
Citation: Arias-Perez, P.;

Fernández-Conde, J.; Martin Gomez,

D.; Cañas, J.M.; Campoy, P. A

Middleware Infrastructure for

Programming Vision-Based

Applications in UAVs. Drones 2022, 6,

369. https://doi.org/10.3390/

drones6110369

Academic Editor: Federico Tombari

Received: 26 October 2022

Accepted: 18 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Middleware Infrastructure for Programming Vision-Based
Applications in UAVs
Pedro Arias-Perez 1 , Jesús Fernández-Conde 2,* , David Martin Gomez 3 , José M. Cañas 2

and Pascual Campoy 1

1 Computer Vision and Aerial Robotics Group, Centre for Automation and Robotics, Universidad Politécnica
de Madrid, 28006 Madrid, Spain

2 Department of Telematic Systems and Computation, Rey Juan Carlos University, Fuenlabrada,
28942 Madrid, Spain

3 Intelligent Systems Lab, Universidad Carlos III de Madrid, Calle Butarque 15, Leganés, 28911 Madrid, Spain
* Correspondence: jesus.fernandez@urjc.es

Abstract: Unmanned Aerial Vehicles (UAVs) are part of our daily lives with a number of applications
in diverse fields. On many occasions, developing these applications can be an arduous or even
impossible task for users with a limited knowledge of aerial robotics. This work seeks to provide a
middleware programming infrastructure that facilitates this type of process. The presented infras-
tructure, named DroneWrapper, offers the user the possibility of developing applications abstracting
the user from the complexities associated with the aircraft through a simple user programming
interface. DroneWrapper is built upon the de facto standard in robot programming, Robot Operating
System (ROS), and it has been implemented in Python, following a modular design that facilitates
the coupling of various drivers and allows the extension of the functionalities. Along with the
infrastructure, several drivers have been developed for different aerial platforms, real and simulated.
Two applications have been developed in order to exemplify the use of the infrastructure created:
follow-color and follow-person. Both applications use techniques of computer vision, classic (image
filtering) or modern (deep learning), to follow a specific-colored object or to follow a person. These
two applications have been tested on different aerial platforms, including real and simulated, to
validate the scope of the offered solution.

Keywords: middleware; aerial robotics; computer vision; deep learning

1. Introduction

The field of robotics and unmanned aerial vehicles (UAVs) is a sector characterized by
strong expansion in recent times, with very relevant growth expectations and increased
demand for qualified personnel at the international level for the coming years.

The importance of autonomous flight has been reflected in a flourishing increment in
the use of UAVs. UAVs are becoming widely used in both military and civil applications,
due to their small size and high maneuverability. The use of UAVs has expanded to almost
all areas, particularly in civil applications. In the area of agriculture, the rapid evolution of
UAVs has led to precision agriculture applications [1] such as aerial crop monitoring and
smart spraying tasks [2]. In the industrial field, UAV developments improve the efficiency
of missions such as industrial inspection (e.g., photovoltaic plants) [3], cargo identification
and delivery, or logistics, strongly linked to visual SLAM techniques (VSLAM). In addition,
UAVs can also be seen in search-and-rescue, topography, or surveillance tasks, among
other applications.

Despite continuous technological advances, the development of applications for UAVs
is still complex. These types of systems are heterogeneous (very different flight platforms),

Drones 2022, 6, 369. https://doi.org/10.3390/drones6110369 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6110369
https://doi.org/10.3390/drones6110369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-7166-9367
https://orcid.org/0000-0001-7197-6789
https://orcid.org/0000-0003-3764-5083
https://orcid.org/0000-0003-4179-2211
https://orcid.org/0000-0002-9894-2009
https://doi.org/10.3390/drones6110369
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6110369?type=check_update&version=1

Drones 2022, 6, 369 2 of 25

with many integrated components (autopilots, control and stabilization subsystems, com-
munications, navigation, perception, etc.), and need to perform correctly in dangerous
scenarios, where a single error can lead to the crash of the aircraft or damage to third parties.

For this reason, and due to the large social and economic expansion that this field is
undergoing, it has been observed that there is a need for tools that facilitate the development
of applications for the extended use of UAVs. These tools should allow abstracting from
the complexities associated with an aircraft and even from the development platform itself.

This work pursues that end. It seeks to provide the user with an environment for
the programming and navigation of aerial robots, which allows users to focus their efforts
on building up only the final application of the UAV, forgetting about the rest of the
complexities. This article details the design, implementation, and testing of a middleware
infrastructure for the programming and navigation of aerial robots. The design follows
a modular structure where the different blocks that make up the system can be replaced
for adaptation to the problem. This modularity, in turn, allows the reuse of the code in
various circumstances.

The middleware infrastructure developed allows the programming and navigation of
UAVs, creating a software solution that offers the user a well-defined Application Program-
ming Interface (API) that facilitates and homogenizes the development of applications.

The proposed middleware infrastructure is intuitive and easy to use (users do not
have to be UAV experts), as well as robust and safe, as it is software that works directly
with aerial robots. It should be noted that the applications built on top of our middleware
infrastructure can be created by users not conscious of the rest of the software involved and
even the aircraft used. In addition, the developed infrastructure is focused on users not
possessing expertise in UAVs (although they should have some basic notions of robotics).

This middleware is intended for the use of different aerial platforms. Thus, a major
objective of the infrastructure is that it should be platform-independent and capable of
being used with aircraft of different natures within multi-copters. A variety of multi-copters
used during the tests will give a better perspective of the scope of the work carried out.

Among the possible applications, the middleware developed seeks to offer solutions
for the creation of autonomous navigation algorithms. Beyond the typical outdoor GPS-
based position control, indoor position-based applications (in the absence of GPS) are
being explored, such as visual auto-location algorithms (visual SLAM), or visual control
applications, not based on position.

In order to validate the infrastructure developed, two different illustrative applications
have been implemented, similar to those that may be developed by future users. These
applications will make use of the middleware infrastructure developed and will be based on
visual reactive control, showing examples of different levels of technical difficulty. We will
start from the basic use of the tools collected in this work, progressing to the development
of navigation algorithms based on deep learning.

Related Work

In [4], an architecture and open-source software framework for aerial robotics is
presented, named Aerostack. This architecture integrates a complete multi-layered ar-
chitectural organization to support fully autonomous flights and a versatile software
framework for multiple uses. It is compatible with several well-known aerial platforms.
The authors mention that there is room for improvement in the intelligent layer and ro-
bustness of the platform. Besides, there is no reference to simulated platforms or computer
vision algorithms.

A software layer to abstract the users of unmanned aerial vehicles from the specific
hardware of the platform and the autopilot interfaces is presented in [5]. The main objective
of this aerial vehicle abstraction layer is to simplify the development and testing of higher-
level algorithms in aerial robotics by trying to standardize and simplify the interfaces
with unmanned aerial vehicles. This UAV abstraction layer can work seamlessly with
simulated or real platforms, providing calls to issue standard commands such as taking off,

Drones 2022, 6, 369 3 of 25

landing or pose, and velocity controls. A stable version is available for public use. All the
code has been implemented in C++ language. Several use cases are presented (multiple
drones for media production, autonomous inspection, aerial manipulation), but no modern
vision-based applications (using deep learning techniques) are addressed.

A multirotor UAV control and estimation system for supporting replicable research
through realistic simulations and real-world experiments is introduced in [6]. A unique
multi-frame localization paradigm for estimating the states of a UAV in various frames
of reference using multiple sensors simultaneously is proposed. An actively maintained
and well-documented open-source implementation, including realistic simulation of UAVs,
sensors, and localization systems is provided.

Regarding infrastructures that work only with simulated UAVs, a modular simulation
framework is proposed in [7]. The simulator was designed in a modular way, such that
different controllers and state estimators can be used interchangeably; incorporating new
UAVs is reduced to a few steps. Another multi-rotor UAVs’ simulation platform is presented
in [8]. It is customizable and open-source. This platform (XTDrone) integrates dynamic
models, sensor models, control and state estimation algorithms, and 3D scenes. Users
can test their own algorithms, such as SLAM, object detection, motion planning, attitude
control, multi-UAV cooperation, and cooperation with other robots on the platform.

Concerning reactive vision-based applications for UAVs, some research works worth
mentioning are a robust and accurate vision-based landing technology for drones on
moving targets [9], real-time visual object tracking [10], image-based indoor visual tracking
of 3D objects [11], a visual tracking system for a drone to follow an omnidirectional mobile
robot and land on it when it stops moving [12], and a deep learning network for vision-
based UAV recognition [13].

2. Materials and Methods
2.1. Hardware

In coherence with the objectives of the project, three different UAVs were selected on
which to carry out the tests of the developed software. The choice of these UAVs was made
to cover a wide range of options, the three quadcopters being very different from each
other. Among those selected are real/simulated, proprietary/free, and indoor/outdoor
flight UAVs. Covering a wide variety of possibilities means providing the software with
high versatility and being more easily extensible to other platforms in the future. The three
chosen aircraft are the following: simulated 3DR Iris; DJI Tello; and self-built PX4.

First up is a simulated aircraft, 3DR Iris from 3D Robotics. Using a simulated aircraft
in the early stages of development offers great advantages in time and cost savings since
errors in the code do not cause damage to the material. The aircraft uses PX4 as an autopilot
and is simulated by Gazebo. More details about this aircraft will be given in the software
section (see Section 2.2).

The second aircraft selected was the DJI Tello (Figure 1). It is a proprietary aircraft
designed for indoor flights due to its small size and weight. It includes a telemetric sensor
(optical flow) and a barometer, for odometry calculations, a vision sensor, and a Wi-Fi
antenna for communications.

Due to its characteristics, it is appropriate for carrying out the first indoor navigation
tests. Its size and weight ensure limited damage to third parties in the event of an accident,
and despite its appearance, it is a robust aircraft with great flight performance. In addition,
the manufacturer itself offers a development kit (SDK) for programming applications on
the drone. However, its use is limited by communication with the ground station since the
processing cannot be completed onboard the aircraft.

Thirdly, a self-built drone [14] developed by A. Madridano together with the Intelligent
Systems Laboratory of the Carlos III University of Madrid [15] was chosen. The aircraft has
a PixHawk v1 controller (manufactured by 3D Robotics, Berkeley, CA, USA), with the PX4
autopilot in its latest stable version. The aircraft has a computer onboard that allows for

Drones 2022, 6, 369 4 of 25

on-site information processing. It also includes a GPS antenna, a telemetry receiver, and a
Wi-Fi antenna, among other sensors.

Drones 2022, 6, x FOR PEER REVIEW 4 of 26

Figure 1. DJI Tello UAV.

Due to its characteristics, it is appropriate for carrying out the first indoor navigation
tests. Its size and weight ensure limited damage to third parties in the event of an accident,
and despite its appearance, it is a robust aircraft with great flight performance. In addition,
the manufacturer itself offers a development kit (SDK) for programming applications on
the drone. However, its use is limited by communication with the ground station since
the processing cannot be completed onboard the aircraft.

Thirdly, a self-built drone [14] developed by A. Madridano together with the Intelli-
gent Systems Laboratory of the Carlos III University of Madrid [15] was chosen. The air-
craft has a PixHawk v1 controller (manufactured by 3D Robotics, Berkeley, CA, USA),
with the PX4 autopilot in its latest stable version. The aircraft has a computer onboard that
allows for on-site information processing. It also includes a GPS antenna, a telemetry re-
ceiver, and a Wi-Fi antenna, among other sensors.

This quadcopter, shown in Figure 2, is intended for use in the later stages of devel-
opment as it is the most powerful aircraft of the three. Performing the processing on board
allows more complex tasks to be carried out outdoors without limitations with communi-
cation with the ground station that could otherwise become a bottleneck.

Figure 2. Non-commercial UAV.

The increased interest in real-time vision applications has led to the development of
low-power embedded devices for integration into mobile robotic systems. Examples of
these are devices such as Arduino [16] or Raspberry Pi [17], used in small robots such as
PiBot [18] or GoPiGo [19].

Nevertheless, to execute complex algorithms, such as neural networks, the devices
mentioned are not suitable and it is necessary to use specific devices. A viable alternative
is to use Jetson devices manufactured by NVIDIA [20]. Each NVIDIA Jetson is a complete
system-on-module (SOM) that includes the CPU, GPU, memory, power management,

Figure 1. DJI Tello UAV.

This quadcopter, shown in Figure 2, is intended for use in the later stages of devel-
opment as it is the most powerful aircraft of the three. Performing the processing on
board allows more complex tasks to be carried out outdoors without limitations with
communication with the ground station that could otherwise become a bottleneck.

Drones 2022, 6, x FOR PEER REVIEW 4 of 26

Figure 1. DJI Tello UAV.

