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Abstract: The application of UAVs is becoming increasingly extensive. However, high-precision
autonomous landing is still a major industry difficulty. The current algorithm is not well-adapted to
light changes, scale transformations, complex backgrounds, etc. To address the above difficulties,
a deep learning method was here introduced into target detection and an attention mechanism
was incorporated into YOLOX; thus, a UAV positioning algorithm called attention-based YOLOX
(A-YOLOX) is proposed. Firstly, a novel visual positioning pattern was designed to facilitate the
algorithm’s use for detection and localization; then, a UAV visual positioning database (UAV-VPD)
was built through actual data collection and data augmentation and the A-YOLOX model detec-
tor developed; finally, corresponding high- and low-altitude visual positioning algorithms were
designed for high- and low-altitude positioning logics. The experimental results in the actual environ-
ment showed that the AP50 of the proposed algorithm could reach 95.5%, the detection speed was
53.7 frames per second, and the actual landing error was within 5 cm, which meets the practical
application requirements for automatic UAV landing.

Keywords: deep learning; data synthesis; A-YOLOX; visual positioning

1. Introduction

Public security, a critical field of national security, correlates strongly with personal
interests and property safety. With its national economic development and modernization,
China has been assigning more and more importance to public security. With the ad-
vantages of high flexibility, maneuverability, stealth, independence from the geographical
environment, being low cost, and having the ability to carry different processing equipment,
UAVs have been used for identification and detection in such areas as urban inspection [1],
fire monitoring [2–5], criminal investigation and counter-terrorism [6], normal security
patrolling [7], epidemic prevention and control [8], post-disaster rescue [9,10], agricultural
inspection [11,12], and power inspection [13,14]. For example, UAVs can be used in agri-
culture for mapping farmland, spraying pesticides, seed sowing, monitoring crop growth,
irrigation, pest diagnosis, artificial pollination, and much more. The use of UAVs greatly
reduces working time and increases production efficiency, thus promoting the development
of intelligent agriculture [15,16]. As UAVs are widely used in military and civil fields,
their intelligent application has become a development trend, and autonomous positioning
landing is the basis for realizing intelligent UAVs. With the efforts of researchers in recent
years, UAV landing technology has made significant progress, but there are still some limi-
tations. For example, GPS-based methods fail in places where there is no GPS signal [17],
and traditional image recognition-based methods have poor recognition effects and poor
stability in environments with changing light and complex backgrounds [18]. Therefore,
research on a visual positioning algorithm for UAVs has important application value and
diverse application scenarios.

In this study, we started from the above problems and strove to find relevant solutions
to achieve accurate landing with UAVs. Compared to traditional methods, our method
offers several advantages. First, the detection model uses an anchor-free target detection
algorithm, which is much faster. The FPS can reach 53.7, which meets the requirements of
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real-time detection. Second, in comparison with previous methods [19–21], our method
possesses much higher actual landing accuracy. Third, we introduce deep-learning methods
into the UAV landing process, which are characterized by powerful feature extraction and
characterization capabilities. This significantly improves the detection performance of
the model, which is able to undertake detection accurately despite light changes, scale
changes, and wind impacts and shows better robustness. In summary, this paper makes
the following contributions:

• During the process of UAV landing, when moving from high to low altitudes, the
visual imaging constantly changes, and the pixel area of the target pattern gradually
increases, which poses a great challenge for target detection. Therefore, we developed
high- and low-altitude visual positioning algorithms to achieve stable detection with
UAVs throughout the process of moving from high to low altitudes;

• To solve the problem of poor detection of small- and medium-sized targets with the
model, we supplemented the YOLOX algorithm [22] with an attention mechanism
and proposed the attention-based YOLOX (A-YOLOX) detection algorithm, which
improves the detection performance of the model for small- and medium-sized targets;

• We collected 6541 actual images under different conditions and expanded the data with
data synthesis techniques in order to compile the UAV Visual Positioning Database
(UAV-VPD), a database applicable for UAV landing scenarios;

• Extensive experiments were carried out with the newly created database and in the
real environment, and our model proved to be robust. Our model achieved an actual
landing accuracy within 5 cm, and the FPS reached 53.7, which meets the requirements
of real-time detection.

