLδe
, CDδe

and CMδe
stand for the partial derivative of lift, drag, and pitching moment

with respect to the elevator deflection δe. CLα , CDα , and CMα point out the partial derivative
of lift, drag, and pitching moment with respect to α, respectively. CLQ , CDQ , and CMQ are
the partial derivative of lift, drag, and pitching moment with respect to Q, respectively.
Moreover, e is the Oswald efficiency number, and AR is the aspect ratio of the SUGV.

3. Problem Description

Consider the nonlinear system

Ẋ = f (X, u) t0 ≤ ts ≤ tm (15)

Xo = X(t0) (16)

where X = (V, α, Q, θ, R, h)T ∈ <6, Xo is the initial state, t0 is the starting time, and tm is
the maximum stoppable time. For a nonlinear system, the stopping manifold is defined
as follows [53,54]:

Sm = {∆(X) = 0, X ∈ <6} (17)

where ∆ is a continuously differentiable function. When the system reaches the manifold
Sm, it comes to a halt, and the time it took to get there is referred to as the stopping time ts,
which relies on the stopping constraint. A graphical representation of Sm and ts is shown
in Figure 3.

Figure 3. Stopping manifold.

Here, ts is an implicit function of the control input u, since any change in u impacts
the state response, resulting in a change in ts. The stopping time is determined as follows:

τu = {t0 < t ≤ tm, X(t|u) ∈ Sm} (18)

ts = inf
t
{τu} (19)
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Any ts ∈ τu is expressed as an admissible stopping time, and if ts ≤ tm, then the stop-
ping constraint is computed as follows:

∆(X(ts))|τu = 0 (20)

A performance index for ts is established as follows:

J =
ts∫

t0

X(t) dt (21)

Constraints on the states and control input are expressed as

xL ≤ X(t) ≤ xU ∀ t ∈ (0, ts ≤ tm) (22)

uL ≤ u(t) ≤ uU ∀ t ∈ (0, ts ≤ tm) (23)

where xL, uL and xU, uU are the lower and upper constraints on the states and control input,
respectively.

3.1. Performance Index

The fundamental goal of unpowered gliding flight is to maximize the SUGV’s gliding
range, and for this purpose, a Lagrange performance index is illustrated:

J = max
ts∫

t0

V dt (24)

A subsidiary state is suggested to avoid integral complexity in the performance index:

ℵ̇ = V ∀ t ∈ (0, ts ≤ tm) (25)

After augmenting Equation (24) with the longitudinal dynamics of an SUGV, the per-
formance index can be expressed in Mayer form as follows:

Jℵ = max ℵ(ts) (26)

3.2. Constraints

Let α be significant during gliding flight for an SUGV. If it is small, then it causes
a free fall condition, and if it is large, then it creates a stall condition. Therefore, α needs
to be limited. Furthermore, Q aids in the reduction in fluctuations produced by flight
transition and offers stability during gliding flight. Therefore, a constraint on Q is required
to decrease the influence of fluctuations. To achieve damped gliding flight, both constraints
are implemented, and these constraints are{

αL ≤ α(t) ≤ αU

QL ≤ Q(t) ≤ QU ∀ t ∈ (0, ts ≤ tm) (27)

where αL, QL, αU , and QU are the lower and upper constraints on α and Q, respectively.
The load factor (LF) ensures the wing-level flight by imposing the constraint during gliding
flight so that steady gliding flight can be obtained. Therefore, a constraint on LF is employed
to assure a steady gliding flight and is defined as

LF =

√
L(t)2 + D(t)2

W
≤ LFmax ∀ t ∈ (0, ts ≤ tm) (28)
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where LFmax is the maximum value of LF. A constraint on elevator deflection is applied
to elude the stall condition during gliding flight as follows:

δL
e ≤ δe(t) ≤ δU

e ∀ t ∈ (0, ts ≤ tm) (29)

where δL
e and δU

e are the lower and upper bounds on the elevator deflection, respec-
tively. The height from the dispersion point steadily decreases to zero until the SUGV
strikes the earth. As a result, in this study, the height is regarded a stopping constraint:

h(ts) = 0 (30)

Problem: Maximize the SUGV’s gliding range by incorporating the performance index
in Equation (26), the dynamic system in Equations (1)–(6) with Equation (25), the damping
constraints in Equation (27), the LF constraint in Equation (28), the stopping constraint in
Equation (30) and the elevator deflection constraint in Equation (29).