Due to its characteristics, it is appropriate for carrying out the first indoor navigation
tests. Its size and weight ensure limited damage to third parties in the event of an accident,
and despite its appearance, it is a robust aircraft with great flight performance. In addition,
the manufacturer itself offers a development kit (SDK) for programming applications on
the drone. However, its use is limited by communication with the ground station since
the processing cannot be completed onboard the aircraft.

Thirdly, a self-built drone [14] developed by A. Madridano together with the Intelli-
gent Systems Laboratory of the Carlos III University of Madrid [15] was chosen. The air-
craft has a PixHawk v1 controller (manufactured by 3D Robotics, Berkeley, CA, USA),
with the PX4 autopilot in its latest stable version. The aircraft has a computer onboard that
allows for on-site information processing. It also includes a GPS antenna, a telemetry re-
ceiver, and a Wi-Fi antenna, among other sensors.

This quadcopter, shown in Figure 2, is intended for use in the later stages of devel-
opment as it is the most powerful aircraft of the three. Performing the processing on board
allows more complex tasks to be carried out outdoors without limitations with communi-
cation with the ground station that could otherwise become a bottleneck.

Figure 2. Non-commercial UAV.

The increased interest in real-time vision applications has led to the development of
low-power embedded devices for integration into mobile robotic systems. Examples of
these are devices such as Arduino [16] or Raspberry Pi [17], used in small robots such as
PiBot [18] or GoPiGo [19].

Nevertheless, to execute complex algorithms, such as neural networks, the devices
mentioned are not suitable and it is necessary to use specific devices. A viable alternative
is to use Jetson devices manufactured by NVIDIA [20]. Each NVIDIA Jetson is a complete
system-on-module (SOM) that includes the CPU, GPU, memory, power management,

Figure 2. Non-commercial UAV.

The increased interest in real-time vision applications has led to the development of
low-power embedded devices for integration into mobile robotic systems. Examples of
these are devices such as Arduino [16] or Raspberry Pi [17], used in small robots such as
PiBot [18] or GoPiGo [19].

Nevertheless, to execute complex algorithms, such as neural networks, the devices
mentioned are not suitable and it is necessary to use specific devices. A viable alternative is
to use Jetson devices manufactured by NVIDIA [20]. Each NVIDIA Jetson is a complete
system-on-module (SOM) that includes the CPU, GPU, memory, power management,
high-speed interfaces, and more, enabling the execution of CUDA [21], a low-level parallel
computing library, as well as various toolkits (such as JetPack SDK [22]) designed to
optimize processes running on the device.

The size and power consumption of these devices make them ideal systems for em-
barking on aerial vehicles. There are different models available such as the Jetson Nano, the
Jetson TX2, or the Jetson AGX Xavier. In our case, the Jetson AGX Xavier has been selected
as part of the aircraft. Figure 3 shows the main elements of the device.

Drones 2022, 6, 369 5 of 25

Drones 2022, 6, x FOR PEER REVIEW 5 of 26

high-speed interfaces, and more, enabling the execution of CUDA [21], a low-level parallel
computing library, as well as various toolkits (such as JetPack SDK [22]) designed to op-
timize processes running on the device.

The size and power consumption of these devices make them ideal systems for em-
barking on aerial vehicles. There are different models available such as the Jetson Nano,
the Jetson TX2, or the Jetson AGX Xavier. In our case, the Jetson AGX Xavier has been
selected as part of the aircraft. Figure 3 shows the main elements of the device.

Figure 3. NVIDIA Jetson AGX Xavier.

For the development of visual control applications, it is necessary to have a vision
sensor onboard the aircraft. Both the simulated aircraft and the Tello have an onboard
camera, in the first case a simulated sensor, while in the second, the sensor is integrated
into the drone itself. However, for the self-developed drone, it is necessary to select a cam-
era, since the initial design did not include any. Specifically, the selected sensor is a basic
Victure AC600 USB camera (manufactured by Govicture, Shenzhen, China). The final as-
sembly of the camera system to the UAV is shown in Figure 4.

Figure 4. UAV with camera sensor assembled.

2.2. Software
The language chosen for the development of the middleware infrastructure was Py-

thon [23]. In addition, for certain aspects of development, C++ was also used [24].
The selected robotic software platform is ROS [25,26]. In addition to being the most

widely used platform, it has libraries in different languages that facilitate its use. One of
them is rospy [27], a Python client that allows rapid interaction with ROS nodes, services,
and parameters.

Figure 3. NVIDIA Jetson AGX Xavier.

For the development of visual control applications, it is necessary to have a vision
sensor onboard the aircraft. Both the simulated aircraft and the Tello have an onboard
camera, in the first case a simulated sensor, while in the second, the sensor is integrated into
the drone itself. However, for the self-developed drone, it is necessary to select a camera,
since the initial design did not include any. Specifically, the selected sensor is a basic Victure
AC600 USB camera (manufactured by Govicture, Shenzhen, China). The final assembly of
the camera system to the UAV is shown in Figure 4.

Drones 2022, 6, x FOR PEER REVIEW 5 of 26

high-speed interfaces, and more, enabling the execution of CUDA [21], a low-level parallel
computing library, as well as various toolkits (such as JetPack SDK [22]) designed to op-
timize processes running on the device.

The size and power consumption of these devices make them ideal systems for em-
barking on aerial vehicles. There are different models available such as the Jetson Nano,
the Jetson TX2, or the Jetson AGX Xavier. In our case, the Jetson AGX Xavier has been
selected as part of the aircraft. Figure 3 shows the main elements of the device.

Figure 3. NVIDIA Jetson AGX Xavier.

For the development of visual control applications, it is necessary to have a vision
sensor onboard the aircraft. Both the simulated aircraft and the Tello have an onboard
camera, in the first case a simulated sensor, while in the second, the sensor is integrated
into the drone itself. However, for the self-developed drone, it is necessary to select a cam-
era, since the initial design did not include any. Specifically, the selected sensor is a basic
Victure AC600 USB camera (manufactured by Govicture, Shenzhen, China). The final as-
sembly of the camera system to the UAV is shown in Figure 4.

Figure 4. UAV with camera sensor assembled.

2.2. Software
The language chosen for the development of the middleware infrastructure was Py-

thon [23]. In addition, for certain aspects of development, C++ was also used [24].
The selected robotic software platform is ROS [25,26]. In addition to being the most

widely used platform, it has libraries in different languages that facilitate its use. One of
them is rospy [27], a Python client that allows rapid interaction with ROS nodes, services,
and parameters.

Figure 4. UAV with camera sensor assembled.

2.2. Software

The language chosen for the development of the middleware infrastructure was
Python [23]. In addition, for certain aspects of development, C++ was also used [24].

The selected robotic software platform is ROS [25,26]. In addition to being the most
widely used platform, it has libraries in different languages that facilitate its use. One of
them is rospy [27], a Python client that allows rapid interaction with ROS nodes, services,
and parameters.

ROS has different packages that facilitate software development in multiple fields.
Within aerial robotics, there is a collection of extensible MAVLink communication nodes
for ROS known as MAVROS (Micro Air Vehicles ROS) [28]. This ROS package provides
a communication controller for several autopilots with the MAVLink communication
protocol, together with a collection of nodes, services, and parameters that ensure correct
communication with the aircraft. The MAVROS version used is v1.9.0 (Open Robotics,
Mountain View, CA, USA), with MAVLink message collection v2021.3.3.

Drones 2022, 6, 369 6 of 25

For image processing, OpenCV (Open-Source Computer Vision) [29], version v3.2.0
(Intel Corporation, Mountain View, CA, USA), was chosen.

Among the drones used, the simulated 3DR Iris was introduced in the previous
section. As has been anticipated, the simulation is carried out using the Gazebo simulator
(Open Robotics, Mountain View, CA, USA). This open-source simulator is the most used
in robotics and artificial vision applications. Due to its open management, it allows the
integration of multiple vehicles, worlds, sensors, physics, etc. The version used during the
project is Gazebo9. The Iris model simulated in the simulator can be seen in Figure 5. The
model includes two plugins that allow one to obtain images (one frontal and one ventral)
in a similar way to a camera. The firmware used by the controller is PX4 [30] with version
v1.11.3 (Dronecode Foundation, San Francisco, CA, USA), in SITL (“software-in-the-loop”
simulation) mode.

Drones 2022, 6, x FOR PEER REVIEW 6 of 26

ROS has different packages that facilitate software development in multiple fields.
Within aerial robotics, there is a collection of extensible MAVLink communication nodes
for ROS known as MAVROS (Micro Air Vehicles ROS) [28]. This ROS package provides a
communication controller for several autopilots with the MAVLink communication pro-
tocol, together with a collection of nodes, services, and parameters that ensure correct
communication with the aircraft. The MAVROS version used is v1.9.0 (Open Robotics,
Mountain View, CA, USA), with MAVLink message collection v2021.3.3.

For image processing, OpenCV (Open-Source Computer Vision) [29], version v3.2.0
(Intel Corporation, Mountain View, CA, USA), was chosen.

Among the drones used, the simulated 3DR Iris was introduced in the previous sec-
tion. As has been anticipated, the simulation is carried out using the Gazebo simulator
(Open Robotics, Mountain View, CA, USA). This open-source simulator is the most used
in robotics and artificial vision applications. Due to its open management, it allows the
integration of multiple vehicles, worlds, sensors, physics, etc. The version used during the
project is Gazebo9. The Iris model simulated in the simulator can be seen in Figure 5. The
model includes two plugins that allow one to obtain images (one frontal and one ventral)
in a similar way to a camera. The firmware used by the controller is PX4 [30] with version
v1.11.3 (Dronecode Foundation, San Francisco, CA, USA), in SITL (“software-in-the-loop”
simulation) mode.

Figure 5. 3DR Iris simulated UAV in Gazebo.

The embedded device used, the NVIDIA Jetson AGX Xavier, follows highly opti-
mized, embedded design guidelines. A custom version of Ubuntu Linux, called NVIDIA
JetPack, is developed and maintained by NVIDIA company (Santa Clara, CA, USA) and
is available for download and installation as board firmware [22]. This custom implemen-
tation includes low-level interfaces to implement parallel computing operations (CUDA)
and various SDK (Software Development Kit) optimizations, such as TensorRT. For the
developed system, the version used is JetPack 4.6.

For this work, one of the objectives is the development of a deep learning application
in a drone. An already created and widely used neural network, YOLO (You Only Look
Once), has been used. YOLO is a state-of-the-art real-time object detection system, de-
signed by Joseph Redmond up to its third version [31]. This system was continued by
Alexey Bochkovskiy, creator of the most current versions.

Its approach, very innovative when it was launched, allows it to reach very high ex-
ecution speeds. With this method, the neural network is applied only once to the image.
This network divides the image into regions and predicts bounding boxes and probabili-
ties for each region.

The network version used for this work is YOLOv4 [32]. The default configuration
and weights of the YOLOv4 and YOLOv4-tiny versions have been used. These weights
were obtained by training with the Microsoft COCO (Common Objects in COntext)

Figure 5. 3DR Iris simulated UAV in Gazebo.

The embedded device used, the NVIDIA Jetson AGX Xavier, follows highly optimized,
embedded design guidelines. A custom version of Ubuntu Linux, called NVIDIA JetPack,
is developed and maintained by NVIDIA company (Santa Clara, CA, USA) and is available
for download and installation as board firmware [22]. This custom implementation includes
low-level interfaces to implement parallel computing operations (CUDA) and various SDK
(Software Development Kit) optimizations, such as TensorRT. For the developed system,
the version used is JetPack 4.6.

For this work, one of the objectives is the development of a deep learning application
in a drone. An already created and widely used neural network, YOLO (You Only Look
Once), has been used. YOLO is a state-of-the-art real-time object detection system, designed
by Joseph Redmond up to its third version [31]. This system was continued by Alexey
Bochkovskiy, creator of the most current versions.

Its approach, very innovative when it was launched, allows it to reach very high
execution speeds. With this method, the neural network is applied only once to the image.
This network divides the image into regions and predicts bounding boxes and probabilities
for each region.

The network version used for this work is YOLOv4 [32]. The default configuration and
weights of the YOLOv4 and YOLOv4-tiny versions have been used. These weights were
obtained by training with the Microsoft COCO (Common Objects in COntext) database [33],
which has 80 different classes and more than 300,000 images, and one and a half million
labeled objects.

3. Middleware Infrastructure Developed: DroneWrapper

The general outline of the problem is presented in Figure 6. Three different layers
are distinguished in the scheme. At the bottom is the layer corresponding to the aircraft,
while at the top is the user, interested in developing an application to control the aircraft.