The organization of the remaining sections is as follows: Section 2 concerns related
work, describing current approaches to autonomous positioning and the existing problems;
Section 3 describes the visual positioning algorithm proposed in this paper in detail;
Section 4 presents the experiments and discussion; and Section 5 is devoted to conclusions
and future work.

2. Related Work

Autonomous positioning landing is generally divided into visual positioning land-
ing [23] and satellite navigation landing [24]. Satellite navigation landing is a traditional
UAV positioning technique that uses the Global Positioning System (GPS) for positioning,
and it is suitable for long-duration tasks [25,26]. However, there are some limitations in
satellite navigation landing, such as easy signal loss in scenes with more occlusions, the
lack of a guarantee of stability, and low accuracy [27,28], meaning that it cannot meet the
requirement for centimeter-level error.

UAV visual positioning landing mainly relies on image sensors and uses image pro-
cessing technology to achieve an accurate landing, and this is a research hotspot for
scholars in China and abroad. Sharp et al. [19] proposed a precision landing system for
the autonomous landing of multi-rotor UAVs. This system uses a large square and five
small squares as landmark patterns. The landing process starts with initial recognition
through the large square and then combines image processing techniques, such as feature
point extraction, area segmentation, and motion estimation, to guide the UAV to land.
Lange et al. [29] put forward a method for UAV landing based on a moving target plate
with a landmark pattern consisting of a black, square hexagon and four white concentric
circles, using optical flow sensors to acquire the velocity of the moving target and, thus,
track the moving target, while the flight altitude of the UAV is acquired from the size of
the landmark pattern imaging. Marut et al. [20] introduced a simple and low-cost visual
landing system. The system uses Aruco markers and obtains candidate marker points by
extracting contours, filtering, and other image processing techniques and then compares
them with a marker dictionary to determine the location of the markers. Yuan et al. [21]
proposed a hierarchical vision-based open landing and positioning method for rotary wing
UAVs. This method defines the landing of UAVs as “Approaching”, “Adjustment”, and
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“Touchdown” and develops the corresponding detection and positioning systems for these
three phases. In addition, a federated Extended Kalman Filter (EKF) is designed to evaluate
the attitude of UAVs. Zhou et al. [23] designed a monocular camera-based AprilTages
visual positioning algorithm for UAV positioning and state estimation. They design a
number of different sizes of labels to enable UAVs to position themselves at different
altitudes. Xiu et al. [30] proposed a tilt-rotor quadrotor model for autonomous landing,
which controlled the motor direction by using four servos so as to control UAVs’ positions
and attitudes, achieving tilt-rotor parking and tilting flight. This model controls UAVs’
positions and attitudes more precisely, which enables a more effective landing for UAVs.
Sefidgar et al. [31] designed a landing system with sensors that consisted of four ToF sensors
and a monocular camera. First, the features of the AprilTag pattern are extracted by the
designed algorithm to find the center point and calibrate it. Then, the sensor contacts are
used to set up coordinate equations, and focal lengths in X and Y directions are solved to
derive the coordinates of the ground pattern. With the continuous research and exploration
of researchers, traditional image processing algorithms have undoubtedly made great ef-
forts to improve the accuracy of UAV landing. However, their good performance depends
on a good imaging environment, and the algorithm’s performance will be significantly
degraded under the situations of insufficient light, complex background, occlusion, scale
transformation, etc. It is difficult to meet the actual demand for centimeter-level landing
errors for UAVs in different scenes. Table 1 shows the comparison of different visual
landing methods.

Table 1. The comparison of different visual landing methods.

