Building Change Detection Based on a Gray-Level Co-Occurrence Matrix and Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. General Methodological Framework
2.3.1. Photo Interpretation and Building Classification
2.3.2. GLCM Texture Features
2.3.3. Artificial Neural Networks (ANNs)
3. Results and Discussion
3.1. Photo Interpretation and Building Classification
3.2. GLCM Texture Features
3.2.1. Correlation Analysis
3.2.2. Visual Interpretation of Selected GLCM Features
3.3. Development of ANN Models
3.3.1. ANN Model Training and Testing
3.3.2. Model Error Visualization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ubaura, M. Changes in Land Use After the Great East Japan Earthquake and Related Issues of Urban Form. In Advances in Natural and Technological Hazards Research; Springer: Berlin/Heidelberg, Germany, 2018; Volume 48. [Google Scholar] [CrossRef]
- Dell’Acqua, F.; Gamba, P. Remote Sensing and Earthquake Damage Assessment: Experiences, Limits, and Perspectives. Proc. IEEE 2012, 100, 2876–2890. [Google Scholar] [CrossRef]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Janalipour, M.; Taleai, M. Building change detection after earthquake using multi-criteria decision analysis based on extracted information from high spatial resolution satellite images. Int. J. Remote Sens. 2017, 38, 82–99. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Du, P.; Liang, H.; Xia, J.; Li, Y. Object-Based Change Detection in Urban Areas from High Spatial Resolution Images Based on Multiple Features and Ensemble Learning. Remote Sens. 2018, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebuv, M.N. A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery. Geocarto Int. 2014, 29, 351–369. [Google Scholar] [CrossRef]
- Liu, C.; Sui, H.; Huang, L. Identification of Building Damage from UAV-Based Photogrammetric Point Clouds Using Supervoxel Segmentation and Latent Dirichlet Allocation Model. Sensors 2020, 20, 6499. [Google Scholar] [CrossRef]
- Soulakellis, N.; Vasilakos, C.; Chatzistamatis, S.; Kavroudakis, D.; Tataris, G.; Papadopoulou, E.-E.; Papakonstantinou, A.; Roussou, O.; Kontos, T. Post-Earthquake Recovery Phase Monitoring and Mapping Based on UAS Data. ISPRS Int. J. Geo-Inf. 2020, 9, 447. [Google Scholar] [CrossRef]
- Franke, K.W.; Lingwall, B.N.; Zimmaro, P.; Kayen, R.E.; Tommasi, P.; Chiabrando, F.; Santo, A. Phased Reconnaissance Approach to Documenting Landslides following the 2016 Central Italy Earthquakes. Earthq. Spectra 2018, 34, 1693–1719. [Google Scholar] [CrossRef]
- Qin, R. An Object-Based Hierarchical Method for Change Detection Using Unmanned Aerial Vehicle Images. Remote Sens. 2014, 6, 7911–7932. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Liu, L.; Du, R.; Buchroithner, M.F. A Comparative Study of Texture and Convolutional Neural Network Features for Detecting Collapsed Buildings after Earthquakes Using Pre- and Post-Event Satellite Imagery. Remote Sens. 2019, 11, 1202. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Hinton, G.; Bengio, Y. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xu, H.; Liu, S.; Guo, J. Urban building damage detection from very high-resolution imagery using one-class SVM and spatial relations. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar] [CrossRef]
- Liu, X.; Lathrop, R.G. Urban change detection based on an artificial neural network. Int. J. Remote Sens. 2002, 23, 2513–2518. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Tian, Y.; Miao, X.; Carruthers, R.I.; Anderson, G.L. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery. Environ. Monit. Assess. 2008, 140, 15–32. [Google Scholar] [CrossRef]
- Shoukry, N. Artificial Neural Networks Based Change Detection for Monitoring Palm Trees Plantation in Al Madinah-Saudi Arabia. Bull. Société Géographie D’egypte 2017, 90, 167–200. [Google Scholar] [CrossRef]
- Rahman, M.T.U.; Tabassum, F.; Rasheduzzaman, M.; Saba, H.; Sarkar, L.; Ferdous, J.; Uddin, S.Z.; Islam, A.Z.M.Z. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environ. Monit. Assess. 2017, 189, 565. [Google Scholar] [CrossRef]
- Nemmour, H.; Chibani, Y. Multiple support vector machines for land cover change detection: An application for mapping urban extensions. ISPRS J. Photogramm. Remote Sens. 2006, 61, 125–133. [Google Scholar] [CrossRef]