Drones 2022, 6, 369 7 of 25

In between is the tool developed, which faces the challenge of communicating with the
aircraft, generally a complex task, and offering the user a simple interface.

Drones 2022, 6, x FOR PEER REVIEW 7 of 26

database [33], which has 80 different classes and more than 300,000 images, and one and
a half million labeled objects.

3. Middleware Infrastructure Developed: DroneWrapper
The general outline of the problem is presented in Figure 6. Three different layers are

distinguished in the scheme. At the bottom is the layer corresponding to the aircraft, while
at the top is the user, interested in developing an application to control the aircraft. In
between is the tool developed, which faces the challenge of communicating with the air-
craft, generally a complex task, and offering the user a simple interface.

Figure 6. Multi-layer scheme of the middleware infrastructure.

To solve the problem of communication with the aircraft, it has been decided to use
MAVROS, presented in the previous section. MAVROS establishes an architecture of
nodes, topics, and services that allow communication with the aircraft.

The interaction with the user is solved by offering a ROS package easily importable
from Python. The package, called DroneWrapper, provides a user programming interface
that allows the control of either physical or simulated aircraft. The package has a Drone-
Wrapper class, with the same name as the package, whose methods provide all kinds of
tasks for working with a multi-copter.

It is important to note that the security and robustness objectives are met with MAV-
ROS. Communication has the robustness of ROS, while security is present when using
version 2.0 of MAVLink, which allows, among other security aspects, the encryption of
messages.

With this design, you can see how communication is achieved through MAVROS
and within the presented DroneWrapper package. According to this last scheme, MAV-
ROS has to be able to understand and communicate with both ends of the communication.
DroneWrapper does not present any problem, since it has been developed for this reason,
but the aircraft can cause some difficulty.

MAVROS supports the main flight controllers such as PX4, present in two of the three
aircraft used. However, Tello does not have support from MAVROS, nor from ROS, as it
is a private controller. To solve this problem, a communications driver that simulates
MAVROS, called Tello Driver, was devised and programmed.

Tello Driver offers, in the same way as MAVROS does, a series of nodes and services
that allow communication with DroneWrapper. On the other hand, to communicate with
the aircraft, the official Tello SDK [34] is used, which allows the aircraft to be controlled
with messages specified by the manufacturer. Following this consideration, the presented
scheme is slightly modified. The new design is shown in Figure 7.

Figure 6. Multi-layer scheme of the middleware infrastructure.

To solve the problem of communication with the aircraft, it has been decided to use
MAVROS, presented in the previous section. MAVROS establishes an architecture of nodes,
topics, and services that allow communication with the aircraft.

The interaction with the user is solved by offering a ROS package easily importable
from Python. The package, called DroneWrapper, provides a user programming inter-
face that allows the control of either physical or simulated aircraft. The package has a
DroneWrapper class, with the same name as the package, whose methods provide all kinds
of tasks for working with a multi-copter.

It is important to note that the security and robustness objectives are met with
MAVROS. Communication has the robustness of ROS, while security is present when
using version 2.0 of MAVLink, which allows, among other security aspects, the encryption
of messages.

With this design, you can see how communication is achieved through MAVROS and
within the presented DroneWrapper package. According to this last scheme, MAVROS
has to be able to understand and communicate with both ends of the communication.
DroneWrapper does not present any problem, since it has been developed for this reason,
but the aircraft can cause some difficulty.

MAVROS supports the main flight controllers such as PX4, present in two of the three
aircraft used. However, Tello does not have support from MAVROS, nor from ROS, as
it is a private controller. To solve this problem, a communications driver that simulates
MAVROS, called Tello Driver, was devised and programmed.

Tello Driver offers, in the same way as MAVROS does, a series of nodes and services
that allow communication with DroneWrapper. On the other hand, to communicate with
the aircraft, the official Tello SDK [34] is used, which allows the aircraft to be controlled
with messages specified by the manufacturer. Following this consideration, the presented
scheme is slightly modified. The new design is shown in Figure 7.

Drones 2022, 6, 369 8 of 25
Drones 2022, 6, x FOR PEER REVIEW 8 of 26

Figure 7. Design of the DroneWrapper middleware infrastructure.

Just as the Tello needs a particular communications driver, other aircraft may need
other specific communication drivers to make use of the DroneWrapper tool. Other pe-
ripheral elements may also need drivers to fit into the infrastructure provided. This is the
case of the Victure AC60 USB camera used in the self-built aircraft used. To deliver the
images through the DroneWrapper interface, another driver has also been developed,
called the Victure driver.

Both drivers are presented to the user in the form of ROS packages, which the user
can include in the software framework according to their needs.

Before continuing with the implementation details of the different packages, it is nec-
essary to discuss certain aspects of the design for a better understanding of it. In the first
place, a commitment has been made to design a main horizontal package that brings to-
gether all the common aspects of the infrastructure. On this rests a modular architecture,
where the different modules (drivers, as previously introduced) can be included accord-
ing to the needs of the aircraft or the user.

The design is intended to reflect DroneWrapper as a kind of generic middleware for
multi-copters, independent of the specific low-level drivers for each aircraft. For aircraft
with PX4 and ArduPilot flight controllers, MavLink and MAVROS are used directly as
communication elements. In addition, the DroneWrapper abstracts the fundamental func-
tions such as speed control and position control, as well as data from the usual sensors
onboard the aircraft.

3.1. DroneWrapper Package
DroneWrapper is organized similarly to a typical ROS package. It is wrapped in a

meta-package with other packages, such as Tello Driver. The meta-package aggregates
JdeRobot’s drone widgets. The code is openly available in the JdeRobot
drones/drone_wrapper repository (https://github.com/JdeRobot/drones/tree/melodic-
devel/drone_wrapper, accessed on 26 October 2022).

DroneWrapper, like any ROS package, uses several tools to maintain communica-
tion. These tools are nodes, topics, services, and parameters. Nodes are processes, topics
are communication channels between two nodes, services are communication methods on
request, and parameters are used to store and manipulate data.

The running schematic of DroneWrapper is shown in Figure 8. The graph shows the
topics or message exchange channels. On both sides the different nodes are existing. On
the one hand, MAVROS (/mavros in the figure), is in charge of performing communication
with the aircraft, and on the other hand, DroneWrapper (/drone), is accessible to the user.
The MAVROS node is the standard of the package, which runs as its documentation indi-
cates.

Figure 7. Design of the DroneWrapper middleware infrastructure.

Just as the Tello needs a particular communications driver, other aircraft may need
other specific communication drivers to make use of the DroneWrapper tool. Other periph-
eral elements may also need drivers to fit into the infrastructure provided. This is the case
of the Victure AC60 USB camera used in the self-built aircraft used. To deliver the images
through the DroneWrapper interface, another driver has also been developed, called the
Victure driver.

Both drivers are presented to the user in the form of ROS packages, which the user
can include in the software framework according to their needs.

Before continuing with the implementation details of the different packages, it is
necessary to discuss certain aspects of the design for a better understanding of it. In the
first place, a commitment has been made to design a main horizontal package that brings
together all the common aspects of the infrastructure. On this rests a modular architecture,
where the different modules (drivers, as previously introduced) can be included according
to the needs of the aircraft or the user.

The design is intended to reflect DroneWrapper as a kind of generic middleware
for multi-copters, independent of the specific low-level drivers for each aircraft. For
aircraft with PX4 and ArduPilot flight controllers, MavLink and MAVROS are used directly
as communication elements. In addition, the DroneWrapper abstracts the fundamental
functions such as speed control and position control, as well as data from the usual sensors
onboard the aircraft.

3.1. DroneWrapper Package

DroneWrapper is organized similarly to a typical ROS package. It is wrapped in a meta-
package with other packages, such as Tello Driver. The meta-package aggregates JdeRobot’s
drone widgets. The code is openly available in the JdeRobot drones/drone_wrapper
repository (https://github.com/JdeRobot/drones/tree/melodic-devel/drone_wrapper,
accessed on 26 October 2022).

DroneWrapper, like any ROS package, uses several tools to maintain communication.
These tools are nodes, topics, services, and parameters. Nodes are processes, topics are
communication channels between two nodes, services are communication methods on
request, and parameters are used to store and manipulate data.

The running schematic of DroneWrapper is shown in Figure 8. The graph shows the
topics or message exchange channels. On both sides the different nodes are existing. On the
one hand, MAVROS (/mavros in the figure), is in charge of performing communication with
the aircraft, and on the other hand, DroneWrapper (/drone), is accessible to the user. The
MAVROS node is the standard of the package, which runs as its documentation indicates.

https://github.com/JdeRobot/drones/tree/melodic-devel/drone_wrapper

Drones 2022, 6, 369 9 of 25
Drones 2022, 6, x FOR PEER REVIEW 9 of 26

Figure 8. DroneWrapper ROS nodes and topics graph.

About the topics, we distinguish two groups, the publishers of messages and the re-
ceivers or subscribers of messages. Note that each topic is either a publisher or a subscriber
depending on the node on which attention is focused. The classification is completed on
the DroneWrapper node as the package that is intended to be explained in this section.

Among the message publishers (and to which the application subscribes) are eight
topics, which send aircraft status information, such as position or battery data, along with
camera images (in this case from the plugins when encountering a simulated aircraft).

On the other hand, there is only one subscriber (to whom the application sends mes-
sages), who is in charge of sending commands and action orders to the aircraft. Table 1
shows the topics used along with the type of message used.

Table 1. Topics and types of messages used in DroneWrapper.

Group Topic Message Type
Publisher /mavros/state mavros_msgs/State()
Publisher /mavros/extended_state mavros_msgs/ExtendedState()
Publisher /mavros/local_position/pose geometry_msgs/PoseStamped()
Publisher /mavros/local_position/velocity_body geometry_msgs/TwistStamped()
Publisher /mavros/global_position/global sensor_msgs/NavSatFix()
Publisher /mavros/battery sensor_msgs/BatteryState()
Publisher /iris/cam_frontal/image_raw sensor_msgs/Image()

Figure 8. DroneWrapper ROS nodes and topics graph.

About the topics, we distinguish two groups, the publishers of messages and the re-
ceivers or subscribers of messages. Note that each topic is either a publisher or a subscriber
depending on the node on which attention is focused. The classification is completed on
the DroneWrapper node as the package that is intended to be explained in this section.

Among the message publishers (and to which the application subscribes) are eight
topics, which send aircraft status information, such as position or battery data, along with
camera images (in this case from the plugins when encountering a simulated aircraft).

On the other hand, there is only one subscriber (to whom the application sends
messages), who is in charge of sending commands and action orders to the aircraft. Table 1
shows the topics used along with the type of message used.

Table 1. Topics and types of messages used in DroneWrapper.

Group Topic Message Type

Publisher /mavros/state mavros_msgs/State()
Publisher /mavros/extended_state mavros_msgs/ExtendedState()
Publisher /mavros/local_position/pose geometry_msgs/PoseStamped()
Publisher /mavros/local_position/velocity_body geometry_msgs/TwistStamped()
Publisher /mavros/global_position/global sensor_msgs/NavSatFix()
Publisher /mavros/battery sensor_msgs/BatteryState()
Publisher /iris/cam_frontal/image_raw sensor_msgs/Image()
Publisher /iris/cam_ventral/image_raw sensor_msgs/Image()
Subscriber /mavros/setpoint_raw/local mavros_msgs/PositionTarget()

Drones 2022, 6, 369 10 of 25

Control over the aircraft is achieved through the topic /mavros/setpoint_raw/local. It
is important to note that for the autopilots to be able to respond correctly to these messages,
they need to be in a specific flight mode. In the case of PX4, this flight mode is OFFBOARD.

The PositionTarget() message allows the use of different coordinate frames (coordi-
nate_frame). The application always uses the same axis, FRAME_BODY_NED, which
behaves in the same way as a local axis, fixed to the take-off point, and with a North-East-
Down (NED) orientation, for position data.

This message also allows different types of control, in position, speed, acceleration,
force, and mixed controls, through the last fields of the message. These controls are selected
based on the active “type_mask” mask. Note that not all masks are valid.

DroneWrapper supports three types of control: position control; speed control; and
mixed control based on the speed with fixed flight height. The masks used are illustrated
in Table 2.

Table 2. DroneWrapper masks and active fields for the different types of control.

Control Mask Active Fields

Position 3064 x y z yaw
Velocity 1991 vx vy vz yaw_rate
Mixed 1987 vx vy vz z yaw_rate

In addition to topics, the application makes use of services and parameters. The
services are used to launch requests to aircraft of various kinds. These requests take care of
arming the aircraft, landing, changing modes, and manipulating parameters. Table 3 lists
the services used by DroneWrapper.

Table 3. Services and types of messages used in DroneWrapper.