4. Control Vector Parameterization

In this section, the concept of control vector parameterization (CVP) with uniform
and non-uniform subintervals is discussed. CVP is a very straightforward notion be-
cause the time vector of an optimization problem is broken into a predetermined number
of subintervals, the beginning and end of which are referred to as nodes in the CVP process.
Then, the control variables are selected at certain nodes, known as nodal control variables.
The control profile is then built using a spline approach, such as piecewise linear polynomi-
als or piecewise constant functions. After this, the dynamic model is integrated, referred
to as the initial value problem (IVP). After computing the IVP, the nodal control variables
are subjected to a nonlinear programming approach in order to optimize the problem.
The transformation of the infinite-dimension optimization problem into a finite-dimension
optimization problem by taking into account a predefined number of nodal control vari-
ables is a key feature of CVP. A general description of the CVP procedure is given below:

(i) Specify the desired N > 1 number of nodes and split the supplied time vector tm
into N − 1 subintervals:

ti = t0 < t1 < t2 < · · · < tN−1 = tm (31)

The nodal time ti, i = 0, 1, 2, . . . N − 1 may be uniform or non-uniform.
(ii) At each node, make an initial guess for the control variable. The following control

vvector (CV) u(t) is expressed as

u(t) = [u0, u1, u2, . . . uN−1] (32)

where ui, i = 0, 1, 2, . . . N − 1 is a nodal control variable.
(iii) Use an interpolation polynomial to approximate the CV profile.
(iv) Solve the IVP by considering the approximated CV profile.
(v) Compute the performance index as well as the constraints. If the performance index and

constraints are satisfied, then the output will be the optimal solution; otherwise, proceed
to step (iii) after optimizing the nodal control variables with any suitable optimizer.

Figure 4 depicts a flowchart describing the CVP implementation process.
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Figure 4. CVP procedure.

4.1. Uniform CVP

We will provide a brief overview of the uniform subinterval method for CVP in this sub-
section. This method divides the time vector t ∈ (to, tm) into N− 1 subintervals for the max-
imum stoppable time tm. For a uniform subinterval, the subinterval size de is assessed
as follows:

de =
tm − t0

N − 1
(33)

Consequently, the nodal times ti for a uniform time vector are determined as follows:

ti = to + ide i = 0, 1, 2, . . . , N − 1 (34)

In Figure 5, the uniform CV approach with nodal times to, t1, . . . , tm and nodal control
variables u0, u1, u2, . . . uN−1 at uniform subintervals are graphically depicted.

Figure 5. Uniform CVP.
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4.2. Non-Uniform CVP

After the acquisition of the dispersion points, the SUGV enters the disequilibrium
phase, and fluctuations occur during gliding as a result of this phase change. Fast damping
may be performed quickly to lessen fluctuations by establishing constraints on α and Q.
To achieve a steady glide path, the load factor is also crucial. Consequently, a non-uniform
CVP strategy is required to more effectively address these problems. On the foundation
of the idea of exponential spacing, a new formulation for non-uniform subintervals is
presented. According to this formulation, the time vector t ∈ (to, tm) is broken into N − 1
subintervals, and low spacing happens at the beginning of the time vector, whereas large
spacing occurs toward the end. Assume that µo and log10(χ) represent the lower and upper
bounds of an exponential curve 10a in a logarithmic scale. For computing the logarithmic
vector, the interval size Υ is calculated using these bounds as follows:

Υ =
log10(χ)− µo

N − 1
(35)

Notably, µo will always be set to zero, and the logarithmic vector ` is computed
as follows:

` = µo + iΥ i = 0, 1, 2, ...., N − 1 (36)

Using `, the following relation is given to obtain an exponential vector Texp:

Texp = 10` − 1 (37)

Hence, the relation shown below is used to map the maximum stoppable time onto
an exponential vector:

T =
tm − t0

Tmax
exp

Texp (38)

where χ is exponential spacing factor with an inverse relation with the exponential spacing
of the time vector T and is the upper bound of the exponential curve 10a.
Figure 6 depicts a graphical representation of the non-uniform CVP approach based on ex-
ponential spacing of the nodal times To, T1, . . . , TN−1 = tm and nodal control variables
u0, u1, u2, . . . uN−1.

