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Abstract: Pedicularis has adverse effects on vegetation growth and ecological functions, causing
serious harm to animal husbandry. In this paper, an automated detection method is proposed to
extract Pedicularis and reveal the spatial distribution. Based on unmanned aerial vehicle (UAV)
images, this paper adopts logistic regression, support vector machine (SVM), and random forest
classifiers for multi-class classification. One-class SVM (OCSVM), isolation forest, and positive and
unlabeled learning (PUL) algorithms are used for one-class classification. The results are as follows:
(1) The accuracy of multi-class classifiers is better than that of one-class classifiers, but it requires all
classes that occur in the image to be exhaustively assigned labels. Among the one-class classifiers
that only need to label positive or positive and labeled data, the PUL has the highest F score of 0.9878.
(2) PUL performs the most robustly to change features in one-class classifiers. All one-class classifiers
prove that the green band is essential for extracting Pedicularis. (3) The parameters of the PUL are easy
to tune, and the training time is easy to control. Therefore, PUL is a promising one-class classification
method for Pedicularis extraction, which can accurately identify the distribution range of Pedicularis
to promote grassland administration.

Keywords: one-class classification; positive and unlabeled learning (PUL); vegetation extraction;
semi-supervised learning (SSL); unmanned aerial vehicle (UAV); Pedicularis

1. Introduction

Spatio-temporal variations in grassland species composition are crucial for grassland
health evaluation, local ecosystem natural changes analysis, and grassland monitoring
strategy formulation [1]. Pedicularis plants are most commonly known as lousewort (Pedic-
ulas is the Latin word meaning louse). The flowering period is from June to August, and
the fruit period is from July to September [2]. It was found that there was a large outbreak
of Pedicularis in the Bayinbuluke grassland (the second biggest grassland in China), which
had been infesting an area of 4.11 × 104 hm2. This phenomenon has altered the community
structure and composition of local grasslands, decreasing edible forage and affecting grass-
land animal husbandry development [3]. Therefore, it is necessary to develop a reliable
method to identify Pedicularis.

Remote sensing serves as a key technology in ground object identification, inversion
of surface parameters, and complex attribute analysis [4]. It uses different types of sensors
on satellites, aviation aircraft, and unmanned aerial vehicles that provide various data
related to the Earth at different spatial scales [5]. The advantage of satellite remote sensing
is that it can acquire global data and cover a large area in one imaging, which is a great
advantage for large-scale and macroscopic data collection and analysis. However, satellite
remote sensing images are affected by the weather, and the spatial resolution is difficult to
meet the requirements of refinement. Even though there are high-resolution commercial
satellites available, their images are expensive to acquire such as PlanetScope, Maxar, and
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Worldview. In recent years, UAVs have become more and more popular in many industries,
such as 3D real-world modeling [6], communications [7], transport [8], and remote sensing.
UAV remote sensing applications have attracted the interest of scientists because they are
not affected by the atmosphere. Due to low flight height, the spatial resolution of images
can reach 0.01 m or even higher, and their ability to obtain detailed information regarding
specific targets is strong. The disadvantage is that the coverage area per image is very
small, and the cost is high. So far, no studies have been carried out on the remote sensing of
Pedicularis with drones. A few studies have used drones for remote sensing of toxic plants,
such as Hogweed [9], Rumex obtusifolius [10], and Oxytropis ochrocephala [11]. However,
none of them used the PUL algorithm. UAV-borne multispectral sensors used to obtain
images with higher spatial resolution and more spectral bands have outstanding application
prospects in Pedicularis recognition, especially when distributed in small and scattered
patches. To restrain the spread of Pedicularis and eliminate its harmful effects, determining
how to map the detailed distribution of Pedicularis is becoming urgent for grassland
administration. This is what attracted us to conduct research on UAV remote sensing.