Service Message Type

/mavros/cmd/arming mavros_msgs/CommandBool()
/mavros/cmd/land mavros_msgs/CommandTOL()
/mavros/set_mode mavros_msgs/SetMode()
/mavros/param/set mavros_msgs/ParamSet()
/mavros/param/get mavros_msgs/ParamGet()

Until now, the internal operation of the infrastructure (closest to the aircraft hardware)
has been presented. Next, the other end, closer to the user, will be explained. It has already
been stated that DroneWrapper is presented to the user as an importable package in Python
and with a series of methods (API) that allow operating with the aircraft.

A simple use case is presented in Listing 1. In it, firstly, an object is created that
represents the drone and gives access to all the functionalities present in the package. Next,
it is ordered to take off and after that, the drone spins around for several seconds. Finally,
the drone lands in its current position. It should be noted that the nodes scheme presented
in Figure 8 has been obtained with the simulated aircraft and the code shown.

Listing 1. DroneWrapper simple use case.

Drones 2022, 6, x FOR PEER REVIEW 11 of 26

Listing 1. DroneWrapper simple use case.

1 #!/usr/bin/env python
2 from drone_wrapper import DroneWrapper
3 from time import sleep
4
5 drone = DroneWrapper()
6 drone.takeoff(h=2.5)
7 drone.set_cmd_vel(az=1) # spin
8 sleep(5) #wait for a few seconds
9 drone.land()

Finally, the API present in DroneWrapper is shown in Table 4. It includes the meth-
ods that allow obtaining information on the sensors and status of the aircraft, the methods
to control the aircraft, and the methods to obtain images from the aircraft’s cameras.

Table 4. API offered by DroneWrapper.

Category API Description

Sensors and state

[x, y, z] = get_position() Return aircraft position (m)
[vx, vy, vz] = get_velocity() Return aircraft velocity (m/s)

rate = get_yaw_rate() Return aircraft yaw rate (rad/s)
[r, p, y] = get_orientation() Return aircraft orientation (rad)

r = get_roll() Return aircraft roll angle (rad)
p = get_pitch() Return aircraft pitch angle (rad)
y = get_yaw() Return aircraft yaw angle (rad)

s = get_landed_state() Return aircraft landed state (ground, flight, landing)

Control

takeoff(h) Take off to height h (m)
land() Land in current position

set_cmd_pos(x, y, z, yaw) Position control x, y, z (m) and yaw (rad)
set_cmd_vel(vx, vy, vz, vyaw) Velocity control vx, vy, vz (m/s) and yaw_rate (rad/s)
set_cmd_mix(vx, vy, z, vyaw) Mixed control vx, vy (m/s), z (m) and yaw_rate (rad/s)

Cameras
img = get_frontal_image() Returns image from frontal camera
img = get_ventral_image() Returns image from ventral camera

3.2. Tello Driver
In the same way as the previous package, TelloDriver is a ROS package and is orga-

nized as such. As with DroneWrapper, the Tello Driver package belongs to the JdeRobot
drone meta-package. The code is openly available in the JdeRobot drones/tello_driver
(https://github.com/JdeRobot/drones/tree/melodic-devel/tello_driver, accessed on 26 Oc-
tober 2022) repository.

Tello Driver has two main tasks, to communicate with the DroneWrapper and with
the Tello aircraft. To clearly show their implementation, both parts will be presented sep-
arately, although one part does not make sense in the absence of the other.

In the design section, the use of the Tello SDK for communication with the physical
aircraft has been advanced. Following the instructions for its use, the driver makes use of
a series of sockets and threads to carry out the communication. The communication archi-
tecture is shown in Figure 9.

Drones 2022, 6, 369 11 of 25

Finally, the API present in DroneWrapper is shown in Table 4. It includes the methods
that allow obtaining information on the sensors and status of the aircraft, the methods to
control the aircraft, and the methods to obtain images from the aircraft’s cameras.

Table 4. API offered by DroneWrapper.

Category API Description

Sensors and state

[x, y, z] = get_position() Return aircraft position (m)
[vx, vy, vz] = get_velocity() Return aircraft velocity (m/s)

rate = get_yaw_rate() Return aircraft yaw rate (rad/s)
[r, p, y] = get_orientation() Return aircraft orientation (rad)

r = get_roll() Return aircraft roll angle (rad)
p = get_pitch() Return aircraft pitch angle (rad)
y = get_yaw() Return aircraft yaw angle (rad)

s = get_landed_state() Return aircraft landed state (ground,
flight, landing)

Control

takeoff(h) Take off to height h (m)
land() Land in current position

set_cmd_pos(x, y, z, yaw) Position control x, y, z (m) and yaw (rad)

set_cmd_vel(vx, vy, vz, vyaw) Velocity control vx, vy, vz (m/s) and
yaw_rate (rad/s)

set_cmd_mix(vx, vy, z, vyaw) Mixed control vx, vy (m/s), z (m) and
yaw_rate (rad/s)

Cameras
img = get_frontal_image() Returns image from frontal camera
img = get_ventral_image() Returns image from ventral camera

3.2. Tello Driver

In the same way as the previous package, TelloDriver is a ROS package and is orga-
nized as such. As with DroneWrapper, the Tello Driver package belongs to the JdeRobot
drone meta-package. The code is openly available in the JdeRobot drones/tello_driver
(https://github.com/JdeRobot/drones/tree/melodic-devel/tello_driver, accessed on 26
October 2022) repository.

Tello Driver has two main tasks, to communicate with the DroneWrapper and with the
Tello aircraft. To clearly show their implementation, both parts will be presented separately,
although one part does not make sense in the absence of the other.

In the design section, the use of the Tello SDK for communication with the physical
aircraft has been advanced. Following the instructions for its use, the driver makes use
of a series of sockets and threads to carry out the communication. The communication
architecture is shown in Figure 9.

Drones 2022, 6, x FOR PEER REVIEW 12 of 26

Figure 9. Tello driver communication scheme.

The driver has three sockets. The first one, CmdSocket, is used for sending com-
mands and receiving command responses. It is the only bidirectional one of the three
sockets. The second of the sockets, StateSocket, is used to receive status information from
the aircraft. Finally, the VideoCapture socket is in charge of receiving the images sent from
Tello.

All the information received is handled by three different message handlers, in sec-
ondary threads, which are responsible for listening to the information received through
the three respective sockets. Instead, commands sent to the aircraft are serviced through
the main driver thread.

The Tello driver manages communication handling with MAVROS on the other side.
Similar to DroneWrapper, communication is via eight topics, seven publishers, one sub-
scriber, and six services. The communication is almost identical to the one presented with
DroneWrapper, as it tries to imitate the standard behavior of MAVROS so that the appli-
cation does not notice the difference between different drones. The only differences are a
new takeoff service, and the absence of one of the two image publishers since Tello only
has a camera. Figure 10 illustrates the graph of nodes and topics used.

Figure 10. Tello driver ROS nodes and topics graph.

Figure 9. Tello driver communication scheme.

The driver has three sockets. The first one, CmdSocket, is used for sending commands
and receiving command responses. It is the only bidirectional one of the three sockets. The
second of the sockets, StateSocket, is used to receive status information from the aircraft.
Finally, the VideoCapture socket is in charge of receiving the images sent from Tello.

https://github.com/JdeRobot/drones/tree/melodic-devel/tello_driver

Drones 2022, 6, 369 12 of 25

All the information received is handled by three different message handlers, in sec-
ondary threads, which are responsible for listening to the information received through the
three respective sockets. Instead, commands sent to the aircraft are serviced through the
main driver thread.

The Tello driver manages communication handling with MAVROS on the other side.
Similar to DroneWrapper, communication is via eight topics, seven publishers, one sub-
scriber, and six services. The communication is almost identical to the one presented
with DroneWrapper, as it tries to imitate the standard behavior of MAVROS so that the
application does not notice the difference between different drones. The only differences
are a new takeoff service, and the absence of one of the two image publishers since Tello
only has a camera. Figure 10 illustrates the graph of nodes and topics used.

Drones 2022, 6, x FOR PEER REVIEW 12 of 26

Figure 9. Tello driver communication scheme.

The driver has three sockets. The first one, CmdSocket, is used for sending com-
mands and receiving command responses. It is the only bidirectional one of the three
sockets. The second of the sockets, StateSocket, is used to receive status information from
the aircraft. Finally, the VideoCapture socket is in charge of receiving the images sent from
Tello.

All the information received is handled by three different message handlers, in sec-
ondary threads, which are responsible for listening to the information received through
the three respective sockets. Instead, commands sent to the aircraft are serviced through
the main driver thread.

The Tello driver manages communication handling with MAVROS on the other side.
Similar to DroneWrapper, communication is via eight topics, seven publishers, one sub-
scriber, and six services. The communication is almost identical to the one presented with
DroneWrapper, as it tries to imitate the standard behavior of MAVROS so that the appli-
cation does not notice the difference between different drones. The only differences are a
new takeoff service, and the absence of one of the two image publishers since Tello only
has a camera. Figure 10 illustrates the graph of nodes and topics used.

Figure 10. Tello driver ROS nodes and topics graph. Figure 10. Tello driver ROS nodes and topics graph.

After explaining both ends of the driver, we still need to explain the middle part that
converts ROS messages and services into a message language understood by the Tello SDK
and vice versa. Sending action commands is excuted by sending a text string through the
socket previously shown. Depending on the content of the text string, the aircraft interprets
one command or another. Although there are many commands accepted in the Tello SDK,
the driver only uses the following: command, streamon, streamoff, emergency, takeoff,
land, forward x, back x, left x, right x, up x, down x, cw x, ccw x, rc a b c d, battery.

The driver is in charge of translating the commands received by the topic subscriber
and through the services into the different messages so that the aircraft performs the
ordered task. The response to the command is obtained by one of the handlers and reported
through MAVROS.

On the other hand, the state of the aircraft is received through the StateSocket in a text
string that resembles this: “data:value;data2:value2;;\r\n”. The set of data sent by
Tello are the following (in order of appearance in the text string): pitch, roll, yaw, vgx, vgy,
vgz, templ, temph, tof, h, bat, baro, time, agx, agy, agz. These values are processed in the
driver, encapsulated in the different ROS messages, and sent through the different topics.

Drones 2022, 6, 369 13 of 25

Finally, through the VideoCapture, the different frames that are retransmitted are
received through the topic prepared for it.

3.3. Victure Camera Driver

The infrastructure-integrated camera driver, Victure driver, in the same way as the two
previous packages, has a ROS package structure. The code is publicly available in the repos-
itory RoboticsLabURJC/2021-tfm-pedro-arias (https://github.com/RoboticsLabURJC/20
21-tfm-pedro-arias/tree/main/victure_driver, accessed on 26 October 2022).

The ROS structure is very simple. The driver consists of a node (victure_cam) that
reads images from the camera and sends them through a topic (victure_cam/image_raw).

Finally, the node graph of the driver is shown in Figure 11. The figure shows the main
node together with a test node (“test”), which is responsible for reading about the topic
and displaying the received image on the screen.

Drones 2022, 6, x FOR PEER REVIEW 13 of 26

After explaining both ends of the driver, we still need to explain the middle part that
converts ROS messages and services into a message language understood by the Tello
SDK and vice versa. Sending action commands is excuted by sending a text string through
the socket previously shown. Depending on the content of the text string, the aircraft in-
terprets one command or another. Although there are many commands accepted in the
Tello SDK, the driver only uses the following: command, streamon, streamoff, emergency,
takeoff, land, forward x, back x, left x, right x, up x, down x, cw x, ccw x, rc a b c d, battery.

The driver is in charge of translating the commands received by the topic subscriber
and through the services into the different messages so that the aircraft performs the or-
dered task. The response to the command is obtained by one of the handlers and reported
through MAVROS.

On the other hand, the state of the aircraft is received through the StateSocket in a
text string that resembles this: “data:value;data2:value2;…..;\r\n”. The set of data sent by
Tello are the following (in order of appearance in the text string): pitch, roll, yaw, vgx,
vgy, vgz, templ, temph, tof, h, bat, baro, time, agx, agy, agz. These values are processed
in the driver, encapsulated in the different ROS messages, and sent through the different
topics.

Finally, through the VideoCapture, the different frames that are retransmitted are
received through the topic prepared for it.

3.3. Victure Camera Driver
The infrastructure-integrated camera driver, Victure driver, in the same way as the

two previous packages, has a ROS package structure. The code is publicly available in the
repository RoboticsLabURJC/2021-tfm-pedro-arias (https://github.com/RoboticsLa-
bURJC/2021-tfm-pedro-arias/tree/main/victure_driver, accessed on 26 October 2022).