Methods Landmark Pattern Type Landing Accuracy Test Type

[26] Feature point extraction, area
segmentation, and motion estimation. Square Position 5 cm

Pose 5◦ Landing test

[27] Optical flow sensor, fixed threshold,
segmentation, and contour detection. Orthohexagon and circular Position 3.8 cm Landing test

[28] Contour extraction and filtering. ArUco 10% error rate Landing test

[29] Optical flow sensors and extended
Kalman filter Square Position 6.4 cm

pose 0.08◦ Landing test

[30] Histogram of oriented gradients (HOG)
and normalized cross-correlation (NCC). AprilTag Landing error within

(−20 cm, +50 cm) Landing test

[31] Canny, Adaptive thresholding and
Levenberg–Marquardt (LM). Combination patterns Position < 10 cm Simulation

[32] Contour extraction and 3D rigid
body transformation. AprilTag X: 0.47 cm

Y: 0.42 cm Simulation

Deep learning methods have been developed rapidly in recent years [32,33]. In 2014,
Girshick et al. [34] proposed RCNN (Region-based Convolutional Neural Networks, RCNN)
and introduced deep learning into target detection for the first time, opening a new chapter
for target detection. Deep-learning-based target detection algorithms have also become
a hot topic for scholars in recent years. Many scholars have successively proposed two-
stage detection networks such as SPPNet (Spatial Pyramid Pooling in Deep Convolutional
Networks, SPPNet) [35], FastR-CNN, and FasterR-CNN [36], which use RPN (Region
Proposal Network, RPN) [37] to generate a large number of candidate frames to improve the
recall rate, and the confidence of these candidate frames is not utilized in the inference stage,
which reduces the inference speed. In 2016, Redmon et al. [38] proposed the first version
of the YOLO (You Only Look Once, YOLO) series of single-stage networks, YOLOv1,
which surpassed the detection speed of two-stage detectors. Moreover, its accuracy is
continuously improveed by subsequent researchers, which is comparable to that of two-
stage detection networks, meeting the requirements of most industrial scenarios. As a
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result, the YOLO series has also become the mainstream target detection algorithm in the
industry. Deep learning models have powerful learning and characterization capabilities,
and their utility and generalization capabilities are stronger [39,40]. Therefore, they are
considered to be introduced into the autonomous landing process of UAVs in order to solve
the various environmental interference problems mentioned and to further improve the
detection speed.

3. Methods

According to the different visual imaging of UAVs at different altitudes, this paper
designs a high-altitude visual positioning algorithm and a low-altitude visual positioning
algorithm to guide UAVs to land accurately. When UAVs return to the vicinity of the target
point, they automatically adjust the direction of the camera, return the video captured
by the camera, detect it by a trained detector, and output the number and coordinates of
special patterns of the image. The visual positioning algorithm automatically selects a
high-altitude positioning algorithm or a low-altitude positioning algorithm by calculating
the area and number of patterns. The algorithm flow is shown in Figure 1.
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Figure 1. Flow chart of the proposed UAV visual positioning algorithm based on A-YOLOX. Firstly,
the actual acquisition data and the synthesized data are used to train the A-YOLOX model to obtain a
detector with good accuracy and robustness; then, the detector is used for target detection during
UAV landing, and the high-altitude visual positioning algorithm is called when the number of
detected target frames is N < 4 or N > 7, and the low-altitude visual localization algorithm is called
when the number of target frames is 4 ≤ N ≤ 7.