Remote sensing data have been widely applied in identifying ground objects. An
image classification task aims to extract class information from the input. The classification
task is especially daunting because most supervised learning projects require a sufficiently
large number of training samples. Nevertheless, the definition and acquisition of reference
data are often key issues [12]. As a result, classification algorithms for various tasks
have been developed and applied in different contexts. Most studies used the multi-class
classification method when classifying land cover types, such as support vector machines,
decision trees, logistic regression, maximum likelihood, and deep neural networks [13,14].
These models have been used for a long time in land use and land cover classification [15,16],
crop classification, and yield estimation [17]. For example, polynomial logistic regression
based on semi-supervised learning was proposed for hyperspectral image classification by
Shah, S.T.H. et al. [18]. Bo, S.K. et al. [19] proposed a method of dividing data using multi-
class classifiers to extract a single land cover type. Muñoz-Marí J. [20] combined geographic
weighted regression and logistic regression to analyze spatial changes in classification
results of remote sensing images. Li L.H. et al. [21] used an object-oriented random forest
algorithm to identify the forest using remote sensing data from the GaoFen-2 satellite that
was launched in 2014 by China. Zhao, C. [22] transformed multi-class classification into a
binary classification problem in extracting Chinese mangroves, improving classification
accuracy by reducing the sample size and feature selection. Numerous studies classified
land cover types and selected features based on random forest or the combination of
random forest and neural networks [23–25]. Traditional supervised classification methods
must mark all land cover types. However, when there is only one land cover type of
interest and other types are not considered, marking all the classes is time-consuming and
laborious, especially when high-resolution images are used [16,26,27]. Thus, it is of great
necessity to cultivate one-class classifiers to extract specific land cover types [28].

One-class classifiers only need to know the feature data of the target of interest to
distinguish this specific target from other land cover classes [29,30]. One-class classification
is more suitable for extracting specific objects than multi-class classification. In one-class
classification, negative classes (non-interested classes) either do not exist or are incorrectly
sampled. Numerous one-class classifiers to extract specific ground targets are proposed [19].
The existing one-class classification methods can be divided into the following categories:
density estimation method, prior probability estimation method, clustering method, and
support domain-based method [31]. All one-class classifiers use the class of interest as the
target class and the other class as outliers. One-class SVM (OCSVM) is commonly used
and performs well among these classifiers. The OCSVM method was initially introduced
by estimating the support of a high-dimensional distribution [20,32]. The classifier has
been proven helpful in document classification, land cover classification, and land cover
change detection [32]. However, a drawback of OCSVM is that it is sensitive to free
parameters that are difficult to adjust. Another is the isolation forest designed for anomaly
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detection, which has been developed in recent years. It is used to monitor hyperspectral
data for anomalies and changes in land cover types [33,34]. However, isolation forest is
rarely applied in remote sensing, particularly in classification. So it is necessary to test the
accuracy of isolated forests in one-class classification extraction. These one-class classifiers
only require positive class samples, which not only improves efficiency but also lowers
sampling labor costs.

In addition to labeled samples, unlabeled samples also provide helpful information
for constructing classifiers. Since the accuracy of traditional one-class classifiers could
not meet the requirement of reasonable classification, the PUL classifier was developed in
recent years. Wan Bo et al. [35] used the PUL method to extract urban areas of the United
States from MODIS data, and the mapping accuracy reached 92.9%. R Liu et al. [36] used
various PUL classifiers to test the extraction of urban regions in images with different
resolutions. Li, W.K. et al. [37] compared the performance of PUL and other one-class
classifiers in extracting different land cover types. They found that in urban areas, the
extraction accuracy of PUL was 15% higher than OCSVM; in grasslands, the extraction
accuracy of PUL was 10% higher than that of OCSVM. Li, W.K et al. [38] proposed a PUL
with a constraints algorithm based on binary classifiers for linear and fractional linear
models, which increased the accuracy of PUL extraction of one-class classification. Lei
L. et al. [39] proposed a deep one-class crop framework that includes a deep one-class crop
extraction module and a one-class crop extraction loss module for large-scale one-class
crop mapping. According to the literature review, one-class classification and PUL are
primarily applied to urban buildings, large land targets, and monitoring rivers. In contrast,
identifying single vegetation is relatively tricky due to the similarity of spectral features
between vegetation.

This study explores the effectiveness of using UAV images to identify Pedicularis as a
single grassland type [40]. We compare the ability of multi-class classification and one-class
classification methods to extract Pedicularis and carry out performance evaluation of multi-
ple algorithms. Finally, the feature importance ranking based on one-class classification
algorithms for extracting Pedicularis is provided.