Figure 6. Non-uniform CVP.

A derivation procedure of exponential spacing-based non-uniform CVP is shown
in the Figure 7 below.
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Figure 7. Derivation procedure of non-uniform CVP.

5. Simulation Results

The feasibility and effectiveness of the exponential based non-uniform CVP approach
for an SUGV’s gliding range is compared with the maximum elevator step δe and classical
uniform CVP approach in this section. The maximum gliding range was calculated using
MATLAB and DS Simulia Isight. For performance progression, we set tm to 850 s and N
to 10, 15, and 20. A time vector with a specified N had its χ able to be adjusted as de-
sired. Simulations of the SUGV range maximization were performed using the dispersion
points [6] given in Table 1.

Table 1. SUGV Dispersion points.

States Dispersion Points

V 0.72 Ma
α 0 deg
Q 0 deg s−1

θ 0 deg
R 0 km
h 10 km

To achieve the maximum glide range using the CVP approach, we borrowed the
bounds on α and δe from [6,35], respectively, and then used the hint in [55] to establish
the constraint on LF. We arrived at a constraint that fit our problem-solving criterion by
examining the impact of several restrictions on Q, and all constraints are listed in Table 2.
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Table 2. SUGV constraints.

Angle of Attack
(deg) Pitch Rate (deg s−1) Load Factor Elevator Deflection

(deg)

0 ≤ α ≤ 2.65 −1 ≤ Q ≤ 1 LF ≤ 1.007 0 ≤ δe ≤ 6

5.1. Case 1: N = 10

Figure 8 depicts the simulation results for 10 nodes, comparing the proposed CVP
approach with the maximum step input of 6 deg and the conventional CVP approach.

(a)

(b)

Figure 8. Cont.
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= 2.65

(c)

Q = 1

Q = -1

(d)

LF= 1.007

(e)

Figure 8. Cont.
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e
 = 6

(f)

Figure 8. Non-uniform CVP for N = 10: (a) gliding trajectory, (b) gliding range, (c) angle of attack
constraint, (d) pitch rate constraint, (e) load factor constraint, and (f) elevator constraint.

In the uniform CVP approach, the optimizer tried to obtain faster damping to gener-
ate steady gliding flight compared with the maximum step input. Figure 8a shows that
when the SUGV dropped from the carrier platform, the optimizer produced a low angle
of attack, which induced free fall, and then the optimizer tried to stabilize the gliding flight.
As demonstrated in Figure 8a, the non-uniform CVP approach provided excellent results
for fast damping and steady gliding flight, reducing the impacts of fluctuations and in-
creasing the gliding range by 121.25 km. The variation in constraint profiles is shown
in Figure 8c–e. Uniform CVP met the α requirement, with variations that stabilized after
280 s, but non-uniform CVP had a smooth α profile. The findings for the Q constraint demon-
strate that the non-uniform CVP approach beat the other reference approaches when it came
to performance. The uniform CVP approach sought to keep the Q profile between the limits
but was unsuccessful. Figure 8e for the uniform CVP approach and maximum step input
illustrates a violation and considerable variability in the load factor constraint profile. The non-
uniform CVP approach, on the other hand, provided a less-varying load factor constraint
profile that assured steady gliding flight. Comparatively, the constraint profiles illustrate
the maximum range progression and efficacy for the SUGV in addition to the suggested
CVP approach for steady gliding flight. The non-uniform CVP approach generated a control
profile with less variability and less amplitude than the uniform CVP approach, as shown
in Figure 8f, ensuring the optimal gliding range and achieving steady gliding flight with less
pressure on the elevator actuators.