3.1. The Construction of UAV-VPD

A pattern that facilitates fast recognition for a detection algorithm is an important
condition for UAVs to land accurately at the designated location. When the UAV flies over
the landing point, it obtains ground information through the camera and then adjusts its
orientation and lands toward the target point after valid information is detected. The design
of the visual positioning pattern mainly follows two principles: feature discriminability
and visual imaging adaptability. Feature discriminability: in order to make the model easy
to recognize, the basic circular and square patterns are used in designing visual positioning
patterns. However, the single basic pattern is not conducive to feature discrimination, so
the circles and squares are combined inline to improve feature discriminability; visual
imaging adaptability: there are two stages in the landing process of the UVA: high-altitude
phase and low-altitude phase. Since the visual imaging of the UAV changes continuously
during the landing process and the pixel area of the target pattern gradually increases, in
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order to avoid the loss of the visual pattern due to the narrow field of view of the UAV
at low altitude, the designed positioning pattern adopts the mutual fusion of large and
small patterns. In other words, six small patterns are added inside a large pattern, whose
structure is similar to the large pattern. It is worth noting that with such a design, end-to-
end high- and low-altitude visual positioning can be achieved with only one model so as to
complete an efficient UAV parking and landing process. In actual application scenarios, for
the weak GPS signal, UAVs will pre-bind QR codes on the apron to assist themselves in
finding the location of visual positioning patterns. The visual positioning pattern is shown
in Figure 2.
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To construct the UAV-VPD, we printed the designed patterns onto KT plate and then
manually operated the UAV to fly and shoot the patterns. During the shooting process,
since the adjacent frames of the video have extremely high similarity, we tried to put the
KT plate in different positions of the frame during the acquisition process instead of simply
having the KT plate presented in the center of the video frame. Furthermore, for the sake
of improving the fit of the data in actual application scenarios, videos of different scenes,
different periods, different heights and angles were collected during data collection; then, a
total of 6541 images were obtained after video split-frame processing and data cleaning;
finally, the visual positioning patterns were labeled by the open source labeling software.
Remarkably, when the UAV returns to a relatively high position over the target location,
only the outer frame of the visual positioning pattern needs to be marked. When the UAV
is at low altitude, the six small marker patterns on the visual positioning pattern can be
clearly seen, so all the markers within the field of view need to be marked. Some of the
collected data are shown in Figure 3.

Since the scenes of UAV inspection are varied, simply relying on manual acquisition
and labeling requires a lot of labor and material costs, and the scenes are also relatively
single, which cannot well fit the real situation of different scenes during UAV inspection.
Therefore, we use data synthesis technology to expand the data of scenes that are difficult to
collect and use the synthesized data together with the real data for model training so as to
improve the accuracy and strengthen the robustness and generalization ability of the model.
The data synthesis uses the copy-paste method [41]. Firstly, 970 background images with
high semantic similarity from different scenes are collected from the Internet using crawler
technology, and then the visual localization patterns are randomly copied and pasted
onto these background images, and the corresponding pattern coordinate information
is extracted, which no longer needs to be re-labeled manually. When UAVs are at a low
altitude and an ultra-low altitude, their imaging pictures only have recognition patterns
and no other objects, and only at a high altitude will other objects be recognized, so we
only need to synthesize the high-altitude data. Some of the synthesized data are shown
in Figure 4.
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Figure 4. Synthetic data.

The data of 6541 images collected from real scenes are combined with the synthetic
data of 970 images to form the UAV-VPD. A large number of images are needed for testing
to achieve an efficient model performance evaluation, so the training set, validation set,
and test set are divided in the ratio of 2:2:6. The details are shown in Table 2.

Table 2. Database composition and division.

Data Division Training Set Validation Set Test Set

Training set:Validation set:Test set = 2:2:6
High:Low:Ultra Low = 4:2:4 1557 1769 4185

3.2. Object Detection Algorithm A-YOLOX

The proposed target detection algorithm A-YOLOX is based on YOLOX with the
addition of CBAM (Convolutional Block Attention Module) [42], allowing CBAM to be
used throughout the backbone network part of the depth model. The CBAM contains two
separate submodules, a channel attention module, and a spatial attention module, which
perform “attention” on the channel and space, respectively. The module structure is shown
in Figure 5.
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Figure 5. CBAM. It consists of a channel attention module and a spatial attention module and
operates sequentially on the channel and in space.

Assuming an intermediate feature graph F is input, F∈RC×H×W, CBAM first performs
global maximum pooling and average pooling of F by channel, sends the pooled two one-
dimensional vectors into the fully connected layer operation and sums them to generate
one-dimensional channel attention MC ∈ RC×1×1; then, multiply MC with the input ele-
ment F to obtain the channel attention-adjusted feature graph F′. Secondly, F′ is conducted
global maximum pooling and average pooling by space, and the two two-dimensional
vectors generated by pooling are stitched together and subjected to convolution opera-
tion to eventually generate two-dimensional spatial attention MS ∈ R1×H×W . Finally,
the output feature F′′ is obtained by multiplying MS with F′ by elements. The CBAM
generation attention process can be described by Equations (1) and (2), where ⊗ denotes
the corresponding element multiplication.