The ROS structure is very simple. The driver consists of a node (victure_cam) that
reads images from the camera and sends them through a topic (victure_cam/image_raw).

Finally, the node graph of the driver is shown in Figure 11. The figure shows the main
node together with a test node (“test”), which is responsible for reading about the topic
and displaying the received image on the screen.

Figure 11. Victure camera driver ROS nodes and topics graph.

4. Results
This section includes the two applications developed on the infrastructure presented.

Its main objective is to illustrate the use of the infrastructure, including vision manage-
ment with Deep Learning and speed control that allows for validating its correct opera-
tion.

The two developed experiments are shown, “follow-color” and “follow-person” in
different sections. In both, the designs devised, their implementation, and the results ob-
tained with the different platforms are explained.

4.1. Follow-Color Application
The follow-color application consists of the aircraft following an element with a strik-

ing color. The application has been tested on two aircraft, the simulated drone, and the
real Tello. The chromatic markers (elements to follow), used for each of the experiments
are shown in Figure 12.

Figure 11. Victure camera driver ROS nodes and topics graph.

4. Results

This section includes the two applications developed on the infrastructure presented.
Its main objective is to illustrate the use of the infrastructure, including vision management
with Deep Learning and speed control that allows for validating its correct operation.

The two developed experiments are shown, “follow-color” and “follow-person” in
different sections. In both, the designs devised, their implementation, and the results
obtained with the different platforms are explained.

4.1. Follow-Color Application

The follow-color application consists of the aircraft following an element with a
striking color. The application has been tested on two aircraft, the simulated drone, and the
real Tello. The chromatic markers (elements to follow), used for each of the experiments
are shown in Figure 12.

Drones 2022, 6, x FOR PEER REVIEW 14 of 26

(a) (b)

Figure 12. Beacons in the follow-color application. (a) Real beacon; (b) Simulated beacon.

Several Gazebo plugins have been developed on the simulated beacon to give the

model movement, either with a predetermined trajectory or teleoperating the object from

the keyboard.

The infrastructure allows sharing of the same source code for both the real and the

simulated aircraft. However, the characteristics of the aircraft are very different. Using the

same logic for both drones is possible because the application uses configuration files

where certain parameters intrinsic to the aircraft are saved.

These configuration files store data that allow the generic code to be adjusted to a

specific aircraft. During process launch, the data are loaded as ROS parameters, thus al-

lowing easy access to DroneWrapper and follow-color.

The aerial robot application design consists of two parts, perception and control. Per-

ception is responsible for visually detecting the object to be followed, while control sends

movement commands to the aircraft in order to follow the object.

The behavior of the aircraft is described next. After takeoff, an infinite iterative loop

is started where the perception and control tasks are performed. The perception consists

of filtering by color the image obtained by the drone’s camera. When something is de-

tected in perception, control comes into action. The control consists of three PID control-

lers that calculate the speeds commanded to the aircraft. If the perceptual filtering does

not obtain any output, the aircraft performs a search algorithm until it finds a new object

to follow. This search algorithm consists of turning around on itself at a constant speed.

4.1.1. Perception

Perception is a color filtering of the image using classical techniques. The filtering is

performed using the OpenCV computer vision library.

Filtering is generally executed on the HSV spectrum (Hue-Saturation-Value, or Hue-

Saturation-Brightness) rather than on the RGB spectrum (Red-Green-Blue). This is be-

cause the HSV spectrum represents the color tone (Hue or Tone) in a single value, while

the RGB spectrum needs three fields to represent the tone and is much more fragile against

lighting changes in the scene, which makes filter design difficult.

The color filtering design consists of four stages:

1. Gaussian blur. Blur over a color image (RGB) to remove pixels spurious using

cv2.GaussianBlur() and transformation to HSV space;

2. HSV mask. Mask over HSV space via cv2.inRange(), join bitwise image and mask

(cv2.bitwise_and()) and conversion to scaled image of greys;

3. Threshold. Fixed level threshold (value = 150), on an image in the scale of cv2.thresh-

old() grays;

4. Segmentation. Grouping by contours on a black and white image for object detection

(cv2.findContours()).

The applied mask is, by the nature of the HSV space, a combination of two masks.

This combination is the sum of both masks (mask = mask1 + mask2). This occurs due to

Figure 12. Beacons in the follow-color application. (a) Real beacon; (b) Simulated beacon.

Several Gazebo plugins have been developed on the simulated beacon to give the
model movement, either with a predetermined trajectory or teleoperating the object from
the keyboard.

The infrastructure allows sharing of the same source code for both the real and the
simulated aircraft. However, the characteristics of the aircraft are very different. Using

https://github.com/RoboticsLabURJC/2021-tfm-pedro-arias/tree/main/victure_driver
https://github.com/RoboticsLabURJC/2021-tfm-pedro-arias/tree/main/victure_driver

Drones 2022, 6, 369 14 of 25

the same logic for both drones is possible because the application uses configuration files
where certain parameters intrinsic to the aircraft are saved.

These configuration files store data that allow the generic code to be adjusted to a
specific aircraft. During process launch, the data are loaded as ROS parameters, thus
allowing easy access to DroneWrapper and follow-color.

The aerial robot application design consists of two parts, perception and control.
Perception is responsible for visually detecting the object to be followed, while control
sends movement commands to the aircraft in order to follow the object.

The behavior of the aircraft is described next. After takeoff, an infinite iterative loop is
started where the perception and control tasks are performed. The perception consists of
filtering by color the image obtained by the drone’s camera. When something is detected
in perception, control comes into action. The control consists of three PID controllers that
calculate the speeds commanded to the aircraft. If the perceptual filtering does not obtain
any output, the aircraft performs a search algorithm until it finds a new object to follow.
This search algorithm consists of turning around on itself at a constant speed.

4.1.1. Perception

Perception is a color filtering of the image using classical techniques. The filtering is
performed using the OpenCV computer vision library.

Filtering is generally executed on the HSV spectrum (Hue-Saturation-Value, or Hue-
Saturation-Brightness) rather than on the RGB spectrum (Red-Green-Blue). This is because
the HSV spectrum represents the color tone (Hue or Tone) in a single value, while the RGB
spectrum needs three fields to represent the tone and is much more fragile against lighting
changes in the scene, which makes filter design difficult.

The color filtering design consists of four stages:

1. Gaussian blur. Blur over a color image (RGB) to remove pixels spurious using
cv2.GaussianBlur() and transformation to HSV space;

2. HSV mask. Mask over HSV space via cv2.inRange(), join bitwise image and mask
(cv2.bitwise_and()) and conversion to scaled imageof greys;

3. Threshold. Fixed level threshold (value = 150), on an image in the scale of cv2.threshold() grays;
4. Segmentation. Grouping by contours on a black and white image for object detection

(cv2.findContours()).

The applied mask is, by the nature of the HSV space, a combination of two masks.
This combination is the sum of both masks (mask = mask1 + mask2). This occurs due to the
angular discontinuity in hue since hue values H = 1 or H = 359 are chromatically similar
values even though they are numerically very different. Table 5 reflects the values selected
for the mask.

Table 5. HSV masks.

Mask Hmin Smin Vmin Hmax Smax Vmax

mask1 0 70 50 10 255 255
mask2 340 70 50 359 255 255

These values can be somewhat confusing with their numerical representation. To
facilitate its understanding, a graphic representation of the used masks is illustrated in
Figure 13.

The process followed during the perception block is shown in Figure 14. As can be
seen in the figure, the filtering results in a binary image (black and white). In this image,
the detected pixels (in white) are grouped by contours into cv2.findContours() objects. In
the case of detecting several objects, the object to be tracked is the one with the largest area.

Drones 2022, 6, 369 15 of 25

Drones 2022, 6, x FOR PEER REVIEW 15 of 26

the angular discontinuity in hue since hue values H = 1 or H = 359 are chromatically similar
values even though they are numerically very different. Table 5 reflects the values selected
for the mask.

Table 5. HSV masks.

Mask Hmin Smin Vmin Hmax Smax Vmax
mask1 0 70 50 10 255 255
mask2 340 70 50 359 255 255

These values can be somewhat confusing with their numerical representation. To fa-
cilitate its understanding, a graphic representation of the used masks is illustrated in Fig-
ure 13.

Figure 13. Color filter mask.

The process followed during the perception block is shown in Figure 14. As can be
seen in the figure, the filtering results in a binary image (black and white). In this image,
the detected pixels (in white) are grouped by contours into cv2.findContours() objects. In
the case of detecting several objects, the object to be tracked is the one with the largest
area.

Figure 14. Follow-color perception scheme.

Figure 13. Color filter mask.

Drones 2022, 6, x FOR PEER REVIEW 15 of 26

the angular discontinuity in hue since hue values H = 1 or H = 359 are chromatically similar
values even though they are numerically very different. Table 5 reflects the values selected
for the mask.

Table 5. HSV masks.

Mask Hmin Smin Vmin Hmax Smax Vmax
mask1 0 70 50 10 255 255
mask2 340 70 50 359 255 255

These values can be somewhat confusing with their numerical representation. To fa-
cilitate its understanding, a graphic representation of the used masks is illustrated in Fig-
ure 13.

Figure 13. Color filter mask.

The process followed during the perception block is shown in Figure 14. As can be
seen in the figure, the filtering results in a binary image (black and white). In this image,
the detected pixels (in white) are grouped by contours into cv2.findContours() objects. In
the case of detecting several objects, the object to be tracked is the one with the largest
area.

Figure 14. Follow-color perception scheme.

Figure 14. Follow-color perception scheme.

4.1.2. Control

The control block is always executed with a single input, the object to follow. Properties
such as the position on the image or the radius of the minimum circle surrounding the
contour are extracted from this object. These values are used to calculate the errors or
inputs of the controllers, whose outputs are the speeds to command the aircraft. Figure 15
represents a schematic of the control block.

Drones 2022, 6, x FOR PEER REVIEW 16 of 26

4.1.2. Control
The control block is always executed with a single input, the object to follow. Prop-

erties such as the position on the image or the radius of the minimum circle surrounding
the contour are extracted from this object. These values are used to calculate the errors or
inputs of the controllers, whose outputs are the speeds to command the aircraft. Figure 15
represents a schematic of the control block.

Figure 15. Follow-color control scheme.

Specifically, there are three PID controllers used, one that controls the advance (vx),
one that controls the height (vz), and one that controls the yaw angle (yaw_rate). The inputs
for the controllers are calculated according to the following formulas: 𝑒௫ = 𝑟𝑎𝑑𝑖𝑢𝑠 − 𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑎𝑑𝑖𝑢𝑠 𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑎𝑑𝑖𝑢𝑠 (1)

𝑒௭ = 𝑐௬ − 𝑜𝑏𝑗௬ (2) 𝑒௬௔௪ = 𝑐௫ − 𝑜𝑏𝑗௫ (3)

The height and yaw control (Equations (2) and (3)) are performed according to the
position of the centroid of the filtered object (objx, objy) with respect to the center of the
image (cx, cy). The forward control (Equation (1)) is somewhat more complex since it uses
the normalized difference of the radius of the minimum enclosing circle to the contour
and a reference radius (target_radius = 10). In this fashion, the smaller the object in the
image, the faster the UAV will advance, until the observed radius is close to the reference
one again. Reference radius is related to a distance to the object of approximately 5 m.

Figure 16 shows the response given by the control block to any input. The arrows indi-
cate the direction the drone will take to correct the existing error, bringing the center of the
detected object to the center of the image (black dot). You can also see in the figure the con-
tour of the filtered object together with the minimum circle surrounding the contour.

The errors obtained are the feed of the controllers that try to reduce these values to
zero with their response, which are directly the speed commands that are sent to the
drone. The response of the controller depends on its parameters (kP, kI, kD). Since the con-
trol of the drone depends on its specific intrinsic characteristics for that model, the param-
eters of the controllers are part of the configuration files.

Figure 15. Follow-color control scheme.

Drones 2022, 6, 369 16 of 25

Specifically, there are three PID controllers used, one that controls the advance (vx),
one that controls the height (vz), and one that controls the yaw angle (yaw_rate). The inputs
for the controllers are calculated according to the following formulas:

ex =
radius− target_radius

target_radius
(1)

ez = cy − objy (2)

eyaw = cx − objx (3)

The height and yaw control (Equations (2) and (3)) are performed according to the
position of the centroid of the filtered object (objx, objy) with respect to the center of the
image (cx, cy). The forward control (Equation (1)) is somewhat more complex since it uses
the normalized difference of the radius of the minimum enclosing circle to the contour and
a reference radius (target_radius = 10). In this fashion, the smaller the object in the image,
the faster the UAV will advance, until the observed radius is close to the reference one
again. Reference radius is related to a distance to the object of approximately 5 m.

