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Abstract: The drone-based multi-modal inspection of industrial structures is a relatively new field
of research gaining interest among companies. Multi-modal inspection can significantly enhance
data analysis and provide a more accurate assessment of the components’ operability and structural
integrity, which can assist in avoiding data misinterpretation and providing a more comprehensive
evaluation, which is one of the NDT4.0 objectives. This paper investigates the use of coupled
thermal and visible images to enhance abnormality detection accuracy in drone-based multi-modal
inspections. Four use cases are presented, introducing novel process pipelines for enhancing defect
detection in different scenarios. The first use case presents a process pipeline to enhance the feature
visibility on visible images using thermal images in pavement crack detection. The second use
case proposes an abnormality classification method for surface and subsurface defects using both
modalities and texture segmentation for piping inspections. The third use case introduces a process
pipeline for road inspection using both modalities. A texture segmentation method is proposed
to extract the pavement regions in thermal and visible images. Further, the combination of both
modalities is used to detect surface and subsurface defects. The texture segmentation approach is
employed for bridge inspection in the fourth use case to extract concrete surfaces in both modalities.

Keywords: multi-modal data processing; unmanned aerial vehicle; texture segmentation; remote
inspection; thermography; thermal image segmentation

1. Introduction

The predictive maintenance of multiple operational assets is one of the responsibilities
of infrastructure stakeholders. Regular inspections are mandatory for assessing and pre-
serving the serviceability and safety of components. The lack of effective communication,
execution, or interpretation of inspection procedures in large infrastructures can be the
cause of terrible incidents, as was the case of the Grenfell Tower fire [1] in London in 2017
and the Deepwater Horizon oil spill [2] in the Gulf of Mexico in 2010. In the first case [1], the
external cladding system installed during the building renovation was not compliant with
the building regulations in place. The system irregularities may not have been recognized
and communicated effectively across the risk management organization and contributed
to the combustion process during the fire event. In the oil spill incident [2], operator and
contractor personnel misinterpreted a test to assess the integrity of a cement barrier, which
triggered a series of events that led to the rig’s explosion, with the massive release of
4 million barrels of hydrocarbons into the ocean. Besides the enormous environmental and
financial damages, these catastrophic accidents have the immeasurable cost of human lives.
Therefore, regular and efficient inspections of industrial and construction components are
essential activities to avoid severe hazards and tragic failures.
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Conventionally, the implementation of inspection tasks and the analysis of inspection
data rely primarily on human assessment [3–5]. However, modern industries demand
alternative approaches that can improve the current practices and provide well-timed,
safe, systematic, and accurate inspection performance for the large inventory of existing
industrial and construction components. In this scenario, aerial platforms can benefit the
non-destructive test (NDT) of structures by increasing time efficiency, data consistency,
and safety [6–8]. Remote inspection using aerial platforms is one of the most beneficial
solutions to replace conventional methods. Drone-based inspection can solve challenges
such as limited physical access and inspection time and provide new ways to conduct more
advanced inspections. As a result, many studies focus on presenting aerial platforms and
drone payloads for various industrial inspections [9–13].

With the rise of interest in implementing NDT4.0 in various industries, companies
are motivated to invest in finding alternative solutions to reduce the time and cost of
inspection and advance assessment and analysis procedures. Processing pipelines for
analyzing data acquired during an inspection can benefit from automation to: (a) improve
performance, (b) decrease the time of analysis, (c) minimize possible human errors, and
(d) increase the quality of the results. Accordingly, these benefits for thedata analysis of
industrial inspections have motivated many studies to focus on developing automated
process pipelines in recent years [14,15]. Achieving more accurate, time- and cost-efficient
solutions can be endorsed by automating repetitive tasks during analysis. More than
that, state-of-the-art computational techniques can be used and explored to advance the
identification and interpretation of patterns in NDT test results [16,17].

Multi-modal systems use multiple sensors for data acquisition and processing. The
combination of multi-modal systems and aerial platforms can be employed to inspect
large and complex structures. Multi-modal platforms can effectively cover the weaknesses
of individual sensors and provide complementary information from coupling imaging
sensors, especially for drone-based inspection [18–20]. Such systems can significantly
assist inspectors during the acquisition and analysis process for possible maintenance.
Furthermore, some scenarios require comprehensive information about the specimen’s
geometry and texture to detect and characterize defects. Coupled thermal and visible
sensors are one type of multi-modal system that can greatly improve the thermographic
inspection of industrial and construction infrastructures. For instance, Lee et al. employed
coupled thermal and visible sensors in a multi-modal system for solar panel inspection [21].
Coupled thermal and visible cameras can be employed to enhance the data analysis of
acquired data during an inspection.

This research explores new avenues for employing coupled thermal and visible cam-
eras to enhance abnormality detection and provide a more comprehensive data analysis
in the drone-based inspection of industrial components. This study uses four case stud-
ies to thoroughly describe the targeted challenges as well as proposed solutions using
multi-modal data processing.

The first case study focuses on the adverse effect of low illumination and contrast, as
well as shadows, on the automatic visual inspection of paved roads. Further, it proposes
a method for the automatic crack detection of paved roads using coupled thermal and
visible images, which successfully addresses the challenge of the explained visible camera’s
vulnerability. The introduced method uses the fusion of thermal and visible modalities to
enhance the visibility of visual features in areas affected by shadows, low illumination, or
contrast. Furthermore, the method includes a deep learning-based crack detection method
using the fused image to detect cracks on pavement surfaces. Finally, the case study presents
the proposed method’s effectiveness and reliability based on the experiment conducted in
an experimental road inside the Montmorency Forest Laboratory of Université Laval.

The second case study explains the issue of possible data misinterpretation in the
remote thermographic inspection of piping systems, where distinguishing between surface
and subsurface defects is challenging. It proposes a method using coupled thermal and
visible images to detect and classify the possible abnormalities in a piping setup. The
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introduced method individually segments pre-aligned thermal and visible images based
on local texture. Later, the extracted regions are compared and used to classify them into
surface and subsurface defects. The proposed method is evaluated using an experiment on
an indoor piping setup.

The third and fourth case studies focus on using texture segmentation to enhance
the analysis of drone-based industrial and construction infrastructure inspection. A deep
learning-based texture segmentation method is introduced. The main idea is to use the
proposed texture segmentation method on visible images to extract the regions of interest
in both thermal and visible images for further analysis. Additionally, two experiments are
conducted to evaluate the presented approaches. The third case study uses the presented
approach for drone-based multi-modal pavement inspection. Additionally, the fourth case
study investigates the use of the presented method for drone-based multi-modal bridge
inspection. In this case study, the texture segmentation method is used to extract concrete
components.

The structure of this paper is presented as follows. Section 2 provides a brief descrip-
tion of key concepts and a review of the literature related to the drone-based multi-modal
inspection of structures and texture analysis. The introduced method for texture segmenta-
tion is explained in Section 3. Lastly, Section 4 describes the four case studies, and Section 5
presents and discusses the results obtained from our experiments.