F′ = Mc(F)⊗ F (1)

F′′ = MS(F′)⊗ F′ (2)

The A-YOLOX network is mainly composed of three parts, which are CSPADarkNet
(Cross Stage Partial Attention DarkNet, CSPADarkNet) backbone network, FPN (Feature
Pyramid Networks, FPN) [43] feature fusion network, and detection heads, as shown in
Figure 6. DarkNet is a classical deep framework, which is often used as the backbone
network for feature extraction in the YOLO series. Its design process borrows the idea
from residual network ResNet [44] to prevent the gradient from disappearing during
the deepening of the network by adding the residual module to the network, which is
beneficial to the fast convergence of model training. In this paper, CSPDarkNet [45] is
used and combined with CBAM attention mechanism to form CSPADarkNet backbone
feature extraction network, the output of which is three effective feature layers. The three
effective feature layers are then fused by the FPN network, and finally, three different
scales of features: 20 × 20 × 512, 40 × 40 × 256, and 80 × 80 × 128 are output for target
classification and localization. The detection head of A-YOLOX determines whether there
is an object corresponding to it at the feature point by the three feature graphs output by
FPN. The structure of CSPADarknet and the refinement network structure of the detection
head are shown in Figures 7 and 8.
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Figure 6. The network structure of A-YOLOX. Features of the input image are extracted by our
modified CSPADarknet backbone network, and the three extracted effective feature layers are fused
by the FPN network. Then the target is detected and determined by the detection head, and finally,
the prediction result is output.
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Figure 7. The network structure of CSPADarknet and detection head, which is a refined network
structure diagram of the modules in Figure 6.
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Figure 8. The refinement network structure of the CSPADarknet and the detection head, including
the basic composition and order of the sub-modules. CBAM is inserted in the BaseConv between the
Conv layer and the BN layer.

Since the detection head of the network respectively predicts the category, location,
and object boundary frame, the loss function of the network consists of three parts: the
category loss Lcls, the location loss Lreg, and the object boundary frame loss Lobj. Lcls and
Lobj adopt the cross-entropy loss, and Lreg adopts the IoU loss. The formula for calculating
the total loss is shown in Equation (3).

L =
Lcls + λLreg + Lobj

Npos
(3)

In the above equation, λ refers to the balance coefficient of the location loss and Npos
refers to the positive sample number. The A-YOLOX algorithm employs several training
strategies during the training process, such as Exponential Moving Average (EMA), cosine
annealing learning rate, and IOU loss, and uses the means of data enhancement such as
mosaic, horizontal random rotation, and color change.

3.3. The Design of High- and Low-Altitude Visual Positioning Algorithm
3.3.1. High-Altitude Visual Positioning Algorithm

As GPS navigation technology is relatively stable in wide-open areas, when UAVs
receive return instructions at a high altitude, we first use GPS positioning technology to
return the UAVs to a high-altitude position a few dozen meters from the marker pattern.
Then, the landing position can be determined only by recognizing the outer frame of the
visual positioning pattern designed in this paper. The detection algorithm is called in
real-time for recognition, and when the algorithm recognizes the target object, it outputs
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information such as the number and coordinates of the target frame in real-time. The
high-altitude positioning algorithm calculates the target frame area A, confidence degree
P, and comprehensive score S from the information output by the detector, and the target
frame with the highest comprehensive score is the landing position for the target. After the
target frame is determined, the relative distances dx and dy between the central point of the
UAVs and the central point of the target frame can be calculated so as to call UAV flight
control module to allow UAVs to descend slowly toward the center of the pattern. The UAV
flight control adopts PID control mode, and its control quantity is calculated according to
Equation (4).

u(k) = KP · e(k) + KI ·∑
i=0

e(i) + KD · [e(k)− e(k− 1)] (4)

In the above equation, KP refers to the proportional coefficient, KI refers to the integral
time constant, and KD refers to the differential time constant. The target detection algorithm
continuously detects and updates dx and dy, and the flight control algorithm updates e(k),
the deviation distance between the current position and the target position, according to dx
and dy to obtain the control quantity u(k) output by the PID controller, so that UAVs can
quickly and steadily approach the target position until they reach the ideal position. The
flow of the high-altitude visual positioning algorithm is shown in Algorithm 1.

