Consensus Control of Large-Scale UAV Swarm Based on Multi-Layer Graph
Abstract
:1. Introduction
2. Preliminaries and Problem Statements
2.1. Graph Theory
2.2. Problem Descriptions
3. Multi-Layer Consensus Control Architecture
3.1. Multi-Layer Graph Model
3.2. Swarm Configuration
3.3. Consensus Strategy
4. Simulation Study
4.1. Swarm Configuration
4.2. Consensus Control
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | Unmanned Aerial Vehicle |
APF | Artificial Potential Field |
References
- Nasir, M.H.; Khan, S.A.; Khan, M.M.; Fatima, M. Swarm Intelligence inspired Intrusion Detection Systems—A systematic literature review. Comput. Netw. 2022, 205, 108708. [Google Scholar] [CrossRef]
- Rosenberg, L.; Willcox, G.; Askay, D.; Metcalf, L.; Harris, E. Amplifying the social intelligence of teams through human swarming. In Proceedings of the 2018 First International Conference on Artificial Intelligence for Industries (AI4I), San Francisco, CA, USA, 26–28 September 2018; pp. 23–26. [Google Scholar]
- Kiebert, L.; Joordens, M. Autonomous robotic fish for a swarm environment. In Proceedings of the 2016 11th System of Systems Engineering Conference (SoSE), Waurn Ponds, Australia, 12–16 June 2016; pp. 1–6. [Google Scholar]
- Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 27–31 July 1987; pp. 25–34. [Google Scholar]
- Cucker, F.; Smale, S. Emergent behavior in flocks. IEEE Trans. Autom. Control. 2007, 52, 852–862. [Google Scholar] [CrossRef] [Green Version]
- Saska, M.; Vakula, J.; Přeućil, L. Swarms of micro aerial vehicles stabilized under a visual relative localization. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong Convention and Exhibition Center, Hong Kong, China, 31 May–7 June 2014; pp. 3570–3575. [Google Scholar]
- Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control. 2006, 51, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Wang, X.; Lin, Z. Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control. 2009, 54, 293–307. [Google Scholar] [CrossRef]
- Fu, X.; Pan, J.; Wang, H.; Gao, X. A formation maintenance and reconstruction method of UAV swarm based on distributed control. Aerosp. Sci. Technol. 2020, 104, 1270–9638. [Google Scholar] [CrossRef]
- Wu, Y.; Gou, J.; Hu, X.; Huang, Y. A new consensus theory-based method for formation control and obstacle avoidance of UAVs. Aerosp. Sci. Technol. 2020, 107, 1270–9638. [Google Scholar] [CrossRef]
- Soria, E.; Schiano, F.; Floreano, D. Predictive control of aerial swarms in cluttered environments. Nat. Mach. Intell. 2021, 3, 545–554. [Google Scholar] [CrossRef]
- Haghighi, R.; Cheah, C.C. Multi-group coordination control for robot swarms. Automatica 2012, 48, 2526–2534. [Google Scholar] [CrossRef]
- Yan, X.; Chen, J.; Sun, D. Multilevel-based topology design and shape control of robot swarms. Automatica 2012, 48, 3122–3127. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, Z.; Deng, H.; Li, D. A Multilayer Graph for Multiagent Formation and Trajectory Tracking Control Based on MPC Algorithm. IEEE Trans. Cybern. 2021, 52, 13586–13597. [Google Scholar] [CrossRef]
- Li, D.; Ge, S.S.; He, W.; Ma, G.; Xie, L. Multilayer formation control of multi-agent systems. IEEE Trans. Cybern. 2019, 109, 108558. [Google Scholar] [CrossRef]
- Liu, X.; Ge, S.S.; Goh, C.H. Formation potential field for trajectory tracking control of multi-agents in constrained space. Int. J. Control 2017, 90, 2137–2151. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Xia, Y.; Xiong, H.; Shao, X. An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi-UAV Systems. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1129–1133. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, H.; Zhang, Y.; Wang, H.; Cao, D.; Xu, N.; Hu, C. A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Trans. Ind. Electron. 2019, 67, 1376–1386. [Google Scholar] [CrossRef]
- Wen, G.; Ge, S.S.; Tu, F.; Choo, Y.S. Artificial Potential-Based Adaptive H∞ Synchronized Tracking Control for Accommodation Vessel. IEEE Trans. Ind. Electron. 2017, 64, 5640–5647. [Google Scholar] [CrossRef]
- Vásárhelyi, G.; Virágh, C.; Somorjai, G.; Nepusz, T.; Eiben, A.E.; Vicsek, T. Optimized flocking of autonomous drones in confined environments. Sci. Robot. 2018, 3, eaat3536. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, S.; Yu, X.; Yang, J. Distributed active anti-disturbance consensus for leader-follower higher-order multi-agent systems with mismatched disturbances. IEEE Trans. Autom. Control 2016, 62, 5795–5801. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Z.; Lam, H.K. Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations. IEEE Trans. Autom. Control 2016, 62, 3524–3531. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lewis, F.L.; Qu, Z. Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Trans. Ind. Electron. 2011, 59, 3026–3041. [Google Scholar] [CrossRef]
- Zou, Y.; Meng, Z. Coordinated trajectory tracking of multiple vertical take-off and landing UAVs. IEEE Trans. Ind. Electron. 2019, 99, 33–40. [Google Scholar] [CrossRef]
- Olfati-Saber, R.; Murray, R.M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control. 2004, 49, 1520–1533. [Google Scholar] [CrossRef] [Green Version]
- Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 1995, 75, 1226. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhao, S.; Xia, Y.; Pan, Z.; Tian, H. Consensus Control of Large-Scale UAV Swarm Based on Multi-Layer Graph. Drones 2022, 6, 402. https://doi.org/10.3390/drones6120402
Wang T, Zhao S, Xia Y, Pan Z, Tian H. Consensus Control of Large-Scale UAV Swarm Based on Multi-Layer Graph. Drones. 2022; 6(12):402. https://doi.org/10.3390/drones6120402
Chicago/Turabian StyleWang, Taiqi, Shuaihe Zhao, Yuanqing Xia, Zhenhua Pan, and Hanwen Tian. 2022. "Consensus Control of Large-Scale UAV Swarm Based on Multi-Layer Graph" Drones 6, no. 12: 402. https://doi.org/10.3390/drones6120402
APA StyleWang, T., Zhao, S., Xia, Y., Pan, Z., & Tian, H. (2022). Consensus Control of Large-Scale UAV Swarm Based on Multi-Layer Graph. Drones, 6(12), 402. https://doi.org/10.3390/drones6120402