Figure 16 shows the response given by the control block to any input. The arrows
indicate the direction the drone will take to correct the existing error, bringing the center of
the detected object to the center of the image (black dot). You can also see in the figure the
contour of the filtered object together with the minimum circle surrounding the contour.

Drones 2022, 6, x FOR PEER REVIEW 17 of 26

Figure 16. Control block response in follow-color.

Controller parameters have been calculated experimentally for both aircraft. The fi-
nal fit values are shown in Table 6.

Table 6. Parameters for PID controllers.

Controller Iris kP Iris kI Iris kD Tello kP Tello kI Tello kD
vx 0.05 0.0 0.001 0.02 0.0 0.0002
vy 0.0 0.0 0.0 0.0 0.0 0.0
vz -0.02 0.0 0.001 -0.0015 0.0 0.0

yaw_rate -0.005 0.0 0.001 0.002 0.0 0.0001

4.1.3. Experiments and Results
The results obtained are presented in the form of different tests or experiments. In

general, it starts with a simple case and increases its difficulty in successive cases. For
follow-color, we have started from a simple experiment with the object to be followed in
a static position, in simulation (see Figure 17).

Figure 17. Follow-color experiment, static object, simulation mode.

Figure 16. Control block response in follow-color.

The errors obtained are the feed of the controllers that try to reduce these values to
zero with their response, which are directly the speed commands that are sent to the drone.
The response of the controller depends on its parameters (kP, kI, kD). Since the control of
the drone depends on its specific intrinsic characteristics for that model, the parameters of
the controllers are part of the configuration files.

Controller parameters have been calculated experimentally for both aircraft. The final
fit values are shown in Table 6.

Table 6. Parameters for PID controllers.

Controller Iris kP Iris kI Iris kD Tello kP Tello kI Tello kD

vx 0.05 0.0 0.001 0.02 0.0 0.0002
vy 0.0 0.0 0.0 0.0 0.0 0.0
vz -0.02 0.0 0.001 -0.0015 0.0 0.0

yaw_rate -0.005 0.0 0.001 0.002 0.0 0.0001

Drones 2022, 6, 369 17 of 25

4.1.3. Experiments and Results

The results obtained are presented in the form of different tests or experiments. In
general, it starts with a simple case and increases its difficulty in successive cases. For
follow-color, we have started from a simple experiment with the object to be followed in a
static position, in simulation (see Figure 17).

Drones 2022, 6, x FOR PEER REVIEW 17 of 26

Figure 16. Control block response in follow-color.

Controller parameters have been calculated experimentally for both aircraft. The fi-

nal fit values are shown in Table 6.

Table 6. Parameters for PID controllers.

Controller Iris kP Iris kI Iris kD Tello kP Tello kI Tello kD

vx 0.05 0.0 0.001 0.02 0.0 0.0002

vy 0.0 0.0 0.0 0.0 0.0 0.0

vz -0.02 0.0 0.001 -0.0015 0.0 0.0

yaw_rate -0.005 0.0 0.001 0.002 0.0 0.0001

4.1.3. Experiments and Results

The results obtained are presented in the form of different tests or experiments. In

general, it starts with a simple case and increases its difficulty in successive cases. For

follow-color, we have started from a simple experiment with the object to be followed in

a static position, in simulation (see Figure 17).

Figure 17. Follow-color experiment, static object, simulation mode.
Figure 17. Follow-color experiment, static object, simulation mode.

Secondly, the application has been tested with a moving object, first moving the object
manually through the developed teleoperation tool, and with smooth movements. Next,
we introduced an object with automatic movement and actions that are more abrupt and
faster than in the previous case.

After successfully passing the simulated tests, the tests have been conducted on the
real Tello drone. Similarly, the experiments carried out have been increasing in difficulty
until obtaining a dynamic scenario with fast actions and sudden changes. The different
experiments have been collected in different videos, available for viewing in the following
playlist: https://youtube.com/playlist?list=PL2ebURGAzRwusKLBYPJUkfZJ5SHudh6Z,
accessed on 26 October 2022.

4.2. Follow-Person Application

The follow-person application consists of following a person with the aircraft. There
are several antecedents of similar applications for terrestrial robots [35,36]. The experiment
has been carried out on the three available UAVs, the simulated Iris, the Tello, and the
self-built PX4. For the simulation, a model belonging to the Ignition Robotics database [37]
has been used. Several plugins have been designed on the model to give movement to the
person. Figure 18 shows the model used.

The application follows the same design as the previous experiment. The developed
infrastructure allows the use of the same source code with different configuration files.
Thus, the body of the application is the same for all three aircraft. The application is made
up of two blocks: perception and control. Perception is responsible for detecting the person
to follow, while control is responsible for commanding the aircraft.

It is important to note that the perception is different between the two applications,
detecting a colored object does not entail the same difficulty as detecting a person, while
the control is identical between both applications.

https://youtube.com/playlist?list=PL2ebURGAzRwusKLBYPJUkfZJ5SHudh6Z

Drones 2022, 6, 369 18 of 25

Drones 2022, 6, x FOR PEER REVIEW 18 of 26

Secondly, the application has been tested with a moving object, first moving the ob-
ject manually through the developed teleoperation tool, and with smooth movements.
Next, we introduced an object with automatic movement and actions that are more abrupt
and faster than in the previous case.

After successfully passing the simulated tests, the tests have been conducted on the
real Tello drone. Similarly, the experiments carried out have been increasing in difficulty
until obtaining a dynamic scenario with fast actions and sudden changes. The different
experiments have been collected in different videos, available for viewing in the following
playlist: https://youtube.com/playlist?list=PL2ebURGAzRwusKLBYPJUkfZJ5SHudh6Z,
accessed on 26 October 2022.

4.2. Follow-Person Application
The follow-person application consists of following a person with the aircraft. There

are several antecedents of similar applications for terrestrial robots [35,36]. The experi-
ment has been carried out on the three available UAVs, the simulated Iris, the Tello, and
the self-built PX4. For the simulation, a model belonging to the Ignition Robotics database
[37] has been used. Several plugins have been designed on the model to give movement
to the person. Figure 18 shows the model used.

(a) (b)

Figure 18. Model of a person in the Gazebo simulator. (a) Complete body; (b) Face.

The application follows the same design as the previous experiment. The developed
infrastructure allows the use of the same source code with different configuration files.
Thus, the body of the application is the same for all three aircraft. The application is made
up of two blocks: perception and control. Perception is responsible for detecting the per-
son to follow, while control is responsible for commanding the aircraft.

It is important to note that the perception is different between the two applications,
detecting a colored object does not entail the same difficulty as detecting a person, while
the control is identical between both applications.

4.2.1. Perception
Perception consists of two parts: robust person detection and person identification.

Detection is performed by deep learning, while identification is achieved by spatio-tem-
poral tracking with a finite memory of detection.

The detection consists of a deep neural network, specifically YOLOv4 [32]. Deep
learning detection adds robustness to the solution. Detection is reliable in many lighting
scenarios, against occlusions or against multiple objects to be detected. However, its main
disadvantage is its inference time, which, if not kept limited, slows down the control
loops, deteriorating tracking to the point where it becomes impossible.

Figure 18. Model of a person in the Gazebo simulator. (a) Complete body; (b) Face.

4.2.1. Perception

Perception consists of two parts: robust person detection and person identification.
Detection is performed by deep learning, while identification is achieved by spatio-temporal
tracking with a finite memory of detection.

The detection consists of a deep neural network, specifically YOLOv4 [32]. Deep
learning detection adds robustness to the solution. Detection is reliable in many lighting
scenarios, against occlusions or against multiple objects to be detected. However, its main
disadvantage is its inference time, which, if not kept limited, slows down the control loops,
deteriorating tracking to the point where it becomes impossible.

The operation of the network is simple. The network takes an image and returns a
series of detections on it; what happens in between is hidden from the user. The detections
consist of a label, a “confidence” (detection probability), and the position of the object within
the image (in the form of a bounding box), for each of the detections. These detections
are filtered by tag to only obtain the “people” detected. Figure 19 shows the detections
completed by the network.

Drones 2022, 6, x FOR PEER REVIEW 19 of 26

The operation of the network is simple. The network takes an image and returns a
series of detections on it; what happens in between is hidden from the user. The detections
consist of a label, a “confidence” (detection probability), and the position of the object
within the image (in the form of a bounding box), for each of the detections. These detec-
tions are filtered by tag to only obtain the “people” detected. Figure 19 shows the detec-
tions completed by the network.

(a) (b)

Figure 19. Detections in Follow-person. (a) Simulation; (b) Real.

The identification is carried out by storing previous positions of a detection consid-
ered as “main”. The selection of the main detection depends on the number of detections.
Starting from a situation where there is no main detection, there is no object to track if the
number of people detected is zero. In case only one person is detected, they are selected
as primary, and in case there is more than one detection, the person with the highest con-
fidence is chosen as primary.

Upon the main detection, the positions of the last centroids on the image are stored
in a finite FIFO (First-In-First-Out) queue. The queue length is five, indicating that the last
five positions of the identification are saved. On the new detections, their centroids are
calculated and compared with the average of the centroids stored in the queue. The de-
tection with the nearest centroid is considered as the object to track. Figure 20 shows the
scheme of the identification queue.

Figure 20. Follow-person identification scheme.

Therefore, the perception block has a single output: the detected person to follow (if
one exists). If there is no-one, the aircraft will carry out a search algorithm consisting of
circling until it finds a person to follow.

Figure 19. Detections in Follow-person. (a) Simulation; (b) Real.

The identification is carried out by storing previous positions of a detection considered
as “main”. The selection of the main detection depends on the number of detections.
Starting from a situation where there is no main detection, there is no object to track if the
number of people detected is zero. In case only one person is detected, they are selected
as primary, and in case there is more than one detection, the person with the highest
confidence is chosen as primary.

Drones 2022, 6, 369 19 of 25

Upon the main detection, the positions of the last centroids on the image are stored
in a finite FIFO (First-In-First-Out) queue. The queue length is five, indicating that the
last five positions of the identification are saved. On the new detections, their centroids
are calculated and compared with the average of the centroids stored in the queue. The
detection with the nearest centroid is considered as the object to track. Figure 20 shows the
scheme of the identification queue.

Drones 2022, 6, x FOR PEER REVIEW 19 of 26

The operation of the network is simple. The network takes an image and returns a
series of detections on it; what happens in between is hidden from the user. The detections
consist of a label, a “confidence” (detection probability), and the position of the object
within the image (in the form of a bounding box), for each of the detections. These detec-
tions are filtered by tag to only obtain the “people” detected. Figure 19 shows the detec-
tions completed by the network.

(a) (b)

Figure 19. Detections in Follow-person. (a) Simulation; (b) Real.

The identification is carried out by storing previous positions of a detection consid-
ered as “main”. The selection of the main detection depends on the number of detections.
Starting from a situation where there is no main detection, there is no object to track if the
number of people detected is zero. In case only one person is detected, they are selected
as primary, and in case there is more than one detection, the person with the highest con-
fidence is chosen as primary.

Upon the main detection, the positions of the last centroids on the image are stored
in a finite FIFO (First-In-First-Out) queue. The queue length is five, indicating that the last
five positions of the identification are saved. On the new detections, their centroids are
calculated and compared with the average of the centroids stored in the queue. The de-
tection with the nearest centroid is considered as the object to track. Figure 20 shows the
scheme of the identification queue.

Figure 20. Follow-person identification scheme.

Therefore, the perception block has a single output: the detected person to follow (if
one exists). If there is no-one, the aircraft will carry out a search algorithm consisting of
circling until it finds a person to follow.

Figure 20. Follow-person identification scheme.

Therefore, the perception block has a single output: the detected person to follow (if
one exists). If there is no-one, the aircraft will carry out a search algorithm consisting of
circling until it finds a person to follow.

Note that even though perception is focused on detecting people, the application
is easily transferable to tracking other objects that the network can detect, see “cars”
or “horses”, for example. In addition, the YOLOv4 network has been chosen, but the
detection could be carried out with another network, with a simple integration cost in
the infrastructure.

4.2.2. Control

The control block is practically identical to the one in the follow-color application (see
Figure 15). The block input is unique, the person detected by the perception block. On the
bounding box of the detection certain characteristics are calculated that allow estimation
of the errors to be corrected by the controllers with their outputs, the new speed orders of
the aircraft.