2. Material and Methods
2.1. Study Area

In recent years, Pedicularis has been out of control in Xinjiang, China, affecting the
area’s ecology and resulting in financial losses for the animal husbandry industry [41]. As
shown in Figure 1, this study was carried out in the Swan Lake area of the Bayinbuluke
grassland at an altitude of 2400 m [42]. Here, grassland vegetation is rich in species, and
the grass composition is mainly formed of Kobresia capillifolia, Carex spp., Stipa purpurea
Griseb, Agropyron cristatum (L.) Gaertn, etc. It is a well-established ecosystem with rivers,
lakes, snowy mountains, and other water bodies [4].

2.2. Datasets and Pre-Processing

The study used two UAV systems to collect data from the same area on 7 August 2019,
namely UAV RGB and UAV multispectral data. The area of interest was approximately
1.4 × 1.2 km. The DJI M600 (DJI, Shenzhen, China) was equipped with a SONY RX1RII
camera with a focal length of 35 mm and a picture size of 35.9 × 24.0 mm. The UAV flew
at a height of 230 m and acquired photos with a resolution of 3 cm. Each RGB image was
7952 × 5304 pixels. The flight information was planned in DJI GS Pro (DJI, Shenzhen,
China), with forward overlap set to 80%, side overlap set to 70%, flight speed set to 12 m/s,
and data collection time set to 33 min. SONY RX1RII collected RGB images in the visible
spectral band (0.38~0.76 microns). These images directly reflect detailed information such
as ground objects’ shape, color, and texture.

The multispectral camera is a Swiss Parrot Sequoia multispectral camera, which was
mounted on the DJI M600. Each image had a single-band resolution of 1280× 960. The UAV
flew at a height of 110 m and acquired data with a resolution of 10 cm. The study area size
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was 13,866 × 11,957 pixels. We planned the flight information in DJI GS Pro (DJI, Shenzhen,
China), set the forward overlap to 75%, side overlap to 70%, flight height to 110 m, flight
speed to 12 m/s, and data collection time to 70 min. The research used a calibration panel
to calibrate the multispectral images. Furthermore, we used Pix 4D Mapper to mosaic
images and ENVI 5.3 for layer stacking. The parameters of the multispectral camera are
shown in Table 1.

Figure 1. (a) Study site located in Xinjiang (black boundary), China. (b) Hejing County (red boundary),
Bayinbuluke grassland (redpoint) located at 42◦48′, 84◦31′, (c) ortho-mosaic image taken by the RGB
UAV on 7 August 2019 (purple pixel is Pedicularis).

Table 1. Configuration information for Parrot Sequoia.

Band Name Central Wavelength (nm) Bandwidth FWHM (nm)

B1(Green) 550 40
B2(Red) 660 40

B3 (Red Edge) 735 10
B4(Nir) 790 40

In this study, three vegetation indices were used as new features to better charac-
terize ground objects. The normalized difference vegetation index (NDVI), ratio vegeta-
tion index (RVI), and normalized difference red edge index (NDRE) were derived using
Equations (1)–(3). NDVI is recognized as one of the most effective parameters to character-
ize vegetation change and can reflect vegetation greenness change well [43]. RVI is widely
used to estimate and monitor the biomass of green plants [44], and NDRE is mainly used
to analyze vegetation health [45]. Numerous experiments have shown that these three
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vegetation indices are widely used for land use classification and target extraction and can
improve classification accuracy [46–51].

NDVI =
ρnir − ρred
ρnir + ρred

, (1)

RVI =
ρnir

ρred
, (2)

NDRE =
ρnir − ρrededge

ρnir + ρrededge
. (3)

The data pre-processing steps were as follows. First, by observing the distribution of
land cover types in the study area, we registered UAV multispectral and RGB orthogonal
images of the study area. Then, with the help of visible images, we selected samples from
multispectral images by visual interpretation methods. We divided each type of sample
into training and test sets according to the 7:3 ratio. The sampling points are shown in
Figure 2.

Figure 2. (a) Distribution of samples in RGB image. (b) Pedicularis foreground of Pedicularis. (c) Close-
up photograph of Pedicularis.

In this study, sample datasets were selected by visual interpretation. The sample
information for the multi-class classification is shown in Table 2. The samples of one-class
classification were selected by randomly assigning some samples from training datasets.
The test samples were consistent for both one-class and multi-class classifications.

Table 2. Training/testing dataset information for the study regions.