2. Literature Review
2.1. Multi-Modal Inspection of Industrial and Construction Components Using Drones

Unmanned aerial vehicles (UAVs) can be remotely guided near inspection areas
that would be difficult, dangerous, or inaccessible for human assessment [22]. Due to
the contemporary expansion of remote device usage, drones’ setup capability has been
constantly improved, and commercial drones can fly with more than one sensor and collect
multi-modal data for nondestructive inspection. Figure 1 shows an example of a visual
inspection being conducted using a drone equipped with multi-modal cameras. Even if a
traditional hands-on inspection cannot be fully substituted, remote inspections with drones
can assist the inspection management team in assigning the physical work where it is
indispensable. Therefore, UAVs represent an attractive tool for the inspection of industrial
and construction components.

Figure 1. Nondestructive inspection of a concrete bridge using a multi-sensor drone. The left image
shows a visual inspection being performed with a drone equipped with multi-modal camera, and the
right images show an example of the inspection results: top right image shows the output from the
visible camera, and bottom right image shows the corespondent output from the thermal camera.

Theoretical and experimental studies have demonstrated that the use of drones can
improve safety, reduce costs, and increase access during infrastructure inspection. For in-
stance, a detailed study carried out by the US Minnesota Department of Transportation [23]
between 2015 and 2018 explored the use of drones for bridge inspection. The last report
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of the study [24] revealed that drone use could provide an average cost savings of 40%
compared to the traditional bridge approach that uses under-bridge inspection vehicles
and requires traffic control. In addition, it was concluded that aerial inspection could
increase the data quality and consistency of temporal inspections, allowing the creation of
3D data that can better communicate the inspection results. Recent reviews of drone use
for large infrastructure inspections [25,26] also sustained the drones’ advantages of easy
navigation, quicker and consistent data collection, performance, and inspection coverage.
Multi-modal setups have been effectively employed for the identification and inspection of
large infrastructures, such as industrial components [13], archaeological sites [27], power
line systems [28,29], and concrete structures [30]. On the other hand, practical challenges
faced by the technique are also acknowledged [31], such as limited flight time, the pos-
sibility of communication loss or interference, vibration, the necessity of property flight
permission, the difficulty of using the equipment in tight and confined spaces, and the
large amount of data collected. Nevertheless, experts constantly highlighted the use of
drones for reducing safety risks during inspections of large infrastructures.

2.2. Multi-Modal Registration and Fusion of Visible and Thermal Images

Individual NDT methods have different principles of operation, where their results
usually target the investigation and diagnosis of specific characteristics of the material
under inspection. The fusion of multi-modal data combines two or more testing results
to obtain a single output with a higher information level and easier interpretation than
the single test results [32]. The fusion methods can enhance several image characteristics,
such as color, contrast, edges, texture, resolution, quality, or perceived experience [33].
A set of consistent steps should be followed to generate relevant fused data, including
data acquisition, image registration, and suitable information extraction [34]. First, data
acquisition must be correctly planned and performed to acquire appropriate information
according to the purpose of the inspection. Then, the multi-modal images should be
precisely aligned, i.e., registered. Since the images are acquired from different sensors,
the results usually differ in pixel size, perspective, and field of view [34]. The registration
process can be performed using two methods according to the nature of the problem:
direct-based and feature-based methods [35]. All pixel intensity values are accounted for in
the direct-based method, minimizing the distance between pixel correspondences in the
two candidate images. The feature-based methods rely on extracting specific features from
the candidate images, such as corners, edges or points/objects that are darker or brighter
than their surroundings and are easily perceived by an observer [36]. Independent of the
applied method, the geometrical alignment between thermal and visible images is a critical
pre-processing step for successful image fusion.

Several approaches are available for image fusion, including those that use multi-
scale transform, sparse representation, saliency-based methods, subspace-based methods,
adaptative-weight blending, hybrid, and neural networks [37]. The multi-scale transform
approach decomposes the images into layers and reconstructs a fused image based on the
corresponding transform following a set of particular rules [38]. Sparse representation
theory relies on the linear combination of sparse bases in an over-complete dictionary. The
saliency-based approach is based on the noticeable areas present in the source images,
aiming to retain the integrity of these regions through the fusion process [37]. Subspace-
based methods include principal component analysis (PCA), independent component
analysis (ICA), and non-negative matrix factorization (NMF). Similar to neural networks,
this approach assumes that relevant information exists in lower-dimensional subspaces [39].
Neural networks have the advantage of high adaptability and relative denoising capac-
ity [37]. The adaptative weight blending approach produces the combination of two images
using weighted transparency [40]. Finally, hybrid methods combine the strengths and weak-
nesses of the above-mentioned approaches to optimize the fusion results. Figure 2 shows
sample results for Multi-scale [41], Hybrid [42], and Saliency-based [43] fusion techniques.



Drones 2022, 6, 407 5 of 26

Thermal image Visible Image Overlaid images

Multi-scale Hybrid Saliency-based

Figure 2. Results from different fusion methods using correspondent thermal and visible images.
The top row shows thermal, visible and overlaid images, and the bottom row is the results of
Multi-scale [41], Hybrid [42], and Saliency-based [43] fusion techniques.

Ultimately, the thermal and visible image fusion is expected to generate enhanced
informative images that can facilitate the interpretation of the scene or help with informa-
tion extraction and decision-making. In addition, by appropriately merging the infrared
and visible images, one can save the time needed to analyze multiple images from the
same point of view, as the fused images will contain a data combination from the thermal
and visible spectra [44]. The fusion process can be applied to individual or sequential
images depending on the goal of the process. The fusion process can also be helpful for
constructing large panoramas of big infrastructures [45], where it can minimize the align-
ment error, loss of information, and artifact insertion when stitching multiple images. The
fusion of infrared and visible images has also been conducted as a pre-processing step for
image-based 3D thermal model reconstruction [46].

2.3. Texture-Based Segmentation for Improving Multi-Modal Analysis of Inspection Data

Texture analysis can be defined as the characterization of image regions based on their
texture content, i.e., their local spatial variation in pixel colors and intensities [47]. There
are four primary texture analysis approaches: structural, statistical, model-based, and
transform-based [48]. Table 1 summarizes the characterization of each approach. Texture
analysis is a suitable procedure for many practical applications in the image processing
domain, including medical image analysis [49,50], object recognition and tracking, defect
detection [51], remote analysis [52], pattern recognition [53], and urban digitization [54].