- Radhika, S.; Tamura, Y.; Matsui, M. Cyclone damage detection on building structures from pre- and post-satellite images using wavelet based pattern recognition. J. Wind. Eng. Ind. Aerodyn. 2015, 136, 23–33. [Google Scholar] [CrossRef]
- Contreras, D.; Blaschke, T.; Tiede, D.; Jilge, M. Monitoring recovery after earthquakes through the integration of remote sensing, GIS, and ground observations: The case of L’Aquila (Italy). Cartogr. Geogr. Inf. Sci. 2016, 43, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Huang, X.; Bovolo, F.; Li, J.; Ke, X.; Zhang, A.; Benediktsson, J.A. Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions. IEEE Geosci. Remote Sens. Mag. 2021, 9, 68–101. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Tamura, H.; Mori, S.; Yamawaki, T. Textural Features Corresponding to Visual Perception. IEEE Trans. Syst. Man Cybern. 1978, 8, 460–473. [Google Scholar] [CrossRef]
- Kaur, N.; Tiwari, P.S.; Pande, H.; Agrawal, S. Utilizing Advance Texture Features for Rapid Damage Detection of Built Heritage Using High-Resolution Space Borne Data: A Case Study of UNESCO Heritage Site at Bagan, Myanmar. J. Indian Soc. Remote Sens. 2020, 48, 1627–1638. [Google Scholar] [CrossRef]
- Akinin, M.V.; Akinina, A.V.; Sokolov, A.V.; Tarasov, A.S. Application of EM algorithm in problems of pattern recognition on satellite images. In Proceedings of the 2017 6th Mediterranean Conference on Embedded Computing, MECO 2017-Including ECYPS 2017, Bar, Montenegro, 11–15 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Kabir, S. Imaging-based detection of AAR induced map-crack damage in concrete structure. NDT E Int. 2010, 43, 461–469. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, J.; Wang, W.; Lin, C. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm. Sensors 2017, 17, 1474. [Google Scholar] [CrossRef]
- Li, J. Texture Feature Extraction and Classification: A Comparative Study between Traditional Methods and Deep Learning: A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Information Science in Computer Sciences at Massey. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2020. [Google Scholar]
- Gevaert, C.M.; Persello, C.; Sliuzas, R.; Vosselman, G. Classification of Informal Settlements through the Integration of 2d and 3d Features Extracted from Uav Data. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus Publications: Gottingen, Germany, 2016; Volume 3. [Google Scholar]
- Mboga, N.; Persello, C.; Bergado, J.R.; Stein, A. Detection of Informal Settlements from VHR Images Using Convolutional Neural Networks. Remote Sens. 2017, 9, 1106. [Google Scholar] [CrossRef] [Green Version]
- Ghaffarian, S.; Kerle, N. Towards Post-Disaster Debris Identification for Precise Damage and Recovery Assessments from Uav and Satellite Images. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.A.; Fdez-Sarría, A.; Recio, J.A. Texture Feature Extraction for Classification of Remote Sensing Data Using Wavelet Decomposition: A Comparative Study. In Proceedings of the 20th ISPRS Congress, Istanbul, Turke, 12–23 July 2004; Volume 35. [Google Scholar]
- Kupidura, P. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery. Remote Sens. 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.V.N.; Sai, M.V.R.S.; Sreenivas, K.; Rao, M.V.K.; Rao, B.R.M.; Dwivedi, R.S.; Venkataratnam, L. Textural analysis of IRS-1D panchromatic data for land cover classification. Int. J. Remote Sens. 2002, 23, 3327–3345. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A Robust Built-Up Area Presence Index by Anisotropic Rotation-Invariant Textural Measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- Miura, H.; Midorikawa, S.; Soh, H.-C.C. Building Damage Detection of the 2010 Haiti Earthquake Based on Texture Analysis of High-Resolution Satellite Images. In Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Hasanlou, M.; Shah-Hosseini, R.; Seydi, S.; Karimzadeh, S.; Matsuoka, M. Earthquake Damage Region Detection by Multitemporal Coherence Map Analysis of Radar and Multispectral Imagery. Remote Sens. 2021, 13, 1195. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, L.; Yang, X.; Bilal, M.; Li, Q. Object-based multi-modal convolution neural networks for building extraction using panchromatic and multispectral imagery. Neurocomputing 2019, 386, 136–146. [Google Scholar] [CrossRef]
- Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149. [Google Scholar] [CrossRef]
- Zhang, Z.; Vosselman, G.; Gerke, M.; Persello, C.; Tuia, D.; Yang, M.Y. Detecting Building Changes between Airborne Laser Scanning and Photogrammetric Data. Remote Sens. 2019, 11, 2417. [Google Scholar] [CrossRef]
- Ji, S.; Shen, Y.; Lu, M.; Zhang, Y. Building Instance Change Detection from Large-Scale Aerial Images using Convolutional Neural Networks and Simulated Samples. Remote Sens. 2019, 11, 1343. [Google Scholar] [CrossRef] [Green Version]
- Khoshboresh-Masouleh, M.; Shah-Hosseini, R. Building panoptic change segmentation with the use of uncertainty estimation in squeeze-and-attention CNN and remote sensing observations. Int. J. Remote Sens. 2021, 42, 7798–7820. [Google Scholar] [CrossRef]
- Bitelli, G.; Camassi, R.; Gusella, L.; Mognol, A. Image Change Detection on Urban Area: The Earthquake Case. In Proceedings of the 20th ISPRS Congress, Istanbul, Turke, 12–23 July 2004; Volume 35. [Google Scholar]
- Tomowski, D.; Ehlers, M.; Klonus, S. Colour and texture based change detection for urban disaster analysis. In 2011 Joint Urban Remote Sensing Event; IEEE: New York City, NY, USA, 2011; pp. 329–332. [Google Scholar] [CrossRef]
- Tian, J.; Nielsen, A.; Reinartz, P. Building damage assessm;nt after the earthquake in Haiti using two post-event satellite stereo imagery and DSMs. Int. J. Image Data Fusion 2015, 6, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Zahraee, N.K.; Rastiveis, H. Object-Oriented Analysis of Satellite Images Using Artificial Neural Networks for Post-Earthquake Buildings Change Detection. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Cheng, G.; Ge, X. Earthquake-Collapsed Building Extraction from LiDAR and Aerophotograph Based on OBIA. In Proceedings of the 2nd International Conference on Information Science and Engineering, ICISE2010-Proceedings, Hangzhou, China, 4–6 December 2010. [Google Scholar]
- Wang, C.; Zhang, Y.; Xie, T.; Guo, L.; Chen, S.; Li, J.; Shi, F. A Detection Method for Collapsed Buildings Combining Post-Earthquake High-Resolution Optical and Synthetic Aperture Radar Images. Remote Sens. 2022, 14, 1100. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Al-Najjar, H.A.H.; Halin, A.A. Assessment of Convolutional Neural Network Architectures for Earthquake-Induced Building Damage Detection based on Pre- and Post-Event Orthophoto Images. Remote Sens. 2020, 12, 3529. [Google Scholar] [CrossRef]
- Soulakellis, N.A.; Novak, I.D.; Zouros, N.; Lowman, P.; Yates, J. Fusing Landsat-5/TM Imagery and Shaded Relief Maps in Tectonic and Geomorphic Mapping. Photogramm. Eng. Remote Sens. 2006, 72, 693–700. [Google Scholar] [CrossRef]
- Vasilakos, C.; Chatzistamatis, S.; Roussou, O.; Soulakellis, N. Comparison of Terrestrial Photogrammetry and Terrestrial Laser Scanning for Earthquake Response Management. In Lecture Notes in GeoiInformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2019; pp. 33–57. [Google Scholar] [CrossRef]
- Wang, C.; Li, D.; Li, Z.; Wang, D.; Dey, N.; Biswas, A.; Moraru, L.; Sherratt, R.; Shi, F. An ef ficient local binary pattern based plantar pressure optical sensor image classification using convolutional neural networks. Optik 2019, 185, 543–557. [Google Scholar] [CrossRef]
- Chowdhury, P.R.; Deshmukh, B.; Goswami, A.K.; Prasad, S.S. Neural Network Based Dunal Landform Mapping From Multispectral Images Using Texture Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 171–184. [Google Scholar] [CrossRef]
- Pradhan, B.; Hagemann, U.; Tehrany, M.S.; Prechtel, N. An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Comput. Geosci. 2014, 63, 34–43. [Google Scholar] [CrossRef]
- Gong, P.; Marceau, D.J.; Howarth, P.J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens. Environ. 1992, 40, 137–151. [Google Scholar] [CrossRef]
- Albregtsen, F. Statistical Texture Measures Computed from Gray Level Coocurrence Matrices. Available online: https://www.uio.no/studier/emner/matnat/ifi/INF4300/h08/undervisningsmateriale/glcm.pdf (accessed on 10 July 2022).