Class Number of Samples
Number of Pixels

Train Test

Pedicularis 24 157701 67586
Grassland 13 107986 46280
Bare land 5 135141 57918

Road 24 43581 18678
Others 2 3537 1516

Others: buildings in the area of interest.
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2.3. Classification Model

This study compared the accuracy of SVM, logistic regression, and random forest
algorithms in multi-class classification, OCSVM, isolation forest, and PUL methods in
one-class classification algorithms in identifying Pedicularis. We used the raw multispectral
data (green, red, NIR, rededge) and its derived vegetation indices (NDVI, NDRE, RVI),
seven variables in total, as inputs to construct the classifiers. The Scikit-learn framework
of python was used to construct the model and adjust the parameters of the model. The
construction of these classifiers is summarized below.

Logistic regression is one of the models of multivariate statistical analysis (MSA),
which performs maximum likelihood estimation after transforming dependent variables
into logit variables. The logistic regression of event probabilities is suitable for describing
the relationships between class variables and continuous predictor variables [52]. It mainly
tunes the parameter, which is multi_class (‘multinomial’ and ‘ovr’).

Cortes and Vapnik proposed SVM based on statistical theory [53]. SVM aims to
identify a hyperplane that splits the dataset into predefined discrete classes consistent
with the training instance [54]. Three parameters, C, gamma, and kernel, were optimized
in this study. Currently, the commonly used kernel functions are linear kernel function,
linear kernel, polynomial kernel function, Gaussian kernel function, and sigmoid kernel
function. Three values of C (100, 1000, and 10,000) and gamma (‘auto’ and ‘scale’) are
commonly used.

Random forest uses the bootstrap method, which is used to extract the training dataset
from the original sample dataset, and then a decision tree model is trained on each training
dataset [55]. Finally, the category with the most votes cast by all base classifiers is the
final category [56]. The parameters that determine the classification performance of the
random forest classifier include two main categories. One category is the structure of the
forest, which is the number of base classifiers. The other category is based on the tree’s
structure, including the tree’s depth, the minimum number of samples required to split the
interior nodes, the minimum number of pieces needed for the leaf nodes, and the number
of features to find the best split. This experiment adjusted two parameters, n_estimators
and max_depth. The n_estimators ranged from 100 to 1000 with a step size of 100, while
the range of values for max_depth was from 10 to 100 with a step size of 10.

OCSVM is the most advanced algorithm among one-class classification algorithms.
Its principle is to try to obtain a hypersphere as small as possible to contain a positive
class training sample. In this study, the OCSVM classifier adopted the radial basis function
kernel and optimized the two most essential parameters, nu and γ [57]. The nu ranged
from 0.01 to 0.1 with a step size of 0.01, while the values of γ were 0.01, 0.1, and 1.

Isolation forest isolates split the data space with a random hyperplane [58], randomly
selecting a feature and then setting a split value between the maximum and minimum
value of the selected feature. Then, the classifier continues to split the dataset in the same
way until there is only one data point in each subspace. Eventually, the average path length
of the samples in all trees is calculated to determine anomalies. Here, isolation forest tuned
two parameters. The contamination from 0.01 to 0.2, with a step size of 0.01, was examined,
and the max_samples from 0.01 to 0.2 were determined, with a step size of 0.01.

PUL (positive and unlabeled learning) is a semi-supervised learning algorithm based
on a positive and unlabeled sample [59]. PUL’s goal is to learn dual classifiers from positive
samples and mixed unsigned samples. The steps are as follows: (1) determine a set of
reliable negation (RN) examples from unlabeled samples (U) based on positive samples (P)
and then transform the problem into a binary classification problem and (2) train binary
classifiers based on P and RN by iteratively applying existing classification algorithms.
This study chose decision trees as the base classifiers and described PUL’s classification
results in detail. The experiment adjusted two parameters, the number of base classifiers
(from 100 to 1000 with a step size of 100) and the number of iterations (from 100 to 2000
with a step size of 100).
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2.4. Classification Strategy

We divided sample datasets into training and test datasets according to a ratio of
7:3. We trained and tested the multi-class classifier using all the data in Table 2. The
research combined the grid search algorithm and layered 10-fold cross-validation on
the training dataset to obtain the best model parameters and ensure the robustness of
the model. Ultimately, multi-class and one-class classifiers were tested using the same
dataset, and multi-class and one-class classifiers were evaluated in the test dataset using
the same metrics.