The use of texture analysis for multi-modal image segmentation has also been explored
in prior research. For example, Kakadiaris et al. [55] developed a multi-modal facial
recognition approach using data from visible and thermal sensors. The image segmentation,
based on texture features, was performed on the thermal images, given the characteristic
thermal signatures observed in human skin. Racoviteanu and Williams [56] explored multi-
spectral and topographic data to map potential debris-covered ice areas using decision
tree and texture analysis. As a result, the texture features helped to detect areas missed
by the decision tree algorithm. Another study [57] investigated color and texture analysis
in RGB images and temperature patterns in thermal infrared images for rice lodging
recognition and distinction. Texture analysis was also tested as an alternative for the
registration of infrared and visible images [58]. Texture features were extracted from both
images using Laws’ texture coefficients, and the matching was calculated using a criterion
function. The results showed that the proposed method outperformed the intensity feature
registration approach. The benefits of combining infrared and visible images for the
interpretation of infrastructure defects were also reported on previous studies [15,59,60],
highlighting the concept that the different targeted defects have enhanced texture and
color characteristics registered in visible images, while the thermal data register important
temperature differences related to faulty materials or components.
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Table 1. Categorization of texture analysis approaches.

Categories Description Methods

Structural

Relies on well-defined texture elements, such
as the spatial layout of pixels, regions, or
lines. After being established, these patterns
are described and grouped by geometric and
statistical properties. Better performance is
reported for images with regular structures.

Edge detector, SIFT, skeleton
representation, primitive
measurement, morphological
operations.

Statistical

Quantitative description of texture regions
based on the magnitude of local intensity
distributions. The method usually derives a
vector of features from the statistical
calculations.

Histogram characteristics,
grey-level co-occurrence matrix,
entropy, local binary descriptors,
singular value decomposition.

Model-based

In this method, a model is built for a specific
texture pattern. The empirical model is
generated upon the information of
individual pixel intensities and its
neighborhood.

Markov random field,
multi-orientation wavelet
pyramid, multifractal analysis,
autoregressive models.

Transform-
based

This approach converts the image regions
into the frequency space, where in some
cases, the pixel variations can be
distinguished more easily.

Fourier transform, Gabor filters,
wavelet transforms, skeleton
primitive and wavelets.

In this study, the texture analysis for drone-based multi-modal visible and infrared
image interpretation had three objectives: (i) to facilitate the segmentation of key compo-
nents in thermal images based on texture-rich information obtained from visible images,
(ii) to distinguish normal and abnormal defects, and (iii) to align and fuse thermal and
visible images obtained during the multi-modal drone inspection of large infrastructures.
Defects in industrial and infrastructure components, as well as objects in a scene, can
usually be detected and segmented by high-resolution visual images unless the scene is
obstructed or has insufficient illumination. In the latter case, the inspection can benefit
from infrared thermography, as it is a robust technique for acquiring information in poor
light scenarios [61]. However, infrared images usually lack texture information and cannot
provide an intuitive characterization of the scene [62]. In this context, we hypothesize that
multi-modal texture analysis can facilitate the integration and interpretation of drone-based
images of infrastructure inspection.

3. Texture Segmentation Using Supervised Deep Learning Approach

Deep convolutional neural networks (CNN) have become the staple standard for
multiple computer vision tasks, such as image classification and instance and seman-
tic segmentation [63]. Moreover, numerous benchmark cross-domain datasets, such as
Cityscapes [64], KiTYY-2012 [65] and IDDA [66], have been proposed in the last decade.
The CNN structures used in this study follow a U-Net architecture [67], its later evolution
Unet++ [68], an DeepLabV3+ [69], which has been widely used for semantic segmentation
tasks, especially in the medical and self-driving vehicle fields. The chosen encoders were
ResNet-18, Resnet-50 [69], and DenseNet-121. They were mainly chosen for their small
size of 6–23 million parameters and proven capabilities as a feature extractor. The PyTorch
implementation of the networks used for this study was provided by Pavel Iakubovskii [70].

The texture segmentation task was modeled as a multi-class classification problem,
where each pixel from the input image represented a sample to be classified. The model was
trained following a recipe heavily inspired by [71] and modified to follow the segmentation
task instead of the classification task. The employed loss function was the multi-class
cross-entropy loss function. The classes were equally weighted; however, each image was
given a sampling probability equal to the datasets’ inverse squared frequency of class
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densities. The optimization strategy used the classical stochastic gradient descent with
momentum coupled with the cosine annealing with the warm restarts learning rate (CA-LR)
scheduler [72].

Furthermore, trivial augment (TA) [73] was used as the default augmentation for all
training sessions while being modified for the segmentation setting where only morpho-
logical augmentations were applied to both inputs and targets. Otherwise, augmentations
were applied only to the input image. The training sessions ran for 300 epochs and were
stopped early if necessary to prevent overfitting or if performances were unsatisfactory. All
training procedures were implemented with the PyTorch v1.12 library and ran on a server
equipped with a RTX2080-Ti GPU and an AMD Ryzen Threadripper 1920X CPU. All the
training and validation hyper-parameters are presented in Table 2.

Table 2. Baseline training hyper-parameters for the texture segmentation models.

Parameter Value Parameter Value

Epochs 100 Weight Decay 0.005
Batch Size 8 LR Cycle Size 8
Input Size 512× 512 LR Cycle Multiplier 2
Input Format RGB LR Multiplier 0.5
Learning Rate 0.5–0 TA—Bins 31
Momentum 0.9 TA—Interpolation Nearest

In order to evaluate the trained models, three segmentation metrics were adopted:
(a) intersection over union (IoU), (b) F1-score, and (c) structural similarity index metric
(SSIM) [74]. As described above, each pixel represented a sample to be classified. From
this definition, four possible outcomes exist: (a) true positives (TP) and true negatives
(TN), where the pixel is said to be rightly classified, and (b) false positives (FP) and false
negatives (FN), where the pixel is attributed to the wrong class. Equation (1) presents the
formula for F1-score, where the precision is equal to TP

TP+FP and the recall is TP
TP+FN .

F1 = 2× precision.recall
precision + recall

(1)

The IoU metric relates the overlap ratio between the model’s prediction and the target.
As the name suggests, this is accomplished by dividing the intersection of the target and
prediction by their union. Equation (2) shows the formula for IoU.

IoU =
target ∩ prediction
target ∪ prediction

(2)

The SSIM metric measures the perceptual structural information difference between
two given images or class maps in the texture segmentation case. This metric captures
the visual difference by cross-comparing the local luminance and contrast measurements
between two samples. For a thorough explanation of the inner workings of this metric, we
refer the reader to the original publication [74].

4. Case Studies

This section investigates the benefits of using coupled thermal and visible imagery
sensors to enhance the non-destructive testing of industrial and construction structures.
The coupled modalities can be combined and analyzed to solve the shortcomings of each
sensor. For instance, thermal cameras present a visualization of thermal measurements
while being unable to provide texture information. On the other hand, visible cameras can
sense color and texture information while being vulnerable to low illumination.