The controllers used are again three PIDs, forward control (vx), height control (vz),
and yaw control (yaw_rate). The height and yaw controls are identical, while the forward
control is slightly different:

ex =
total_area
det_area

− total_area
target_area

(4)

ez = cy − objy (5)

eyaw = cx − objx (6)

The centroid is calculated on the bounding box of the person. The position of the
centroid (objx, objy) is used together with the position of the center of the image (cx, cy) to
compute the height and yaw error (Equations (5) and (6)). The forward error (Equation (4))
is calculated as the difference between the ratio of the two areas. On the one hand, the first
ratio is obtained with the total area and the area of the detected object, and on the other
hand, the second ratio is calculated with the total area and a reference area. The subtraction

Drones 2022, 6, 369 20 of 25

of these two areas ensures an acceptable distance to the detected person. This distance is
guaranteed because the person will always occupy a given percentage of the image area.
This percentage of occupancy has been calculated experimentally with a value of twenty
(total_area/target_area = 20), meaning that the area of the bounding box of the person
occupies one-twentieth of the image.

The network is robust against the relative orientation between the camera and the
person (profile view, from behind, etc.) and the position of the person to be detected
(standing, sitting, crouching, etc.). In addition, the network also responds correctly to
partial detections due to occlusions or similar problems. Using the detection area as a
progress control offers a good result in these cases.

Figure 21 shows the response given by the control block to input with several detec-
tions. The arrows indicate the direction that the drone will take to correct the existing error.

Drones 2022, 6, x FOR PEER REVIEW 20 of 26

Note that even though perception is focused on detecting people, the application is
easily transferable to tracking other objects that the network can detect, see “cars” or
“horses”, for example. In addition, the YOLOv4 network has been chosen, but the detec-
tion could be carried out with another network, with a simple integration cost in the in-
frastructure.

4.2.2. Control
The control block is practically identical to the one in the follow-color application (see

Figure 15). The block input is unique, the person detected by the perception block. On the
bounding box of the detection certain characteristics are calculated that allow estimation
of the errors to be corrected by the controllers with their outputs, the new speed orders of
the aircraft.

The controllers used are again three PIDs, forward control (vx), height control (vz),
and yaw control (yaw_rate). The height and yaw controls are identical, while the forward
control is slightly different: 𝑒௫ = 𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎 𝑑𝑒𝑡_𝑎𝑟𝑒𝑎 − 𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎 𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑟𝑒𝑎 (4)

𝑒௭ = 𝑐௬ − 𝑜𝑏𝑗௬ (5) 𝑒௬௔௪ = 𝑐௫ − 𝑜𝑏𝑗௫ (6)

The centroid is calculated on the bounding box of the person. The position of the
centroid (objx, objy) is used together with the position of the center of the image (cx, cy) to
compute the height and yaw error (Equations (5) and (6)). The forward error (Equation
(4)) is calculated as the difference between the ratio of the two areas. On the one hand, the
first ratio is obtained with the total area and the area of the detected object, and on the
other hand, the second ratio is calculated with the total area and a reference area. The
subtraction of these two areas ensures an acceptable distance to the detected person. This
distance is guaranteed because the person will always occupy a given percentage of the
image area. This percentage of occupancy has been calculated experimentally with a value
of twenty (total_area/target_area = 20), meaning that the area of the bounding box of the
person occupies one-twentieth of the image.

The network is robust against the relative orientation between the camera and the
person (profile view, from behind, etc.) and the position of the person to be detected
(standing, sitting, crouching, etc.). In addition, the network also responds correctly to par-
tial detections due to occlusions or similar problems. Using the detection area as a pro-
gress control offers a good result in these cases.

Figure 21 shows the response given by the control block to input with several detec-
tions. The arrows indicate the direction that the drone will take to correct the existing
error.

Figure 21. Control block response in Follow-person.

4.2.3. Experiments and Results

The results obtained are presented in a similar way to the previous application, through
different tests or experiments. We started from a simple simulated case, and after over-
coming it, a new case with some added difficulty was tested, until considering that the
application is robust enough to be tested on a real aircraft.

Tests in real aircraft are carried out first on the Tello as it is a smaller aircraft and can be
flown indoors. After passing the tests on the smaller drone, the experiments were carried
out on the larger aircraft, the PX4 itself. Thus, the application has been tested on the three
available platforms.

The experiments have been simulated, starting from a simple experiment with the
person to be followed in a static position (see Figure 22).

Drones 2022, 6, x FOR PEER REVIEW 21 of 26

Figure 21. Control block response in Follow-person.

4.2.3. Experiments and Results

The results obtained are presented in a similar way to the previous application,

through different tests or experiments. We started from a simple simulated case, and after

overcoming it, a new case with some added difficulty was tested, until considering that

the application is robust enough to be tested on a real aircraft.

Tests in real aircraft are carried out first on the Tello as it is a smaller aircraft and can

be flown indoors. After passing the tests on the smaller drone, the experiments were car-

ried out on the larger aircraft, the PX4 itself. Thus, the application has been tested on the

three available platforms.

The experiments have been simulated, starting from a simple experiment with the

person to be followed in a static position (see Figure 22).

Figure 22. Follow-person, single static model.

Secondly, the model has been given movement, testing the application in a more re-

alistic (and more complex) case. Finally, the application has been tested in an environment

with various models of people, moving the models at will (Figure 23).

Figure 23. Follow-person, multiple models that can be moved at will.

Figure 22. Follow-person, single static model.

Drones 2022, 6, 369 21 of 25

Secondly, the model has been given movement, testing the application in a more
realistic (and more complex) case. Finally, the application has been tested in an environment
with various models of people, moving the models at will (Figure 23).

Drones 2022, 6, x FOR PEER REVIEW 21 of 26

Figure 21. Control block response in Follow-person.

4.2.3. Experiments and Results

The results obtained are presented in a similar way to the previous application,

through different tests or experiments. We started from a simple simulated case, and after

overcoming it, a new case with some added difficulty was tested, until considering that

the application is robust enough to be tested on a real aircraft.

Tests in real aircraft are carried out first on the Tello as it is a smaller aircraft and can

be flown indoors. After passing the tests on the smaller drone, the experiments were car-

ried out on the larger aircraft, the PX4 itself. Thus, the application has been tested on the

three available platforms.

The experiments have been simulated, starting from a simple experiment with the

person to be followed in a static position (see Figure 22).

Figure 22. Follow-person, single static model.

Secondly, the model has been given movement, testing the application in a more re-

alistic (and more complex) case. Finally, the application has been tested in an environment

with various models of people, moving the models at will (Figure 23).

Figure 23. Follow-person, multiple models that can be moved at will.
Figure 23. Follow-person, multiple models that can be moved at will.

After completing these first simulated tests successfully, the application has been
tested with the first of the real UAVs, the Tello. Similarly, we have started from a simple
case, with a single static person, a mannequin in this case. Next, the dummy has been
replaced by a person, capable of moving in the different control axes, where a correct
functioning of the tracking has been observed. We should emphasize that the experiments
carried out with the Tello have been carried out indoors, where the traditional use of drones,
by GPS position, is not possible.

Finally, the application has been tested outdoors with the largest aircraft. The correct
operation of the perception block has been verified with the processing onboard the aircraft.
Among the experiments carried out, the operation of the application against occlusions
among several people has been tested. There have been two experiments, one where the
crossing of the person is behind the element to be followed (see Figure 24) and another
more complex one where the crossing is made in front of the person on which it is being
crossed (see Figure 25).

Drones 2022, 6, x FOR PEER REVIEW 22 of 26

After completing these first simulated tests successfully, the application has been
tested with the first of the real UAVs, the Tello. Similarly, we have started from a simple
case, with a single static person, a mannequin in this case. Next, the dummy has been
replaced by a person, capable of moving in the different control axes, where a correct
functioning of the tracking has been observed. We should emphasize that the experiments
carried out with the Tello have been carried out indoors, where the traditional use of
drones, by GPS position, is not possible.

Finally, the application has been tested outdoors with the largest aircraft. The correct
operation of the perception block has been verified with the processing onboard the air-
craft. Among the experiments carried out, the operation of the application against occlu-
sions among several people has been tested. There have been two experiments, one where
the crossing of the person is behind the element to be followed (see Figure 24) and another
more complex one where the crossing is made in front of the person on which it is being
crossed (see Figure 25).

Figure 24. Follow-person, a person crossing behind the element to be followed.

Figure 25. Follow-person, a person crossing in front of the element to be followed.

In Figure 25, it can be seen how detection is lost when the person identified as being
followed is hidden from the second person who crosses. However, identification allows
for keeping track of the right person when it is detected again.

The tests carried out with real aircraft have been diverse and of varying difficulty.
The experiments have been numerous; not only has the object to be followed been pro-
vided with movement but it has also been tested with different people and their positions,
the number of people in the image, lighting, and environments. Figure 26 shows examples
of the different circumstances tested.

Figure 24. Follow-person, a person crossing behind the element to be followed.

Drones 2022, 6, 369 22 of 25

Drones 2022, 6, x FOR PEER REVIEW 22 of 26

After completing these first simulated tests successfully, the application has been
tested with the first of the real UAVs, the Tello. Similarly, we have started from a simple
case, with a single static person, a mannequin in this case. Next, the dummy has been
replaced by a person, capable of moving in the different control axes, where a correct
functioning of the tracking has been observed. We should emphasize that the experiments
carried out with the Tello have been carried out indoors, where the traditional use of
drones, by GPS position, is not possible.

Finally, the application has been tested outdoors with the largest aircraft. The correct
operation of the perception block has been verified with the processing onboard the air-
craft. Among the experiments carried out, the operation of the application against occlu-
sions among several people has been tested. There have been two experiments, one where
the crossing of the person is behind the element to be followed (see Figure 24) and another
more complex one where the crossing is made in front of the person on which it is being
crossed (see Figure 25).

Figure 24. Follow-person, a person crossing behind the element to be followed.

Figure 25. Follow-person, a person crossing in front of the element to be followed.

In Figure 25, it can be seen how detection is lost when the person identified as being
followed is hidden from the second person who crosses. However, identification allows
for keeping track of the right person when it is detected again.

The tests carried out with real aircraft have been diverse and of varying difficulty.
The experiments have been numerous; not only has the object to be followed been pro-
vided with movement but it has also been tested with different people and their positions,
the number of people in the image, lighting, and environments. Figure 26 shows examples
of the different circumstances tested.

Figure 25. Follow-person, a person crossing in front of the element to be followed.

In Figure 25, it can be seen how detection is lost when the person identified as being
followed is hidden from the second person who crosses. However, identification allows for
keeping track of the right person when it is detected again.

The tests carried out with real aircraft have been diverse and of varying difficulty. The
experiments have been numerous; not only has the object to be followed been provided
with movement but it has also been tested with different people and their positions, the
number of people in the image, lighting, and environments. Figure 26 shows examples of
the different circumstances tested.

Drones 2022, 6, x FOR PEER REVIEW 23 of 26

Figure 26. Examples of the Follow-person application under different circumstances.

The different experiments have been collected in various videos available for viewing
in a playlist, that compiles all the tests performed:
https://youtube.com/playlist?list=PL2ebURGAzRwtsXui0GPFuQsIBJotnTIXj, accessed on
26 October 2022.

5. Discussion
This work presents a new infrastructure for UAV programming available to the com-

munity. The correct operation of this infrastructure has been demonstrated through the
use of three different aircraft and the development of two vision-based different applica-
tions.

The developed middleware infrastructure has been designed with a modular archi-
tecture based on ROS. The components are divided into programs with various nodes
communicating through multiple ROS topics and services. The code has been developed
in Python, and the main programs such as DroneWrapper or TelloDriver have an exten-
sion of 700 and 600 lines of source code, respectively, not including all the launch, simu-
lation, test files, etc., elaborated during development.

The development of tools for programming multi-copters has been completed with
the proposal of the DroneWrapper middleware. The infrastructure based on the MAVROS
and MAVLink standards presents speed control as a featured novelty (common in mobile
robotics but unusual in aerial robotics). It also incorporates other methods such as obtain-
ing information from vision sensors, thus enabling the construction of visual applications
making use of the infrastructure.

The selection of ROS allows for guaranteeing security and robustness. In addition,
the chosen design facilitates high usability, since the programming interface offered to the
user is straightforward to use.

The use of different UAVs has been accomplished with the use of three different
multi-copters, both real and simulated. The different nature of the selected drones allows
the horizontality of the infrastructure to be demonstrated.

Figure 26. Examples of the Follow-person application under different circumstances.

The different experiments have been collected in various videos available for viewing
in a playlist, that compiles all the tests performed: https://youtube.com/playlist?list=PL2
ebURGAzRwtsXui0GPFuQsIBJotnTIXj, accessed on 26 October 2022.