Both OCSVM and isolation forest are unsupervised classification models, and we
used positive data for a semi-supervised classification task in OCSVM and isolation forest,
respectively. In OCSVM and isolation forest, the researchers randomly selected 100,000 pos-
itive samples from the training datasets. Then, we used two classifiers to fit this training
dataset, and the trained model was evaluated for accuracy on test datasets.

In the PUL classifiers, 100,000 positive and 100,000 negative samples were selected
from the training dataset in a ratio of 1:1 to train the model. To improve the training
efficiency of PUL, 1000 decision trees were trained to fit the training dataset using decision
trees as the base classifier. First, we selected 10% of the 100,000 positive class samples as
positive (y = 1). Second, we marked the remaining 90% of positive class samples and all
negative class samples as unlabeled samples (y = 0) and randomly selected 10,000 samples
from the unlabeled samples as negative (y = −1) for training. Finally, 1000 iterations were
performed in this manner. The probability of each sample being positive was calculated,
and the classification result of this classifier was obtained.

2.5. Accuracy Assessment of Classifiers

Confusion matrices of different classifiers on the test dataset and evaluation metrics
are listed in the results section. Recall (R), precision (P), overall accuracy (OA), and F1-Score
were used as metrics to evaluate the model. The precision parameter quantifies predictions
for a positive class in the collected dataset, which can be achieved using Equation (4). The
recall parameter quantifies predictions for all the positive classes, which can be achieved
using Equation (5). The F-score considers the P and R parameters, thus indicating model
accuracy for the given datasets, as shown in Equation (6). Finally, overall accuracy is the
sum of the true positives plus true negatives divided by the total number of individuals
tested, as shown in Equation (7). These metrics are sufficient to complete the performance
evaluation of each classifier. This research considered the running time of the multi-class
and one-class classification models and the difficulty of debugging the optimal parameters,
which provided multifaceted judgment criteria for selecting the best classifier.

The overall workflow of this study is shown in Figure 3 and is divided into the
following four parts: data processing, model construction, accuracy assessment, and result
prediction. We obtained the geographic distribution of Pedicularis in the study area using
different algorithms. Based on the comparison results, feature importance analyses were
performed on the performing one-class classifiers to compare the contribution of each
input feature, thus providing a reference for the selection of input features as auxiliary
data in further studies. All the above-mentioned methods were completed with the Python
Scikit-learn package.

precision =
TP

TP + FP
, (4)

recall =
TP

TP + FN
, (5)

Fscore =
2× precision× recall

precision + recall
, (6)

OA =
TP + TN

TP + TN + FP + FN
. (7)
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Figure 3. The processing workflow of the study.

TP, FP, FN, and TN are true positive, false positive, false negative, and true negative
classifications, respectively.

3. Results
3.1. The Comparisons of the Classification Accuracies of Classifiers

To calculate the best extraction accuracy for Pedicularis, we classified the land cover
types in the study area using multi-class classifiers that obtained optimal parameters. The
land cover types were divided into the following five types: Pedicularis, grassland, bare
land, road, and others. With the optimal parameter setting, the confusion matrices of three
different models on the test dataset were obtained and are presented in Tables 3–5. The
performance of each classifier was evaluated using recall, precision, F-Score, and OA.

Table 3. Confusion matrices and evaluation metrics (logistic regression).

Prediction

Pedicularis Grassland Bare Land Road Others Recall (%)

Pedicularis 66535 509 540 2 0 98.44
Grassland 340 45359 573 8 0 98.01
Bare land 419 428 57057 14 0 98.51

Road 13 142 809 17690 24 94.71
Others 0 0 52 32 1432 94.45

Precision (%) 98.85 97.67 96.65 99.68 98.35

Table 4. Confusion matrices and evaluation metrics (SVM).

Prediction

Pedicularis Grassland Bare Land Road Others Recall (%)

Pedicularis 66593 501 491 1 0 98.53
Grassland 300 45753 206 21 0 98.86
Bare land 373 503 57032 10 0 98.47

Road 13 119 553 17984 36 96.14
Others 0 0 0 36 1480 97.62

Precision (%) 98.98 97.60 97.85 99.62 97.62
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Table 5. Confusion matrices and evaluation metrics (random forest).