The rise of interest in remote inspection using aerial platforms and automating the
analysis of acquired data during recent years motivated different studies to focus on
addressing the challenges and advancing the methods and technologies in these areas. The
use of coupled sensors is one of the approaches to (a) solve the natural limitations of the



Drones 2022, 6, 407 8 of 26

involved sensors and (b) provide a more comprehensive analysis based on extra information
gathered from the environment using the multi-modal data acquisition approach. This
study provides a comprehensive exploratory investigation regarding the use of coupled
thermal and visible images to enhance the data analysis in the NDT inspection.

This section includes four case studies of employing coupled thermal and visible
cameras aiming toward the enhancement of post-analysis during a drone-based automated
process pipeline in different inspection scenarios in different industries. Before explaining
the use cases, since the registration of thermal and visible images are a preliminary step for
all use cases, the description of manual registration is explained in Section 4.1. The first
case study in Section 4.2 explains the benefits of fusing visible images with thermal images
to enhance the defect detection process. Section 4.3 explains the multi-modal approach for
abnormality classification in piping inspection. Employing visible images to extract the
region of interest in thermal images to enhance the drone-based thermographic inspection
of roads is described in Section 4.4. Finally, a drone-based inspection of concrete bridges
using coupled thermal and visible cameras is investigated in Section 4.5. The source code
and part of the employed datasets are available at this study’s GitHub repository (https:
//github.com/parham/lemanchot-analysis (accessed on 5 October 2022)). Also, the full set
of employed hyperparameters, training results, and resulting metrics can be found in this
study’s Comet-ML repository (https://www.comet.com/parham/comparative-analysis/
view/OIZqWwU2dPR1kOhWH9268msAC/experiments (accessed on 14 November 2022)).

4.1. Manual Registration

Although coupled sensory platforms can be designed to have similar fields of view
with considerable overlap, the thermal and visible images need to be aligned to use them
as complementary data. Many multi-sensory platforms have a built-in registration process
customized based on the system requirement; however, the registration process gener-
ally is a preliminary step for multi-modal data processing. The automated registration
of thermal and visible images is not in the scope of this study. Therefore, a manual reg-
istration approach was employed for aligning the modalities. First, the user manually
selected the matched control points in both modalities. Next, the homography matrix was
estimated using the matched points. Finally, the matrix was used to align the thermal and
visible images.

This study employed two approaches to use manual registration. The first approach
was when the relative position of the camera toward the surface was approximately con-
stant. The first coupled images were used to calculate the homography matrix. Later,
the matrix was used to align the remaining images. The second approach calculated the
homography matrix for all coupled images.

4.2. Case Study 01: Enhancing Visual Inspection of Roads Using Coupled Thermal and
Visible Cameras

Thermal cameras capture the thermal radiation emitted from a specimen and sur-
rounding area and present the information as an image. Since they work with emitted
thermal radiation, the visible illumination does not affect the thermal visibility. Thus, one
of the applications for coupled thermal and visible sensors is to enhance defect detection in
visual inspection using thermal images in case of illumination or contrast issues, where
the indications of surface defects are visible in thermal and visible images. This section
presents a process pipeline for automatic crack detection using coupled thermal and visible
images. The objective is to demonstrate the effect of the thermal-visible image fusion on
crack detection in typical- and worst-case scenarios. The worst-case scenario occurs when
shadows, low illumination, or low contrast disrupt the detection process.

This method consists of two main parts: (a) the fusion of thermal and visible images
and (b) automatic crack detection. In order to focus on the main objectives, it is assumed that
the modalities are pre-aligned and ready for fusion. As shown in Figure 3, the visible and
thermal images were preprocessed to balance the illumination and contrast. The contrast-

https://github.com/parham/lemanchot-analysis
https://github.com/parham/lemanchot-analysis
https://www.comet.com/parham/comparative-analysis/view/OIZqWwU2dPR1kOhWH9268msAC/experiments
https://www.comet.com/parham/comparative-analysis/view/OIZqWwU2dPR1kOhWH9268msAC/experiments
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limited adaptive histogram equalization (CLAHE) method was used to correct and balance
the illumination and contrast of visible images [75]. Additionally, the thermal images were
enhanced using adaptive plateau equalization (APE) [76], which is a proprietary FLIR
method. Later, both modalities were passed to the fusion method.

The resulting image was processed to detect cracks using a deep learning approach.
This case study employed a deep learning approach for detecting cracks on road pavements.
The deep learning networks available were a U-Net network [67], a Unet++ [68], a FPN [77]
and a DeepLabV3+ [69] model. The decoder models were coupled with ResNet-18, ResNet-
50 [69] and DenseNet-121 [78] encoders that were pre-trained on the ImageNet dataset.

Multimodal-Fusion

Thermal Image

Preprocess Thermal Image

Visible Image

Preprocess Visible Image

Fusion of Thermal and Visible Images

Automated Crack Detection

Figure 3. Process pipeline for the fusion of thermal and visible images.

4.2.1. Fusion of Thermal and Visible Images

In this case study, six multi-modal fusion algorithms were tested for the fusion of pre-
aligned thermal and visible images, named DP, classic [79], TIF, MGF, RP, and NSCT. First, a
deep learning (DP) method presented in [80] was adopted. This method is a deep learning-
based technique that fuses both modalities while preserving their features. Each modality
is decomposed into base and detailed parts in this approach using the optimization method
introduced in [81]. Later, the base parts were fused using the weighted-averaging method.
The multi-layer features were extracted using a deep learning network for the detailed
parts. Next, the candidates were generated using l1-norm and weighted-average methods
as fused results. The fusion of detail parts was finalized based on the max selection strategy.
Finally, the resulting fusion was reconstructed by combining the fused base and detailed
parts. The deep learning network used for extracting multi-layer features was VGG-19 [82]
trained on the ImageNet dataset. Next, the two-scale image fusion (TIF) method [43] was
tested, which is based on two-scale image decomposition and saliency detection. During the
image decomposition, complementary and relevant information from visible and infrared
images were extracted. However, only visually significant information from both source
images proceeded to the fused image. To that aim, the proposed weight map construction
process assigned more weight to pixels with relevant information. Next, weight maps,
details, and base layers were integrated to form the fused images.

Another tested method was multi-scale guided filtered-based fusion (MGF) [41],
which is a multi-scale image decomposition method that can extract visual saliency using a
guided image filter (GF). It consists of decomposing the source images using GF, generating
saliency maps based on detail layer information, computing weight maps by normalizing
the saliency maps, and combining the detail and base layers to generate the fused images.
Other than MGF, two other popular multi-scale transforms were tested: ratio of low-pass
pyramid (RP) [83] and nonsubsampled contourlet transform (NSCT) [84]. RP employs
multiresolution contrast decomposition to perform hierarchical image fusion. The method
preserves the details that are important to human visual perception, such as high local
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luminance contrast [83]. NSCT is a shift-invariant version of the contourlet transform (CT),
which uses non-subsampled pyramid filter banks (NSPFBs) for multi-scale decomposition
and non-subsampled directional filter banks (NSDFBs) for directional decomposition [84].
The resulting fused image contained the texture and color information of the visible image,
while the areas with low feature visibility were enhanced with the thermal information.