Algorithm 1. High-Altitude Visual Positioning Algorithm.

Step 1
Call the target detection algorithm for the first detection when UVAs return over the
landing site to obtain the position of center point of the camera carried by UAVs
as (xc, yc).

Step 2

a. Take the detected target as the target landing point when only one outer frame of
the visual positioning pattern is detected.
b. Calculate the confidence degree of each detected target when two or more outer
frames of the visual positioning pattern are detected, and score the target frame with
the higher confidence level by the equation S = 0.5 × A + P, thus the target frame
with the highest score being the landing point.

Step 3
Calculate the relative distance between the center point of the camera and the center
point of the visual positioning pattern by equations dx = xc − width/2, and
dy = yc − heigth/2.

Step 4

Calculate the control quantity according to
u(k) = KP · e(k) + KI · ∑

i=0
e(i) + KD · [e(k)− e(k− 1)] to lead UAVs closer to the

target position.

Step 5 Repeat steps 2 to 4.

3.3.2. Low-Altitude Visual Positioning Algorithm

During the slow descent of UAVs, the visual field of the camera will slowly become
narrower, and the outer frame of the pattern will slowly disappear on the imaging. There-
fore, this paper designs a low-altitude positioning logic algorithm according to the actual
situation. The algorithm mainly post-processes the identification results of the six small
logo patterns given by the detector.

When UAVs land at a low-altitude position, firstly, the angle should be calibrated.
Assuming the visual imaging of UAVs is shown in Figure 9, set the coordinates of point A as

(x1, y1), point B as (x2, y2), point C as (x3, y3), and point O as (x, y). Calculate vector
∣∣∣∣ →AB

∣∣∣∣,∣∣∣∣ →AC
∣∣∣∣, and

∣∣∣∣ →BC
∣∣∣∣ to determine whether the triangle is isosceles triangle, and find the vertex

(assumed to be A) and the bottom side of the isosceles triangle, and the midpoint D (x4, y4)

of the bottom side; then, the vector
∣∣∣∣ →AD

∣∣∣∣ is the most optimal direction for UAV’s landing.

The midpoints of the upper and lower edges of the screen are P1 and P2, respectively, and
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the vector
∣∣∣∣ →P1P2

∣∣∣∣ is the current orientation for UAVs. Therefore, our main task is to control

UAVs to make attitude adjustments so that the pinch angle θtends to 0. θ is calculated as
shown in Equation (5).

θ = arg cos
(
→

AD,
→

P1P2)∣∣∣∣ →AD
∣∣∣∣ · ∣∣∣∣ →P1P2

∣∣∣∣ (5)
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After UAVs have completed angle correction, they need to perform position regression,
which is to find the coordinates of the best landing point. As can be seen from Figure 9, in
the case that the angle correction has been completed, the detection frame at the top of the
isosceles triangle is the point we need.

4. Results and Discussion

This experiment is conducted on the ubuntu 18.04 system with Intel Xeon(R) E3-
1241 v3@3.50 GHz processor. Its running memory is 24 Gb, the graphics card is NVIDIA
GTX1080, the video memory is 8 Gb, and the parallel computing framework version
is cuda10.2.

To evaluate the model performance, we use the target detection evaluation metrics
of the COCO database as our evaluation metrics in this paper. AP50 and AP75 are the
average accuracy at IoU = 0.5 and IoU = 0.75, respectively. mAP is the average of the
average accuracy of the IoU from 0.5 to 0.95, in a step length of 0.05. The detection speed is
evaluated by Frames Per Second (FPS).

4.1. Experiment to Verify the Validity of Synthetic Data

To improve the accuracy and generalization of the model, we start with the data and
fit as many real-world application scenarios as possible. We also increase the number and
complexity of the training set. However, it is not easy to obtain the data in the actual scenes,
which are usually collected and labeled manually, requiring extremely huge manpower,
physical resources, and time costs, so we start from synthetic images and synthesize the
data of different scenes similar to the actual scenes offline.

In this paper, there are 1557 images in the training sets, of which 970 are synthetic
images and 587 are real images. Both the validation set and the test set are actual
acquisition data.