Prediction

Pedicularis Grassland Bare Land Road Others Recall (%)

Pedicularis 66667 418 498 3 0 98.64
Grassland 302 45704 242 32 0 98.75
Bare land 344 403 57111 60 0 98.60

Road 8 91 412 18167 0 97.26
Others 0 0 0 12 1504 99.20

Precision (%) 99.03 98.04 98.02 99.41 1

As seen in Figure 4, the recall, precision, OA, and F-score of all classifiers were over
97%. Random forest had the best performance with the highest OA and F-score, equal
to 98.53% and 98.83%, respectively. Additionally, it was followed by SVM (98.35% and
98.75%) and logistic regression (97.96% and 98.65%). In this experiment, the accuracy of
the three classifiers differed very little, and all classifiers could be used as classification
methods. As can be evidenced from the precision and recall of other individual land cover
types, the performance of the classifiers is consistent with the above results.

Figure 4. Evaluation metrics of the different classifiers on test datasets.

When using the one-class classification algorithm, we used Pedicularis as the positive
class and other samples as the negative class. The confusion matrix and evaluation metrics
are shown in Table 6. The evaluation metrics were the same as the multi-class classification.
Figure 4 shows that the recall, precision, OA, and F-score of all classifiers were over 90%.
The recall, precision, OA, and F-score of OCSVM were 94.79%, 96.91%, 97.09%, and 95.83%,
respectively. In the isolation forest, the evaluation metrics were lower, 89.46%, 91.03%,
93.18%, and 90.23%, respectively. PUL had the best performance with recall, precision, OA,
and F-score of 97.98%, 95.97%, 97.89%, and 96.97%, respectively.

Compared to the isolation forest, OCSVM had higher recall and precision, which was
better than the isolation forest for the identification of Pedicularis. In extracting Pedicularis,
the recalls of OCSVM and isolated forest were slightly lower than the precision. Unlike
OCSVM and isolation forest, the PUL was outstanding in all metrics and was relatively
close to the result of multi-class classification. Moreover, PUL’s precision in extracting
Pedicularis was slightly lower than its recall. Its overall accuracy and F-score even reached
97.89% and 96.97%.

The result predicted by multi-class and one-class classification shows that the multi-
classification algorithm was significantly better than the one-class classification algorithm.
As can be seen from Figures 5–7, the accuracy of the multi-class classifiers was higher than
the one-class classifiers.
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Table 6. Confusion matrices and evaluation metrics (Pedicularis is a positive class).

Prediction

Model Reference Positive Negative

OCSVM

Positive 64063 3253
Negative 2045 122347
Recall (%) 94.79 98.36

Precision (%) 96.91 97.41
OA (%) 97.09

F-score (%) 95.83

Isolation forest

Positive 60463 7123
Negative 5963 118429
Recall (%) 89.46 95.20

Precision (%) 91.03 94.32
OA (%) 93.18

F-score (%) 90.23

Bagging PU

Positive 64865 2721
Negative 1339 123053
Recall (%) 97.98 98.92

Precision (%) 95.97 97.83
OA (%) 97.89

F-score (%) 96.97

Figure 5. The spatial distribution of each class by multi-class classifiers.

Figure 6. The geographic distribution of Pedicularis by multi-class classifiers.

The distribution maps obtained using the OCSVM and isolation forest had slight errors.
The map produced by the PUL method is highly consistent with the actual distribution,
and its prediction map is very similar to the distribution of Pedicularis obtained by the
multi-class classifiers. The distribution of Pedicularis in the predicted map of OCSVM is
more in line with the natural distribution, but the distribution is not dense enough in local
areas. The broken speckle phenomenon of the image elements is more prominent. Isolation
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forest has low precision, which may cause maps to misclassify other ground objects as
Pedicularis. In addition, because of low recall, classifiers classify Pedicularis as other ground
objects. The error of the isolated forest distribution map is the most obvious, and its results
can roughly reflect the distribution area of the large area of Pedicularis.

Figure 7. The geographic distribution of Pedicularis by one-class classifiers.