4.2.2. Automated Crack Detection

This case study employed a deep learning approach for detecting cracks on paved
roads. Similar to the texture segmentation task, a variety of state-of-the art architectures and
encoders were tested, including Unet [67], FPN [77] and Unet++ [68] combined with the
Resnet18, Resnet50 [69], and DenseNet-121 [78] encoders. The top five models presenting
the best results were chosen as possible candidate models. To do so, two main criteria
were analysed: (a) the overall quantitative performance on the validation set and (b)
the perceived qualitative quality of the predictions on the validation set. All networks
were trained and validated using a combination of publicly available datasets containing
segmented cracks on pavement [85,86]. Details on the used datasets are presented in the
next section. Similar to the previous training recipe, unweighted multi-class cross-entropy
loss was employed to train the models on the visible part of the acquired data. This time,
the Adam optimizer [87] was selected as the optimization strategy. In order to manage the
learning rate during the training, the cosine annealing method [72] was employed again.
Trivial augment (TA) [73] was also used as the default augmentation strategy. Additionally,
following [86]’s training procedure, the targets were symmetrically dilated by 1 pixel.
The hyperparameters for the crack segmentation models are presented in Table 3. The
aforementioned parameters serve as a baseline for optimization, and small variations may
occur if a given model needs further optimization.

Table 3. Baseline training hyperparameters for the crack segmentation models.

Parameter Value Parameter Value

Epochs 100 Weight Decay 0.005
Batch Size 8 LR Cycle Size 200
Input Size 512× 512 LR Cycle Multiplier 2
Input Format Grayscale LR Multiplier 0.5
Learning Rate 0.001 to 0 TA—Bins 31
Momentum 0.9 TA—Interpolation Nearest

4.2.3. Dataset

The training and validation set were randomly generated following a 80%/20% split
ratio from four datasets found in [85,86], named CrackTree260, CrackLS315, CRKWH100
and Stone331. CrackTree260 was the first dataset employed in this study [85]. It contains
260 visible images of paved surfaces at a monotone distance. Two different resolutions are
found in this dataset, 800× 600 and 960× 720 pixels. CRKWH100 is a dataset collected for
pavement crack detection [86]. It contains grayscale images of size 512× 512 and manually
annotated ground truths. The images were collected at a close range and perpendicular to
the pavement. The 100 available images display traces of noise, such as oil spills and shad-
ows. CrackLS315 is comprised of images of laser-illuminated paved roads. The 315 samples
were captured by a line-array camera at a controlled ground sampling distance. Stone331
contains 331 visible images, 512× 512 pixels in size, of cracks on stone surfaces [86]. The
samples were captured with visible-light illumination by an area-array sensor. Moreover, a
mask is provided, identifying the region of interest in each sample.

For testing this case study, a dataset containing the coupled thermal and visible images
of a road inspection was employed for training and testing the model and evaluating the
multi-modal fusion technique. The road inspection was conducted on an experimental
road belonging to the Montmorency Forest Laboratory of Université Laval, located north
of Quebec City. The inspection was performed on 27 October 2021, using a FLIR E5-XT



Drones 2022, 6, 407 11 of 26

Wifi camera that can collect 320× 240 pre-aligned thermal and visible images. In addition
to the acquired data, a subset of data was used to create additional images containing
augmented shadows and low illumination and contrast. Figure 4 shows samples of the
acquired dataset.

Real #1 Real #2 Real #3 Augmented #1
Figure 4. The sample photos of the acquired dataset and the augmented data. The first, second, and
third columns are the real samples from the inspection. In these three columns, the first row images
are visible samples, and the second row images are thermal samples. The last column presents two
augmented samples: the top image is an augmented shadow, and the bottom image is the augmented
low-contrast image.

An inspector walked along the road at a steady height from the pavement for data
acquisition. For this experiment, a total of 330 coupled thermal and visible images were
collected, presenting the cracked areas of the road. Parts of the acquired visible images
affected by shadows were later used to investigate the effect of using fused images for crack
detection. In addition to the images affected by shadows, other samples with augmented
shadows and low illumination and contrast conditions were generated to be used for
evaluation purposes.

4.3. Case Study 02: Abnormality Classification Using Coupled Thermal and Visible Images

Another area in which coupled thermal and visible images can be beneficial is remote
inspection when physical access is limited. In such scenarios, comprehensive information in
different modalities is needed to avoid data misinterpretation. In the case of thermographic
inspection, the abnormalities are recognizable in thermal images, and several methods
exist that can semi-automate the detection process. However, distinguishing between
surface and subsurface defects is hard or impossible with only thermal information in an
automated process pipeline. To address this challenge, coupled thermal and visible images
can be employed to enhance the classification process.

In this case study, thermal and visible images were used to classify detected defects
into surface and subsurface abnormalities using texture analysis. To do so, the thermal and
visible images were aligned using a manual registration. Later, the region of interest was
selected in both modalities. After applying the preprocessing steps to the extracted regions,
the thermal image was passed to an unsupervised deep learning-based method to segment
the thermal image into regions with different thermal patterns. Next, a conventional texture
segmentation algorithm was used on the coupled visible images to segment the areas
with similar patterns. Finally, the extracted regions in both modalities were combined to
determine surface and subsurface areas. The steps for the processing pipeline are shown in
Figure 5.
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Image-Registration

Preprocess Thermal Image Preprocess Visible Image

Manual registration of both modalities

Extract the region of interest

Multimodal-Segmentation

Unsupervised Thermal
Image Segmentation Texture-based Segmentation

Compare extracted regions

Classify regions into subsurface and surface regions

thermal modality visible modality

thermal modality visible modality

Figure 5. Process pipeline for multi-modal abnormal classification.

4.3.1. Unsupervised Thermal Image Segmentation

This case study employed an unsupervised segmentation technique introduced in [88]
for segmenting thermal images. The method used a convolutional neural network with
random initialization and an iterative training strategy to segment thermal images. The
final result was obtained after passing each sample image through the model for a certain
amount of iterations. The iterative process continued until the number of extracted classes
reached a predefined criterion. Additionally, the method used a loss function that did not
need a target to calculate the loss value, as explained in Algorithm 1. The schema of the
network architecture is shown in Figure 6.

Algorithm 1 The loss method for segmenting thermal images.

1: procedure LOSS FOR THERMAL IMAGE SEGMENTATION(I, c, fs, fc)
Ensure: The thermal image I cannot be None.
Require: The number of channel c.
Require: The similarity factor fs and continuity factor fc.

2: T ← max(I, 0) . Calculate the maximum matrix across the first dimension (outputś
channel).