5.2. Case 2: N = 15

Figure 9 illustrates the simulation outcomes with 15 nodes for the maximum step input of
6 deg, the conventional uniform CVP approach, and the proposed non-uniform CVP approach.
By increasing the number of nodes, the control profile for the uniform CVP method became
more variable, hence affecting the glide path. Uniform CVP for 15 nodes resulted in less free
falling behavior than the uniform CVP for 10 nodes. In the uniform CVP strategy, the optimizer
attempted to raise the alpha value closer to the ground to maximize the gliding range relative
to the maximum elevator input. The uniform CVP technique did not provide promising results
in terms of damped and steady gliding flight, but Figure 9a,b illustrates that the suggested
non-uniform CVP approach produced fast damping and steady gliding flight.
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Figure 9. Non-uniform CVP for N = 15: (a) gliding trajectory, (b) gliding range, (c) angle of attack
constraint, (d) pitch rate constraint, (e) load factor constraint, and (f) elevator constraint.
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The suggested non-uniform CVP approach obtained a gliding range of 121.26 km and
a horizontal range of 120.84 km, which are both encouraging results in damped and steady
gliding flight when compared with the approaches discussed. Figure 9c–e demonstrates
the constraint profile. Due to the increase in the number of nodes for the uniform CVP
approach, the α constraint exhibited significant variance, while the suggested non-uniform
CVP approach resulted in a negligible variance in the α constraint after commencement
of gliding flight. Despite the uniform CVP approach’s attempts to limit oscillations in the Q
constraint profile, the lower bound was exceeded. The suggested non-uniform CVP method
met the Q restrictions, and node increases caused saturation in the lower spacing of the
CV, with this impact seen in the Q profile. The LF profile demonstrates that the non-
uniform CVP approach yielded a profile with little variation while meeting the require-
ment that ensured steady gliding flight. The constraint on the control input is expressed
in Figure 9f. Despite the increase in the number of nodes, the control profile demonstrates
that the suggested non-uniform CVP provided less stress on the elevator actuators and
a smooth profile with little variance.

5.3. Case 3: N = 20

The optimal outcomes based on 20 nodes for the proposed non-uniform CVP, maxi-
mum step input, and uniform CVP are shown in Figure 10.

(a)

(b)

Figure 10. Cont.
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Figure 10. Cont.
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e
 = 6

(f)

Figure 10. Non-uniform CVP for N = 20: (a) gliding trajectory, (b) gliding range, (c) angle of attack
constraint, (d) pitch rate constraint, (e) load factor constraint, and (f) elevator constraint.

Figure 10 demonstrates that the optimizer tried to calculate damped and steady
gliding flight using a uniform CVP approach in contrast to the maximum step input results,
while the uniform CVP technique resulted in fewer free fall situations than the prior cases.
The proposed non-uniform CVP method effectively generated an optimal gliding trajectory
to address sluggish damping and unsteady gliding flight issues, and it optimized the gliding
range to 121.28 km and the horizontal distance to 120.856 km. The uniform CVP approach,
unlike the maximum step input, decreased the magnitude of the changes in Q and α but
did not result in damped and steady gliding flight. Figure 10c–e illustrates the significance
of the suggested non-uniform CVP method via the modification of restrictions. The non-
uniform CVP method provided the constraint results with a damped profile and satisfied
the constraint values, but the suggested CVP revealed the increase in the number of nodes
as saturation in the load factor. Figure 10f portrays the optimal control input profile. It can
be observed that the uniform CVP method caused a minimal change in the input profile
with low actuator pressure. To optimize the gliding range, it was found that the optimizer
for the proposed CVP method mimicked the best control profile, with a tiny variance owing
to the node increase at the outset.