3.2. Ranking of Feature Importance for One-Class Classification

To extract ground objects and determine the most important features for identifying
Pedicularis, we performed feature importance analysis for each one-class classifier. In the
first step, on the test dataset, the values of the green bands were randomly ordered, with
all other features unchanged. Then, we used the trained model to predict this dataset to
obtain the evaluation metrics corresponding to the green band. In the second step, the
remaining six features were repeated according to the first step to obtain seven different
sets of evaluation metrics. In the third step, to reduce the error of the experiment, this
experiment was conducted 10 times, and the average of the 10 results was used as the final
result. Finally, we compared the standard evaluation metrics with the seven groups of
abnormal metrics. The difference between them was used as a discriminator to determine
which feature was the most important, with an enormous difference indicating that the
feature was more important.

According to Figure A1 (provided in Appendix A), there may be an improvement
in recall or precision by changing the values of individual variables. However, the total
OA and F-score were decreased compared with the initial classification results. The clas-
sification accuracy of OCSVM was most sensitive to the change in feature values. The
isolation forest was the most stable; its OA and F-score were approximately 10%. PUL was
insensitive to changes in variables, and its accuracy decreased insignificantly with changes
in variables except for the green band.

The trends of F-scores and OA were consistent, using OA and F-scores as the main
criteria. The feature importance ranking of OCSVM is Green > NDVI > RVI > Red >
Nir > Red Edge > NDRE. Each feature has a pronounced contribution, with Green, NDVI,
and RVI being the most important. Isolation forest has an obscure ranking of feature
importance, with each variable contributing closely. Green, Nir, and NDVI are most
important for isolation forest. PUL’s feature importance ranking is Green > Nir > Red >
RVI > NDVI > Red Edge > NDRE. Although the three classifiers have different feature
importance rankings, green is still the most important feature among the three classifiers.

3.3. Model Evaluation

Table 7 shows the optimal parameters of the model, as well as the training time of
the model. Among the multi-class classifiers, logistic regression had the shortest training
time, required fewer parameters to be tuned, and had sound performance effects. SVM
required the adjustment of two parameters, C and gamma, which had high classification
accuracy, but it took more time to fit the model. By contrast, the classification accuracy of
the random forest was uppermost, and running speed was faster and more suitable for
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Pedicularis prediction. In addition, random forest is insensitive to parameters, does not
over-fit, and requires significantly less time to adjust parameters.

Table 7. Parameters and running times of every model.

Model Parameters Run Time (s)

Logistic Regression multi = multinomials 20~30
SVM C = 1000, gamma = 1 260~290

Random Forest n_estemator = 100, max_depth = 40 150~170
OCSVM nu = 0.05, gamma = 0.1 25~35

Isolation forest Contamination = 0.1, max_samples = 0.1 5~10
PUL / 500~520

OCSVM took 25~30 s to fit the model and had high accuracy, but its parameters were
difficult to adjust. The isolation forest took only 5~10 s to train the model, which took the
shortest time, its parameters were easier to adjust, but its accuracy was also the lowest. PUL
took approximately 10 min to fit the model because it required 1000 iterations based on the
decision tree. Among the one-class classifiers, the model had the highest accuracy and was
the most suitable model for extracting Pedicularis, and the parameters were adjusted based
on the decision tree.

The default parameters are not displayed. Check the documentation for python’s
Scikit-learn library for a detailed description of the parameters.

4. Discussion

There was a difference between multi-class and one-class classifiers regarding predic-
tion maps. As seen in Figures 6 and 7, the multi-class classifiers had high classification
accuracy, and the distribution maps obtained using three different methods were similar.
Furthermore, this result was consistent with the distribution of real Pedicularis. Among
the three classifiers, a stable rank order was found (random forest > SVM > logistic re-
gression). Random forest is widely used in classification tasks because of its excellent
generalization performance and is less likely to be overfitted, as can be demonstrated by
other studies [23–25]. SVM is not as effective as random forest when classifying land cover
types on remote sensing images [26].Logistic regression is a classical binary classifier. In
many studies, it is not used alone for classification but in combination with other methods
or as a loss function of neural networks [60].