3: w, h← size(I) . The width w and height h are the size of the image I.
4: HPy

target ← [0]c×(h−1)×w

5: HPz
target ← [0]c×h×(w−1)

6: HPy ← I[0 : c, 1 : h, 0 : w]− I[0 : c, 0 : (h− 1), 0 : w]
7: HPz ← I[0 : c, 0 : h, 1 : w]− I[0 : c, 0 : h, 0 : (w− 1)]
8: lHPy ← ∑c

i=1
∣∣HPy − HPy

target∣∣
9: lHPz ← ∑c

i=1
∣∣HPz − HPz

target∣∣ . lHPy and lHPz are used for calculating the
continuity factor.

10: ls ← −∑c
i=1 Tclog(Ic) . Cross-entropy ls calculates as a similarity factor.

11: loss← ( fs × ls) +
(

fc × (lHPy + lHPz)
)

. Loss is the return value for this method.
12: end procedure
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Figure 6. The architecture of unsupervised segmentation neural network.

4.3.2. Texture-Based Image Segmentation

In this case study, the expected abnormalities in the piping setup contain sharp and
steady patterns in different shapes and colors. Therefore, an entropy-based segmentation
approach based on statistical texture analysis was used for segmentation. Algorithm 2
describes the employed technique for texture segmentation of visible images.

Algorithm 2 The method for texture segmentation of visible images.

1: procedure TEXTURE IMAGE SEGMENTATION(I, t, p)
Ensure: The visible image I cannot be None.
Require: The threshold t for binarizing the image should be defined.
Require: The minimum number of pixels p for regions that need to be removed.

2: Ig ← grayscale(I) convert to grayscale (I).
3: E← entropy(Ig) calculate local entropy of the image (Ig).
4: S← std(Ig, 9) . std function forms an output for which each pixel value is the

standard deviation of 9× 9 neighboring pixels.
5: R← range(Ig, 9) . range function forms an output for which each pixel value is the

maximum value, with a minimum value of 9× 9 neighboring pixels.
6: E← E−min(E)

max(E)−min(E)

7: S← S−min(S)
max(S)−min(S)

8: B← binarize(E, t) . Binarize E using the given threshold value T.
9: B← removeobj(B, p) . Remove small regions with numbers of pixels lower than p.

10: B← f illobj(B, 9) . Close the open regions and fill the holes morphologically using
floating windows with a size of 9.

11: T ← Ig[B 6= 0] . T is defined as the functionś return.
12: end procedure

4.3.3. Dataset

For this case study, a dataset containing coupled thermal and visible images of a
piping inspection was used to evaluate the proposed approach. For this experiment, an
indoor piping setup was prepared with different carbon steel pipes wrapped with wool
isolation. The pipes’ isolation layer was defected manually to create surface defects. During
the experiment, the hot oil was pumped into the pipes as a heating mechanism for active
thermography. An FLIR T650sc camera was used to collect thermal and visible images with
640× 480 resolution while placed in multiple fixed locations. Figure 7 shows samples of
collected thermal and visible images.
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Figure 7. The sample photos of the multi-modal data acquired from the piping setup.

4.4. Case Study 03: Enhancing the Analysis of Drone-Based Road Inspection Using Coupled
Thermal and Visible Images

Visible images can be employed to segment the region of interest in thermal images
in various applications. The visible images can be analyzed to identify different materials
based on their textures. The gathered information can be used to segment thermal images
and provide more accurate results. This information can help the automated process
pipeline to (a) differentiate between materials or (b) extract the region of interest and avoid
data misinterpretation. For instance, one of the possible applications of the presented
concept is multi-modal road inspection. Thermographic inspection can be used to detect
delamination in concrete structures [89] or sinkholes in pavement roads [90]. However,
for an automated process pipeline, it is required to extract regions of interest to ensure the
accurate analysis of concrete or pavement structures.

In this case study, the use of visible images for helping to extract the region of interest
in thermal images was investigated comprehensively for the drone-based inspection of
road pavement. Firstly, the thermal images were preprocessed to enhance the visibility
of the thermal patterns. Next, the visible and thermal images were aligned via manual
alignment. Since the drone’s altitude was fixed during each data session, the homography
matrix was calculated for the first coupled images and used for the remaining frames. Later,
the visible images were passed to the deep learning-based texture segmentation method
explained in Section 3 to detect the regions representing the pavement area. Later, the
generated mask was used to filter out regions in thermal images. Finally, the extracted
regions were analyzed to detect possible abnormalities.

Dataset

For this case study, an experiment was conducted on an experimental road with a
length of 386 m belonging to the Montmorency Forest Laboratory of Université Laval,
located in the north of Quebec City. The road was intended to test pavement paints,
laying techniques, and simulating inspections. Figure 8 shows the inspection map and the
dedicated sections. For this experiment, a DJI M300 drone equipped with a Zenmuse H20T
camera was employed for acquiring thermal and visible images. The provided datasets
contained 578 and 614 coupled thermal and visible images of the road consecutively for the
first and second data sessions at an altitude of 15 m. Table 4 explains the conditions of the
inspection. Figure 9 shows sample photos of acquired data from the inspected road.

Table 4. This table describes the inspection conditions. Since both data sessions were acquired at a
relatively similar time, the environmental conditions are considered the same.

Date 22 September 2021

Time 9:45 (D1) & 9:10 (D2) Location Montmorency Forest
Temperature 16.1 °C Humidity 82%
Wind speed 9 kph Condition Mostly Cloudy
Air Pressure 100.91 kPa
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Figure 8. The inspection plan for the experimental road of Laval Université. Section A presents an
operatable section of the road. Additionally, Sections B and C are the damaged parts of the road.
The map was created by stitching some of the collected samples. The yellow arrow shows the flight
direction.

Figure 9. The sample photos of acquired multi-modal data of paved roads. The first row is the
samples of visible images, and the second is the thermal image samples.

4.5. Case Study 04: Enhancing the Analysis of Bridge Inspection Using Coupled Thermal and
Visible Images

As mentioned in Section 4.4, using visible images to extract the regions of interest in
thermal images is one of the main applications of coupled sensors. In addition to using
visible images to enhance the analysis of thermal images, extracting regions of interest
in thermal images also reduces the complexity of analysis in an automated pipeline by
removing extra information that may cause data misinterpretation.

This case study investigated the use of coupled thermal and visible cameras to enhance
the drone-based thermographic inspection of concrete bridges. For this case study, firstly,
the thermal images were preprocessed to enhance the visibility of thermal patterns. Later,
the thermal and visible images were aligned. Next, the visible images were passed to the
proposed texture segmentation method explained in Section 3 to find the areas representing
the concrete surface. Finally, the segmented images were used to extract the concrete
regions in thermal and visible images. Finally, the extracted regions were used to detect
possible abnormalities.