The maximum values of the constraint profiles for the chosen techniques are shown
in Table 3 for numerical observation. It can be seen that the constraint profiles of the non-
uniform CVP approach based on exponential spacing met all of the constraints throughout
the SUGV’s gliding flight in the provided cases, while the maximum values of the LF and Q
for the non-uniform CVP technique in Table 3 could also be used to assess the impact of the
increment on the number of nodes. To observe the superiority of the proposed non-uniform
CVP, stopping values such as the stopping time ts, gliding range Rg, and horizontal range
Rh of the SUGV after hitting the ground could be compared with other referenced methods,
which are listed in Table 4. It can be noted that the stopping time for the maximum step
input was longer than the uniform and non-uniform CVP approaches because the pull-up
condition avoided the free fall condition when releasing the SUGV from the carrier platform.
Damping was slow due to unstable gliding flight, and because of this, the SUGV took longer
to hit the ground. On the other hand, the uniform CVP approach suffered from the free-fall
problem for nodes 10 and 15 after leaving the dispersion points, which caused unsteady
gliding flight, whereas the uniform CVP for node 20 experienced a lower free fall condition,
which caused an increase in the gliding range compared with nodes 10 and 15. It was also
noticed that the suggested non-uniform CVP method required an average stopping time
for the maximum gliding flight when compared with the maximum input and uniform
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CVP approach because the non-uniform CVP approach successfully produced damped and
steady gliding flight. Table 4 indicates that the non-uniform CVP approach outperformed
the maximum step input and uniform CVP approach for Rg and Rh values higher than
121 km and 120 km, respectively.

Table 3. Maximum SUGV constraint values.

Constraints Max δe
Uniform CVP Non-Uniform CVP

N = 10 N = 15 N = 20 N = 10 N = 15 N = 20

α (deg) 4.6652 2.6480 2.6467 2.7040 2.6499 2.6500 2.6498
QL (deg s−1) –5.2350 –1.9868 –1.9298 –1.9269 –1.0000 –0.9302 –0.9387
QU (deg s−1) 8.8224 1.0000 0.9761 1.0191 0.2654 0.3114 0.8970

LF 1.7466 1.2591 1.2199 1.2155 1.0069 1.0064 1.0063
δe (deg) 6.0000 5.8487 5.8464 5.9430 5.8522 5.8524 5.8521

Table 4. SUGV stopping values.

Stopping Values Max δe
Uniform CVP Non-Uniform CVP

N = 10 N = 15 N = 20 N = 10 N = 15 N = 20

ts (s) 839.351 802.215 792.177 838.989 816.190 814.735 814.023
Rg (km) 118.556 120.141 119.901 120.282 121.250 121.259 121.278
Rh (km) 117.993 119.553 119.260 119.758 120.831 120.840 120.856

6. Conclusions

Instead of employing a time-scaling approach, the concept of considering the height
as a stopping constraint was modified for the maximum stoppable time to achieve the max-
imum gliding range. To enhance the gliding range of an SUGV, a non-uniform CVP
approach based on the notion of exponential spacing was presented to provide damped
and steady gliding flight. The beauty of the proposed non-uniform CVP approach is that
the exponential spacing via χ can be changed to suit the needs of the problem. The proposed
CVP approach has no complicated preprocessing and is simple to implement. Accord-
ing to the simulation results, the proposed non-uniform CVP approach outperformed
the uniform CVP approach in terms of optimal control throughout the gliding flight, en-
suring damped and steady gliding flight and maximizing the gliding range. Increasing
the node count in the CVP approach slowed down the rate of convergence and boosted
the complexity of the optimizer. Compared with the maximum step input simulations,
the proposed non-uniform CVP presented gliding flight with an increase of 2.722 km
in the gliding range and 2.863 km in the horizontal range. The non-uniform CVP approach
increased the gliding range by 1.377 km and the horizontal range by 1.098 km relative
to the uniform CVP approach. Furthermore, the non-uniform CVP approach achieved
a horizontal range 856 m higher than the horizontal range of 120 km given in the lit-
erature [6,34–36]. The efficacy and trustworthiness of the proposed non-uniform CVP
approach were validated by simulations executed in the MATLAB and DS Simulia Isight
environments. A six-DoF model of the SUGV can be utilized in the future to evaluate the vi-
ability of the proposed non-uniform CVP approach. To evaluate the proposed non-uniform
CVP method, additional aero models will also be employed.
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