Analyzing the predicted results of Pedicularis, the OCSVM and isolation forest have
their limitations due to the absence of the aid of negative class samples. When performing
the classification task, OCSVM and isolation forest do not perfectly depict the feature
space, and the partitioned interface is not so strict. It was shown that OCSVM had high
accuracy in one-class classification, exceeding 90% on high-resolution images. However, it
did not perform well in low-resolution images [57]. Isolation forest had never been used
for one-class classification of remote sensing images, and the experience results show that
its accuracy was lower than that of OCSVM. However, experimental results show that
isolation forest had the fastest training speed and easier parameter tuning and could be
used as a highly efficient single-class classifier. In addition, OCSVM parameters were
difficult to tune and more sensitive to outliers [61]. In contrast, our proposed PUL is not
insensitive to outliers and parameters. More importantly, it can use a large number of
unlabeled datasets to help the training of the classifier. Therefore, it is reasonable that PUL
outperforms OCSVM and isolation forest in this paper. The OA and F-score of PUL were
0.8% and 1.14% higher than OCSVM and 4.71% and 6.74% higher than isolation forest.
Similar findings were confirmed in other studies [35].

Adding unlabeled data can enhance classification accuracy when the labeled samples
are only positive classes, which is also justified in this paper [59]. Experimental results
show that PUL generally provided higher accuracy than OCSVM and isolation forest. The
algorithm change borrows the bagging idea, making the model more stable. This research
shows that this sampling method produces good classification results, indicating that
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this sampling method satisfies the assumption of completely random selection. Further,
experimental results show that the tree model is more efficient than the support vector
machine in terms of running speed and efficiency. The main advantage of PUL is its
ability to obtain higher accuracy, especially when the amount of example data of unlabeled
samples is relatively large. However, the algorithm takes the longest time while obtaining
the best accuracy. The training time is based on the number of classifiers selected and the
number of iterations.

In one-class and multi-class classification algorithms, the change of green band values
significantly reduces the model’s classification accuracy. The results of this research are
consistent with the conclusions drawn from the spectral curve of Pedicularis. The spectral
curve of Pedicularis is different from other grasslands from 550 to 680 nm [62]. The impor-
tance of the red band and the vegetation index, calculated based on the red band, are also
ranked important. This reason may be due to the difference in the physiological structure
of Pedicularis from other grasses [63,64]. In addition, we found that object-oriented methods
are often used when performing high-resolution image extraction. Object-oriented methods
perform better than pixel-based classification methods in extracting regular objects, such
as buildings, rivers, or dense grasslands [1]. However, the shape of Pedicularis is difficult
to obtain, and there is no pattern to its geographical distribution. The government needs
to control Pedicularis growth early in its emergence. Because of the above reasons, it is
necessary to use pix-based classification to extract grassland. This research provides the
best practice approach to extracting a single target.

The contribution of this research is to provide a more efficient and accurate algorithm
for the extraction of Pedicularis based on UAV images. However, extraction experiments
were carried out on a small local scale due to the high cost of UAV data collection. More
mapping experiments should be conducted in future research since good potential has been
shown in our preliminary results. In addition, considering reasonable cost, UAV remote
sensing is more suitable for application to a small area. If the task is to extract Pedicularis
in a vast grassland, it is worthwhile to research migrating the proposed method applied to
satellite imagery with higher spatial resolution in the future.

5. Conclusions

This paper shows that the classification accuracy of the multi-class classification
method is higher than the one-class classification algorithm when extracting Pedicularis.
Compared to traditional supervised classification methods, one-class classification can
significantly reduce the effort required to assign labels to training samples without loss of
prediction accuracy and shows excellent potential for the identification of vegetation. We
evaluated the one-class classification method for identifying ground objects, and PUL is
the best method to satisfy the condition.

The overall accuracy of Pedicularis extracted using the PUL reached 97.89% (F-score = 0.9697).
Multispectral imagery can help separate Pedicularis from others, with the green band being
the most important feature distinguishing Pedicularis. In the phase of training models, the
training time of PUL depends on the complexity of the base classifier, so the choice of the
base classifier is crucial.

The proposed PUL method has great potential in selecting training samples, and it is
time-saving and efficient. Pedicularis distribution maps obtained in the research showed
good potential for detecting and managing harmful plant invasion of grassland-based
UAV images. However, UAV remote sensing is more suitable for application to a small
area. Practically, we usually have to balance between cost and accuracy when we select
remote sensing images of UAVs or satellites. In future research, we will attempt to transfer
the proposed PUL method to satellite remote sensing imagery, which is helpful to the
application to large grasslands.
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