Dataset

For this case study, an inspection was conducted on a concrete bridge in Quebec City.
A DJI M300 drone equipped with a Zenmuse H20T camera was used for this inspection.
Three flight sessions were performed, including two horizontal passes across the bridge
girders at a fixed distance and a pass under the bridge while the drone’s camera aimed at
the cross beams and the bottom of the bridge deck. The gathered dataset contains a total of
273 coupled thermal and visible images. The inspection conditions are described in Table 5.
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Figure 10 demonstrates the sample photos of acquired multi-modal data from the bridge
inspection.

Table 5. The table describes the inspection conditions.

Date 8 July 2021

Time 10:30 Location Quebec City
Temperature 21.1 °C Humidity 73%
Wind Speed 16.01 kph Condition Sunny
Air Pressure 100.30 kPa

Figure 10. The sample photos of acquired multi-modal data of concrete bridge.

5. Results and Discussion

This section discusses the results of the conducted case studies. Additionally, the
training and testing results for each case study are comprehensively described. Firstly, the
result of using the fusion of visible and thermal images is discussed in Section 5.1. Later, the
application of multi-modal inspection for abnormal classification is explained in Section 5.2.
Section 5.3 discusses the results of the conducted drone-based road inspection and the
application of coupled thermal and visible images. Finally, Section 5.4 presents the results
of the introduced approach for drone-based bridge inspection.

5.1. Multi-Modal Fusion

The presented method for the first case study includes multi-modal image fusion
and automated crack detection techniques. For this experiment, a low-resolution thermal
camera was used to investigate the performance of this technique under the worst con-
ditions. Figure 11 presents samples of the resulting fusions. The visual inspection of the
resulting fusions demonstrates that this technique can effectively enhance the visibility
of defects. Especially in the case of existing shadows, low illumination, or contrast, the
interpretation of the results shows that the fused images improve the visual detection of the
defects. Despite the significant visibility improvement, the affected areas contain disrupted
patterns due to the low quality of the thermal images.

The introduced deep learning methods were applied to the gathered dataset for the
next step. Additionally, the deep learning-based and the classic fused images, as well as
the test subset of visible images, are used to evaluate the proposed method. Figure 12
presents the metrics for the validation process. The results show that the models can
provide acceptable results using only visible images. It is worth mentioning that worst-case
samples were not used for training.

Finally, both steps were combined to provide a full solution for multi-modal inspection.
For this step, the images were passed through the fusion process and then passed to the
trained models to determine the affected areas. Figure 12 demonstrates the results of the
comparative study on the acquired dataset. The presented process pipeline is applied to
this experiment’s test subset and worst-case dataset. The results show that the fusion-based
methods perform similarly when only visible images are processed. One of the reasons
behind the small drop in metrics for the fusion-based methods is the different thicknesses
of the affected area in thermal images compared to visible and target images. In conclusion,
considering the visual assessment and the calculated metrics, the presented method can
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effectively enhance detection, especially in low illumination, contrast, or shadows. Figure 13
shows sample predictions of the proposed process pipeline.

Visible Images Thermal Images Classic Fusion DP Fusion

MGF Fusion NSCT Fusion RP Fusion TIF Fusion
Figure 11. This figure shows the sample results of fusion methods.

M
G

F

D
P

N
SC

T

R
P

C
la

ss
ic

T
IF

V
is

ib
le

UNET-R50

FPN-R50

UNET-D121

UNET++R50

DeepLabv3-R50

0.51 0.57 0.54 0.69 0.67 0.6 0.68

0.55 0.58 0.62 0.76 0.61 0.55 0.72

0.67 0.63 0.73 0.74 0.69 0.66 0.73

0.79 0.73 0.57 0.77 0.62 0.57 0.83

0.61 0.65 0.73 0.73 0.63 0.62 0.84

Fusion Methods

M
od

el
s

F1 - General

0.6

0.7

0.8

M
G

F

D
P

N
SC

T

R
P

C
la

ss
ic

TI
F

V
is

ib
le

UNET-R50

FPN-R50

UNET-D121

UNET++R50

DeepLabv3-R50

0.5 0.58 0.58 0.62 0.62 0.55 0.64

0.66 0.68 0.7 0.66 0.74 0.65 0.84

0.53 0.57 0.65 0.79 0.59 0.63 0.62

0.71 0.71 0.57 0.72 0.78 0.66 0.8

0.66 0.54 0.51 0.72 0.72 0.57 0.75

Fusion Methods

M
od

el
s

F1 - Worst case

0.5

0.6

0.7

0.8

M
G

F

D
P

N
SC

T

R
P

C
la

ss
ic

T
IF

V
is

ib
le

UNET-R50

FPN-R50

UNET-D121

UNET++R50

DeepLabv3-R50

0.5 0.61 0.54 0.61 0.6 0.55 0.61

0.55 0.58 0.62 0.76 0.61 0.55 0.72

0.6 0.57 0.65 0.66 0.61 0.59 0.64

0.7 0.65 0.53 0.68 0.57 0.53 0.74

0.56 0.58 0.65 0.64 0.57 0.57 0.76

Fusion Methods

M
od

el
s

IoU - General

0.5

0.55

0.6

0.65

0.7

0.75

M
G

F

D
P

N
SC

T

R
P

C
la

ss
ic

T
IF

V
is

ib
le

UNET-R50

FPN-R50

UNET-D121

UNET++R50

DeepLabv3-R50

0.52 0.54 0.54 0.56 0.56 0.52 0.58

0.59 0.61 0.62 0.59 0.66 0.59 0.76

0.51 0.53 0.65 0.7 0.54 0.56 0.56

0.63 0.63 0.53 0.64 0.69 0.6 0.71

0.59 0.49 0.65 0.64 0.64 0.52 0.66

Fusion Methods

M
od

el
s

IoU - Worst case

0.5

0.55

0.6

0.65

0.7

0.75

Figure 12. The training metrics for the automated fusion + crack detection method. Visible column
shows the results of crack detection method without any multi-modal fusion.



Drones 2022, 6, 407 18 of 26

Visible Target No Fusion Classic DP

MGF NSCT RP TIF
Figure 13. The sample results of the first case study. The presented masks are skeletonized output of
the Unet++50 model.

5.2. Abnormality Classification

The introduced process pipeline for this case study demonstrates the use of texture
analysis to enhance thermal analysis. Thermal segmentation is one of the steps in this
processing pipeline that needs to be evaluated. An unsupervised method segmented
the thermal images based on neighboring thermal patterns for thermal segmentation.
Since the results of thermal segmentation contain unnamed classes, a strategy must be
provided for evaluation purposes. To do so, the segmented image was compared with
the target image. Later, the connected regions with the same class were extracted in both
target and segmented images. Next, the regions in both images were coupled where their
intersection is larger than a predefined value. Later, the class associated with the target’s
region was also assigned to the processed region. If the region had an intersection with
multiple target regions, the region’s class with the highest intersection value was assigned.
Figure 14 presents the metrics of the employed segmentation method. The results show
that the algorithm can successfully segment thermal images into regions with similar
thermal patterns.