As can be seen from Table 3, the AP50 is 51.8% when obtained by training with only
970 synthetic images. Since the synthetic images only include the high-altitude part of the
scene, but the test set contains both high-altitude and low-altitude images, so the accuracy
of the test is not very high, yet it is sufficient to show that the synthetic data is effective
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for the detection algorithm. Adding synthetic data and real data together to the training
can reach an accuracy of 95.5%, which is nearly 3% higher than when training with only
real data.

Table 3. Experimental comparison of synthetic data.

Train Set Validation Set Test Set AP50 (%) mAP (%)

970 (synthetic images) 1769 4145 51.8 33.6%
587 (real images) 1769 4145 92.8 76.3

1557 (real images + synthetic images) 1769 4145 95.5 77.3

4.2. Experiments on Attention Mechanism

The attention mechanism was introduced mainly to enhance the poor effectiveness
of the model on small and medium targets. It is desirable to validate the detection perfor-
mance of the model on small, medium, and large targets so as to exhaustively verify the
effectiveness of our model.

As shown in Table 4, the attention mechanism is beneficial to improve the detection
accuracy of small and medium targets by 0.5% and 2%, respectively, which is helpful for
UAVs to accurately identify the visual localization pattern at a high altitude and accurately
locate the small graphs in the visual localization pattern at a low altitude. Since there are
more computational parameters after the introduction of the attention mechanism, the FPS
is much lower, but the speed of 53.7 frames per second can still meet the requirements of
real-time detection.

Table 4. Experimental comparison of attention mechanisms.

Attentional
Mechanisms

mAP (%)
(Small Targets)

mAP (%)
(Medium Targets)

mAP (%)
(Large Targets) FPS

No 35.7 66.3 87.2 149.9
Yes 36.2 68.3 87.1 53.7

4.3. Performance Comparison Experiments of Target Detection Algorithm

This paper researches the target-detection-based UAV vision localization algorithm.
The detector in the vision localization algorithm can be replaced with arbitrary target
detection models. To demonstrate the superiority of A-YOLOX, experiments are conducted
to compare it with the target detection algorithms commonly used today. The backbone
network of each model in the experiments is DarkNet53; the Epoch is 300. The learning
rate is set to 0.01, and the BatchSize is 8. To be fair, all parameters are used with the
same hyperparameter.

As can be seen from Table 5, A-YOLOX has a distinct advantage in the AP50 and mAP
metrics, and its accuracy rate exceeds that of other models, especially in the mAP metric,
which reaches 77.3% more than 10 points higher than other models. RetinaNet’s AP50
reached 93.4%, which is very similar to A-YOLOX’s 95.5%, but its FPS is only 6.89 frames
per second, which cannot satisfy the demands of real-time detection. Taken together, the
A-YOLOX offers the performance of both detection efficiency and accuracy.

Table 5. Performance comparison experiments of target detection algorithms.

Model FPS mAP (%) AP50 (%) AP75 (%)

DETR [46] 4.93 43.1 76.4 46.9
YOLOR [47] 26.5 61.2 91.5 75.2

CenterNet2 [48] 10 62.3 85.8 75.8
Faster-rcnn [31] 11.45 64.1 88.9 77.1
RetinaNet [49] 6.89 62.6 93.4 76.6

A-YOLOX[OURS] 53.7 77.3 95.5 84.6
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4.4. Drone Actual Landing Experiment

We deployed the trained model to the local server for the actual landing test. In order
to measure the deviation size of the actual landing point of UAVs more intuitively, the
coordinate system was established with the vertex of the isosceles triangle in the visual
positioning pattern as the reference point, the direction of the UAV nose as the positive
Y-axis direction and the 90◦ clockwise rotation as the positive X-axis direction. The data and
pictures recorded during the return flight of the UAV are shown in Table 6 and Figure 10.

Table 6. Experimental data of actual landing.