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using Matlab. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwij8O-93Pr7AhU2m1YBHcCeBuoQFnoECBEQAQ&url=https%3A%2F%2Fwww.cin.ufpe.br%2F~sbm%2FDEN%2FDigital%2520Image%2520Processing%2520Using%2520Matlab%2520(Gonzalez).pdf&usg=AOvVaw1cP81HH4_Wys_RYeKYmrcO (accessed on 10 July 2022).
- Guo, Y.; Fu, Y.H.; Chen, S.; Bryant, C.R.; Li, X.; Senthilnath, J.; Sun, H.; Wang, S.; Wu, Z.; de Beurs, K. Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102435. [Google Scholar] [CrossRef]
- Moya, L.; Zakeri, H.; Yamazaki, F.; Liu, W.; Mas, E.; Koshimura, S. 3D gray level co-occurrence matrix and its application to identifying collapsed buildings. ISPRS J. Photogramm. Remote Sens. 2019, 149, 14–28. [Google Scholar] [CrossRef]
- Dhar, A.; Datta, B. Saltwater Intrusion Management of Coastal Aquifers. I: Linked Simulation-Optimization. J. Hydrol. Eng. 2009, 14, 1263–1272. [Google Scholar] [CrossRef]
- Huang, P.-S.; Chiu, Y.-C. A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan. Water 2018, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Khatri, N.; Khatri, K.K.; Sharma, A. Artificial neural network modelling of faecal coliform removal in an intermittent cycle extended aeration system-sequential batch reactor based wastewater treatment plant. J. Water Process. Eng. 2020, 37, 101477. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Vasilakos, C.; Kavroudakis, D.; Georganta, A. Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem. Remote Sens. 2020, 12, 2005. [Google Scholar] [CrossRef]
- Mansouri, B.; Mousavi, S.; Amini-Hosseini, K. Earthquake Building Damage Detection Using VHR Satellite Data (Case Study: Two Villages Near Sarpol-e Zahab). J. Seismol. Earthq. Eng. 2018, 20, 45–55. [Google Scholar]
- Meyer-Baese, A.; Schmid Volker, J.J. Pattern Recognition and Signal Analysis in Medical Imaging, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Torkashvand, M.; Neshat, A.; Javadi, S.; Pradhan, B. New hybrid evolutionary algorithm for optimizing index-based groundwater vulnerability assessment method. J. Hydrol. 2021, 598, 126446. [Google Scholar] [CrossRef]
- Suffoletto, B.; Gharani, P.; Chung, T.; Karimi, H. Using phone sensors and an artificial neural network to detect gait changes during drinking episodes in the natural environment. Gait Posture 2017, 60, 116–121. [Google Scholar] [CrossRef]
Dataset | User’s Accuracy | Producer’s Accuracy | Overall Accuracy | F1-Score |
---|---|---|---|---|
Training | 0.896 | 0.907 | 0.904 | 0.902 |
Validation | 0.886 | 0.895 | 0.887 | 0.890 |
Test | 0.906 | 0.950 | 0.926 | 0.927 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christaki, M.; Vasilakos, C.; Papadopoulou, E.-E.; Tataris, G.; Siarkos, I.; Soulakellis, N. Building Change Detection Based on a Gray-Level Co-Occurrence Matrix and Artificial Neural Networks. Drones 2022, 6, 414. https://doi.org/10.3390/drones6120414
Christaki M, Vasilakos C, Papadopoulou E-E, Tataris G, Siarkos I, Soulakellis N. Building Change Detection Based on a Gray-Level Co-Occurrence Matrix and Artificial Neural Networks. Drones. 2022; 6(12):414. https://doi.org/10.3390/drones6120414
Chicago/Turabian StyleChristaki, Marianna, Christos Vasilakos, Ermioni-Eirini Papadopoulou, Georgios Tataris, Ilias Siarkos, and Nikolaos Soulakellis. 2022. "Building Change Detection Based on a Gray-Level Co-Occurrence Matrix and Artificial Neural Networks" Drones 6, no. 12: 414. https://doi.org/10.3390/drones6120414
APA StyleChristaki, M., Vasilakos, C., Papadopoulou, E. -E., Tataris, G., Siarkos, I., & Soulakellis, N. (2022). Building Change Detection Based on a Gray-Level Co-Occurrence Matrix and Artificial Neural Networks. Drones, 6(12), 414. https://doi.org/10.3390/drones6120414