After applying unsupervised segmentation to thermal images and texture segmen-
tation to visible images, the extracted regions were used to classify the detected defects.
Figure 15 presents a sample classification result.
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Figure 14. The metrics for the thermal segmentation method for piping inspection. This figure shows
sample metrics of the iterative segmentation approach for one sample during 20 iterations.

Target Aligned Thermal Image

Texture Segmentation Thermal Segmentation

Abnormal Classification
Figure 15. The figure shows the result of abnormality classification.

5.3. Drone-Based Road Inspection

For this case study, the proposed texture segmentation methods were employed to
segment the visible camera to extract pavement regions. The presented models were trained
on the dataset explained in Section 4.4. For this experiment, random crop and rotation
augmentation methods were used to: (a) improve the convergence, (b) extend the amount
of available data for training, and (c) prevent the model from overfitting. Figure 16 shows
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sample results of the trained DeepLabv3+ model. Additionally, the resulting metrics of
the training process are explained in Table 6, which shows that the training process with
the augmentation strategy could reduce the value of the loss function and result in better
accuracy and IOU. Despite the significant result in the prediction process, the models’
performances varied for different defined classes due to the unbalanced dataset. Therefore,
it can be solved by providing more samples for the unbalanced classes.

Table 6. Paved roads models’ texture segmentation performance.

Models F1-Score IOU

Unet++ R50 0.791 0.743
DeepLabv3-R50 0.847 0.837
Unet-D121 0.842 0.829

Visible Image Thermal Image Target Result
Figure 16. The sample results of the trained model.

For the next step, the visible and thermal images were aligned using manual alignment
with control points. Since the drone followed a fixed altitude for each data session, a
homography matrix was calculated for one of the coupled samples and used for the
remaining frames. Later, the segmented visible images were used to extract the region
of interest in thermal images. Finally, the extracted regions in thermal images can be
analyzed to detect and classify defects. It is worth mentioning that for this case study, the
identified defected regions were classified using visible images into two categories: surface
and subsurface defects. Figure 17 shows the sample results of the steps in the proposed
process pipeline.

Figure 17. The figure shows the results of each step in the processing pipeline. The right top photo is
the sample result of the aligned thermal and visible image. The right bottom is the extracted region
of interest in a thermal image using the segmented visible image. The left photo demonstrates the
analyzed thermal image, where the red regions are the subsurface defects and the yellow regions are
the surface defects.
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5.4. Drone-Based Bridge Inspection

This case study investigated the application of the proposed multi-modal approach
for the drone-based inspection of bridges. To do so, the visible images were employed to
train the proposed models for texture segmentation. Similar to the case study explained
in Section 5.3, random crop, rotation, and morphological augmentation strategies were
used to improve the training process. Table 7 demonstrates the models’ metrics during the
training process. Additionally, some sample results are presented in Figure 18.

Table 7. Concrete bridge models’ texture segmentation performance.

Models F1-Score IOU

Unet++ R50 0.791 0.743
DeepLabv3-R50 0.927 0.872
Unet-D121 0.800 0.754

Visible Image Thermal Image Target Prediction
Figure 18. The sample results for the DeepLabV3 model for the bridge inspection.

As explained comprehensively in Section 4.5, firstly, the thermal and visible images
acquired during a bridge inspection were aligned manually. Due to the nature of this
inspection and the close distance of the drone to the structure, it was very challenging to
provide a fixed distance between the drone and the structure; therefore, for this experiment,
the homography matrix calculation needed to be done per frame. Later, the segmented
image was employed to extract the concrete surface. Finally, the extracted thermal region
was analyzed to detect defects. Figure 19 shows the results of the inspection analysis.

Fused Image Extracted Region Defects in Concrete

Figure 19. The sample results of the proposed processing pipeline for drone-based bridge inspection.

6. Conclusions

The aging of existing industrial and civil infrastructure has been a recurrent concern
for owners, workers, and users. While public and private agencies aspire to preserve
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life expectancy and serviceability, the network of assets to be inspected, repaired, and
maintained continues to grow. This scenario shows the existing and upcoming demand for
innovative approaches to improve the current practices for inspecting and analyzing the
large inventory of industrial and construction components.

This study is aimed to investigate the benefits of using coupled thermal and visible
modalities for the drone-based multi-modal inspection of industrial and construction
components. Additionally, it studies enhancing the interpretation and characterization
of abnormalities in a multi-modal inspection using texture analysis. Four case studies
were evaluated in this paper, tackling various infrastructure components and inspection
requirements. The comprehensive experiment and analysis performed in this study led to
the following conclusions:

(i) The outcome of the first case study showed that the use of coupled thermal and
visible images in paved roads could effectively enhance the detection of cracks,
especially in cases of low illumination, low contrast, or in the presence of shadows.
The segmentation metrics for fused images were smaller than the results from
visible images, primarily because of the different damage thicknesses segmented
in thermal images compared to visible and target images.

(ii) The second case study investigated the use of coupled thermal and visible images
and texture analysis to differentiate between surface and subsurface abnormalities
during an inspection of piping. The presented method combined an unsupervised
segmentation approach to automatically detect faulted regions in thermal images
and a texture segmentation method for visible images. As a result, the proposed
multi-modal processing pipeline allowed for semi-automated classification of
abnormalities during the piping inspection, which can be potentially implemented
during drone inspection.

(iii) The third case study introduced a multi-modal processing pipeline for drone-based
road inspection. The developed method employed texture segmentation to extract
the region of interest in both modalities. The conducted experiment showed that
it is possible to detect surface and sub-surface defects during a drone-based road
pavement inspection.

(iv) The fourth case study, similar to the third one, investigated the use of texture
analysis to enhance the drone-based thermographic inspection of bridges. The
processing pipeline extracted the concrete regions in thermal images using the
texture analysis of visible images. The findings showed that the proposed solu-
tions on multi-modal inspection analysis are not linear but prone to case-scenario
adaptations over the user/client case.

Generally, the results of this study provide supporting evidence that the exploration of
texture patterns in visible images can conveniently advance the thermographic inspection
of industrial and construction components and avoid possible data misinterpretation,
especially in drone-based inspection due to limited physical access. More than that, the use
of coupled drone-based thermal and visible images allied with automatic or semi-automatic
computational methods is a promising alternative to tackle with efficiency the growing
demand for inspection and analysis tasks in the civil and oil and gas infrastructure domains.

Future research should certainly assess whether the texture-based analysis could help
register multi-modal images, an open issue for coupled infrared and visible scenes con-
taining few perceptual references. Furthermore, a more extensive data collection depicting
a larger variety of worst-case scenarios, where the added value of the thermal imaging
acquisition would be more prominent, is necessary. Indeed, similarly to the autonomous
vehicle research field, the drone inspection field would greatly benefit from standardizing
the creation of benchmark cross-domain datasets.
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