Test Serial
Number

X-Direction
(Unit: cm)

Y-Direction
(Unit: cm)

Image
Number

1 5.5 2.1 01
2 1.0 2.4 02
3 2.7 4.1 03
4 1.0 3.1 04
5 4.0 2.5 05
6 2.5 4.5 06
7 6.3 0.8 07
8 2.0 0 08
9 0.5 0.5 09
10 0 0 10
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Figure 10. Actual landing pictures of drone. The pictures numbered 01, 07, 08, 09, and 10 are the
landing results in strong light environment, while the rest are the landing results in non-strong
light environment.

According to the above data, the average deviation value µx of the UAV in the X-axis
direction can be calculated as 2.56 cm, the average deviation µy in the Y-axis direction
as 2.0 cm, and the variance σx and σy in the X-axis direction and Y-axis direction are 4.07
and 2.40, respectively. Overall, our UAV’s positioning algorithm achieves a centimeter-
level landing error, which meets the industry precision positioning landing requirements.
However, during the descent process, as it will inevitably be affected by the external airflow
and its own wind field generated by the high-speed rotation of the UAV wings, the UAV
tends to sway from side to side, so the landing position in the X-axis direction changes a
bit more.
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Actually, we conduct landing tests on sunny and cloudy days, as well as in the
morning, noon and afternoon. As shown in Figure 10, the pictures numbered 01, 07, 08,
09, and 10 are the landing results in a strong light environment, while the rest are the
landing results in a non-strong light environment. The tests are carried out in different
areas, such as car parks, intersections, and rooftops. After calculation, it can be seen that
in the non-bright light environment, the average deviation µx in the X-axis direction is
equal to 2.24 cm; the average deviation µy in the Y-axis direction is equal to 3.32 cm, the
variance σx is equal to 1.29, and σy is equal to 1.88. In comparison, in the bright light
environment, the mean deviation µx is equal to 2.86 cm in the x-axis direction, µy is equal
to 0.68 cm in the y-axis direction, and the variance σx is equal to 6.66 and σy is equal to 0.6.
The difference in average landing accuracy between the two conditions is small, but the
stability of the UAV landing in non-bright light conditions is much better than in bright
light conditions. However, in terms of overall landings, our UAV positioning algorithm
achieves centimeter-level landing errors in both bright light and non-bright light conditions.

During the actual test process, we find that the ambient wind has an effect on the
UAV landing. The landing time of UAVs becomes longer as the wind increases. The main
reason is that the wind makes UAVs sway, so the flight control algorithm has to constantly
adjust UAVs’ position according to the target detection results in order to land UAVs
in an accurate position. Therefore, the constant adjustment process will cause a longer
landing time. Fortunately, the target detection algorithm is still able to accurately detect the
target frame of the visual positioning pattern under these circumstances. Thus, the visual
positioning algorithm still shows good robustness under the influence of light changes,
scene changes, and ambient wind.

5. Conclusions and Future Work

The combined application of UAV technology and computer vision technology is of
great value and research significance in both civilian and military fields. In this paper,
in order to improve the accuracy of automatic landing for UAVs, based on the actual
situation that the performance of traditional image processing algorithms is sensitive to
environmental changes, we introduce deep learning methods into target detection, propose
the A-YOLOX target detection algorithm, and improve the training model with data syn-
thesis technology and an attention mechanism to enhance the accuracy and generalization
of the detection network. The corresponding high- and low-altitude visual localization
algorithms are designed for the height change and visual transformation of UAV landing,
and the landing test is conducted in the actual scene. The experimental results show that
the proposed algorithm can achieve a processing speed of 53.7 frames/second and an
accuracy rate of 95.5%, and the actual landing error is within 5cm, which effectively solves
the problem of low landing accuracy under changing light, scale change, and complex
background, thus realizing the high-precision autonomous landing for UAVs.

Although our model performs relatively better, we have to admit that it still has some
limitations. For example, there is hovering in complex scenes. Although UAVs can still
land in the expected position, the process consumes a certain amount of time. There may be
some safety risks in low-power situations. In addition, the stability of UAVs when landing
is slightly poor in strong ambient wind conditions, and they tend to swing. Therefore, there
is room for further improvement of the control algorithm. In the future, we will continue to
work on the basis of the current research to continuously improve these deficient aspects
and achieve a more efficient and accurate autonomous landing for UAVs.
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