5. Discussion

This work presents a new infrastructure for UAV programming available to the com-
munity. The correct operation of this infrastructure has been demonstrated through the use
of three different aircraft and the development of two vision-based different applications.

https://youtube.com/playlist?list=PL2ebURGAzRwtsXui0GPFuQsIBJotnTIXj
https://youtube.com/playlist?list=PL2ebURGAzRwtsXui0GPFuQsIBJotnTIXj

Drones 2022, 6, 369 23 of 25

The developed middleware infrastructure has been designed with a modular archi-
tecture based on ROS. The components are divided into programs with various nodes
communicating through multiple ROS topics and services. The code has been developed in
Python, and the main programs such as DroneWrapper or TelloDriver have an extension of
700 and 600 lines of source code, respectively, not including all the launch, simulation, test
files, etc., elaborated during development.

The development of tools for programming multi-copters has been completed with
the proposal of the DroneWrapper middleware. The infrastructure based on the MAVROS
and MAVLink standards presents speed control as a featured novelty (common in mobile
robotics but unusual in aerial robotics). It also incorporates other methods such as obtaining
information from vision sensors, thus enabling the construction of visual applications
making use of the infrastructure.

The selection of ROS allows for guaranteeing security and robustness. In addition, the
chosen design facilitates high usability, since the programming interface offered to the user
is straightforward to use.

The use of different UAVs has been accomplished with the use of three different
multi-copters, both real and simulated. The different nature of the selected drones allows
the horizontality of the infrastructure to be demonstrated.

Finally, the development of different applications has been overcome with two vision-
based examples, which have been experimentally validated. The two proposed applications
offer different types of technical complexity, being feasible for all types of users, whether
they are novices or experts in the field of robotics. They include a perceptive part based on
vision, using classic (color filtering) or modern techniques (deep learning), and a reactive
control part for the motors, in speed, that uses PID controllers.

6. Conclusions

This research work concludes with a working version of the infrastructure published
as free software on GitHub, used not only in the proposed applications but also in other
free software projects such as Unibotics [38] or BehaviorMetrics [39] by JdeRobot [40].
The source code of the project is located in two different public repositories: part of the
code is hosted in JdeRobot/drones (https://github.com/JdeRobot/drones, accessed on 26
October 2022), while other parts of the code can be found in RoboticsLabURJC/2021-tfm-
pedro-arias (https://github.com/RoboticsLabURJC/2021-tfm-pedro-arias, accessed on 26
October 2022).

The final result offers a viable and very complete option for programming applications
for UAVs, as has been demonstrated, for all types of users and diverse fields of application.

The proposed infrastructure offers a starting point for many real applications with
drones. Despite being a solid product and in operation, there are multiple possibilities for
improvement and functionalities with which to provide the software.

For example, the infrastructure can be extended to support new UAVs. It includes the
development of new communication drivers with new types of aircraft. Examples of this
would be other DJI UAVs, Parrot drones, or the Crazyflie from Bitcraze.

In addition, other types of sensors could be incorporated. The infrastructure currently
only supports the use of cameras. Other sensors, see for example LiDAR sensors or
radio-frequency (RF) beacons, may be useful for some user applications.

Finally, new functionality could be added to the user programming interface. New
options should allow the user to perform tasks such as conventional (global) navigation or
obtaining more data about the aircraft.

Author Contributions: Conceptualization, P.A.-P., D.M.G., J.M.C. and P.C.; Formal analysis, P.A.-P.;
Funding acquisition, J.M.C.; Investigation, J.F.-C. and D.M.G.; Methodology, D.M.G., J.M.C. and P.C.;
Project administration, J.M.C.; Resources, D.M.G. and P.C.; Software, P.A.-P. and J.F.-C.; Supervision,
J.M.C.; Validation, P.A.-P.; Writing—original draft, J.F.-C.; Writing—review and editing, P.A.-P., J.F.-C.,
D.M.G. and P.C. All authors have read and agreed to the published version of the manuscript.

https://github.com/JdeRobot/drones
https://github.com/RoboticsLabURJC/2021-tfm-pedro-arias

Drones 2022, 6, 369 24 of 25

Funding: The research leading to these results has received funding from RoboCity2030-DIH-CM,
Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades
I+D en la Comunidad de Madrid”, and cofunded by Structural Funds of the EU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, J.; Kim, S.; Ju, C.; Son, H.I. Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and

applications. IEEE Access 2019, 7, 105100–105115. [CrossRef]
2. Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture.

Comput. Netw. 2020, 172, 107148. [CrossRef]
3. Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443.

[CrossRef]
4. Sanchez-Lopez, J.; Fernandez, R.S.; Bavle, H.; Pérez, C.S.; Molina, M.; Pestana, J.; Campoy, P. AEROSTACK: An architecture

and open-source software framework for aerial robotics. In Proceedings of the International Conference on Unmanned Aircraft
Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 332–341. [CrossRef]

5. Real, F.; Torres-González, A.; Ramon, P.; Capitán, J.; Ollero, A. Unmanned aerial vehicle abstraction layer: An abstraction layer to
operate unmanned aerial vehicles. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420925011. [CrossRef]

6. Báca, T.; Petrlík, M.; Vrba, M.; Spurný, V.; Penicka, R.; Hert, D.; Saska, M. The MRS UAV System: Pushing the Frontiers of
Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles. J. Intell. Robot.
Syst. 2021, 102, 1–28. [CrossRef]

7. Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. RotorS—A Modular Gazebo MAV Simulator Framework. Stud. Comput. Intell.
2016, 625, 595–625. [CrossRef]

8. Xiao, K.; Tan, S.; Wang, G.; An, X.; Wang, X.; Wang, X. XTDrone: A Customizable Multi-rotor UAVs Simulation Platform. In
Proceedings of the 4th International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 12–14 June 2020;
IEEE: New York, NY, USA, 2020; pp. 55–61. [CrossRef]

9. Assaf, K.; Ben-Moshe, B. A Robust and Accurate Landing Methodology for Drones on Moving Targets. Drones 2022, 6, 98.
[CrossRef]

10. Chen, P.; Dang, Y.; Liang, R.; Zhu, W.; He, X. Real-Time Object Tracking on a Drone With Multi-Inertial Sensing Data. IEEE Trans.
Intell. Transp. Syst. 2018, 19, 131–139. [CrossRef]

11. Chakrabarty, A.; Morris, R.; Bouyssounouse, X.; Hunt, R. Autonomous indoor object tracking with the Parrot AR.Drone. In
Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; IEEE:
New York, NY, USA, 2016; pp. 25–30. [CrossRef]

12. Zou, J.; Dai, X. The Development of a Visual Tracking System for a Drone to Follow an Omnidirectional Mobile Robot. Drones
2022, 6, 113. [CrossRef]

13. Javan, F.D.; Samadzadegan, F.; Gholamshahi, M.; Mahini, F.A. A Modified YOLOv4 Deep Learning Network for Vision-Based
UAV Recognition. Drones 2022, 6, 160. [CrossRef]

14. Carrasco, A.M. Arquitectura de Software Para Navegación Autónoma y Coordinada de Enjambres de Drones en Labores de
Lucha Contra Incendios Forestales y Urbanos. Ph.D. Thesis, Universidad Carlos III de Madrid, Getafe, Spain, November 2020.

15. UCI de Madrid, Laboratorio de Sistemas Inteligentes. Available online: https://lsi.uc3m.es/ (accessed on 26 October 2022).
16. Arduino, A.G. Available online: https://www.arduino.cc/ (accessed on 26 October 2022).
17. Raspberry Pi Foundation. Available online: https://www.raspberrypi.org/ (accessed on 26 October 2022).
18. Vega, J.; Cañas, J.M. PiBot: An open low-cost robotic platform with camera for STEM education. Electronics 2018, 7, 430. [CrossRef]
19. Industries GoPiGo. Available online: https://www.dexterindustries.com/gopigo3/ (accessed on 26 October 2022).
20. NVIDIA Jetson Corporation. Available online: https://www.nvidia.com/es-es/autonomousmachines/embedded-systems/

(accessed on 20 July 2021).
21. NVIDIA CUDA. Available online: https://developer.nvidia.com/cuda-zone (accessed on 26 October 2022).
22. NVIDIA JetPack SDK. Available online: https://developer.nvidia.com/embedded/jetpack (accessed on 26 October 2022).
23. Python Software Foundation. Available online: https://www.python.org/ (accessed on 26 October 2022).
24. C++. Available online: https://www.cplusplus.com/ (accessed on 26 October 2022).
25. Mahtani, A.; Sanchez, L.; Fernandez, E.; Martinez, A. Effective Robotics Programming with ROS; Packt Publishing Ltd.: Birmingham,

UK, 2016.
26. Cooney, M.; Yang, C.; Arunesh, S.; Siva, A.P.; David, J. Teaching robotics with robot operating system (ROS): A behavior model

perspective. In Proceedings of the Workshop on “Teaching Robotics with ROS”; European Robotics Forum, Tampere, Finland,
13–15 March 2018; Volume 2329, pp. 59–68.

http://doi.org/10.1109/ACCESS.2019.2932119
http://doi.org/10.1016/j.comnet.2020.107148
http://doi.org/10.3390/rs11121443
http://doi.org/10.1109/ICUAS.2016.7502591
http://doi.org/10.1177/1729881420925011
http://doi.org/10.1007/s10846-021-01383-5
http://doi.org/10.1007/978-3-319-26054-9_23
http://doi.org/10.1109/ICRAS49812.2020.9134922
http://doi.org/10.3390/drones6040098
http://doi.org/10.1109/TITS.2017.2750091
http://doi.org/10.1109/ICUAS.2016.7502612
http://doi.org/10.3390/drones6050113
http://doi.org/10.3390/drones6070160
https://lsi.uc3m.es/
https://www.arduino.cc/
https://www.raspberrypi.org/
http://doi.org/10.3390/electronics7120430
https://www.dexterindustries.com/gopigo3/
https://www.nvidia.com/es-es/autonomousmachines/embedded-systems/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/embedded/jetpack
https://www.python.org/
https://www.cplusplus.com/

Drones 2022, 6, 369 25 of 25

27. Open Source Robotics Foundation. rospy. Available online: https://wiki.ros.org/rospy (accessed on 26 October 2022).
28. MAVROS. Available online: https://wiki.ros.org/mavros (accessed on 26 October 2022).
29. OpenCV Team. Available online: https://opencv.org/ (accessed on 26 October 2022).
30. Dronecode Project, PX4. Available online: https://px4.io/ (accessed on 26 October 2022).
31. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
32. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2004,

arXiv:2004.10934.
33. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Lecture
Notes in Computer Science. Volume 8693, pp. 740–755.

34. DJI, Tello SDK. Available online: https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
(accessed on 26 October 2022).

35. Condés, I. Embedded Solution for Person Identification and Tracking with a Robot. Master’s Thesis, Universidad Carlos III
de Madrid, Leganés, Spain, June 2020. Available online: https://gsyc.urjc.es/jmplaza/students/tfm-deeplearning-person_
following-nacho_condes-2020.pdf (accessed on 26 October 2022).

36. Condés, I.; Cañas, J.M.; Perdices, E. Embedded Deep Learning Solution for Person Identification and Following with a Robot. In
Proceedings of the Workshop of Physical Agents, Madrid, Spain, 19–20 November 2020; Springer: Cham, Switzerland, 2020;
pp. 291–304.

37. OpenRobotics. Standing Person. Available online: https://fuel.ignitionrobotics.org/1.0/OpenRobotics/models/Standing%20
person (accessed on 26 October 2022).

38. JdeRobot. Unibotics. Available online: https://unibotics.org/ (accessed on 26 October 2022).
39. JdeRobot. BehaviorMetrics. Available online: https://jderobot.github.io/BehaviorMetrics/ (accessed on 26 October 2022).
40. JdeRobot. JdeRobot. Available online: https://jderobot.github.io/ (accessed on 26 October 2022).

https://wiki.ros.org/rospy
https://wiki.ros.org/mavros
https://opencv.org/
https://px4.io/
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://gsyc.urjc.es/jmplaza/students/tfm-deeplearning-person_following-nacho_condes-2020.pdf
https://gsyc.urjc.es/jmplaza/students/tfm-deeplearning-person_following-nacho_condes-2020.pdf
https://fuel.ignitionrobotics.org/1.0/OpenRobotics/models/Standing%20person
https://fuel.ignitionrobotics.org/1.0/OpenRobotics/models/Standing%20person
https://unibotics.org/
https://jderobot.github.io/BehaviorMetrics/
https://jderobot.github.io/

	Introduction
	Materials and Methods
	Hardware
	Software

	Middleware Infrastructure Developed: DroneWrapper
	DroneWrapper Package
	Tello Driver
	Victure Camera Driver

	Results
	Follow-Color Application
	Perception
	Control
	Experiments and Results

	Follow-Person Application
	Perception
	Control
	Experiments and Results

	Discussion
	Conclusions
	References

