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Abstract: Aiming at the existing problem of unmanned aerial vehicle (UAV) aerial photography
for riders’ helmet wearing detection, a novel aerial remote sensing detection paradigm is proposed
by combining super-resolution reconstruction, residual transformer-spatial attention, and you only
look once version 5 (YOLOv5) image classifier. Due to its small target size, significant size change,
and strong motion blur in UAV aerial images, the helmet detection model for riders has weak
generalization ability and low accuracy. First, a ladder-type multi-attention network (LMNet) for
target detection is designed to conquer these difficulties. The LMNet enables information interaction
and fusion at each stage, fully extracts image features, and minimizes information loss. Second, the
Residual Transformer 3D-spatial Attention Module (RT3DsAM) is proposed in this work, which
digests information from global data that is important for feature representation and final classification
detection. It also builds self-attention and enhances correlation between information. Third, the rider
images detected by LMNet are cropped out and reconstructed by the enhanced super-resolution
generative adversarial networks (ESRGAN) to restore more realistic texture information and sharp
edges. Finally, the reconstructed images of riders are classified by the YOLOv5 classifier. The results
of the experiment show that, when compared with the existing methods, our method improves the
detection accuracy of riders’ helmets in aerial photography scenes, with the target detection mean
average precision (mAP) evaluation indicator reaching 91.67%, and the image classification top1
accuracy (TOP1 ACC) gaining 94.23%.

Keywords: helmet wearing detection; LMNet; UAV; residual transformer-spatial attention; super-
resolution reconstruction

1. Introduction

Motorcycles and electric vehicles are still the primary means of transportation in
developing countries; however, in road traffic, they are “vulnerable road users” and are
more likely to cause injuries or deaths in the event of an accident. According to the
World Health Organization’s 2018 global road safety status report [1], riders, cyclists, and
pedestrians accounted for half of all global road traffic deaths. China’s road traffic safety
situation is also dismal. According to the China-2021 statistical yearbook [2], 75,758 traffic
accidents involving motorcycles and electric vehicles occurred in China in 2020, resulting
in 102,054 fatalities. In response to a large number of illegal acts committed without the
use of safety helmets, China’s Ministry of Public Security launched the “One Helmet
One Belt” security protection action nationwide in June 2020, investing a large number of
traffic police to conduct artificial supervision. Artificial supervision, on the other hand,
is typically time-consuming and labor-intensive, with limited coverage and difficulty
achieving the desired effect. Furthermore, long-term work can easily exhaust a police
officer, resulting in a relaxation of supervision. As a result, reducing artificial monitoring
while ensuring that riders wear safety helmets consciously has become an urgent issue.
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At the moment, computer vision algorithms are a relatively mature technology. Helmet
detection in road scenes has the potential to reduce artificial monitoring and force riders to
wear helmets consciously in order to protect their lives [3]. Unmanned aerial vehicle (UAV)
aerial photography detection [4] is a typical platform monitoring use case that has become
a frontier subject in various fields such as image processing, computer vision, pattern
recognition, and automatic control. UAVs have advantages such as small size, low cost,
ease of use, good mobility, strong environmental adaptability, and so on. It can perform
some tasks more efficiently than humans and has a wide range of applications in civil fields
such as disaster prevention and relief [5], animal and plant research, and environmental
protection. As a consequence, using UAV to detect drivers’ helmet wearing states in urban
scenes is extremely practical.

Recently, scholars have proposed various neural networks to detect the use of security
helmets. Chen et al. [6] proposed an improved faster regions with a convolutional neural
network (Faster RCNN) [7] to check worker helmet wearing state, as well as the K-means++
algorithm to accommodate small-size helmets. Similarly, Li et al. [8] proposed an object
detection framework that combined online hard example mining (OHEM) and multi-part
combination and used an improved Faster RCNN [7] to detect workers’ helmets and their
parts. However, when the target size change was large, the detection effect of this method
could not meet the requirements, and its detection speed was also slow. Li et al. [9] proposed
a target detection algorithm based on single shot multibox detector (SSD)-MobileNet for the
real-time detection of safety helmets in construction sites, but it had some disadvantages,
including low accuracy and poor robustness when detecting helmets with relatively small
pixels in the image. Han et al. [10] used a similar method and proposed an SSD-based
object detection algorithm; their method introduced a feature pyramid, multi-scale sensing
module, and attention mechanism to improve the robustness of detecting object scale
changes. However, its multi-scene generalization ability was poor, as was its small object
detection accuracy. Cheng et al. [11] constructed a shallow sandglass residual module
based on deep separable convolution and channel attention mechanism and proposed a
you only look once version 3 (YOLOv3)-tiny-based target detection algorithm for safety
helmet recognition of roadside close shooting scenes. Zhou et al. [12] proposed a helmet
detection algorithm based on the attention mechanism YOLO (AT-YOLO), which was used
to identify workers’ safety helmets at close range when shooting scenes. Chen et al. [13]
proposed a modified YOLOv4 model for detecting helmet wear of site workers in aerial
scenes. Jia et al. [14] proposed a modified YOLOv5 model for detecting the helmets of
motorcycles and riders in a surveillance scenario. These methods above are all designed for
specific scenarios; unfortunately, either their detectors are not highly accurate in detecting
small targets, or they have poor scene generalization ability and low robustness can be
observed when used across scenarios.

Since being proposed, the attention mechanism has been widely used in the fields of
natural language processing and computer vision such as machine translation, object detec-
tion, and intrusion detection [15]. In terms of deep learning visual attention mechanism, it
has also been extensively studied in recent years to improve neural network performance,
and its significance has also been widely acknowledged in various models [16–20]. The
attention mechanism can be thought of as a dynamic selection process of important infor-
mation input to an image, which is realized by the adaptive weight of features. In the study
of channel attention, Hu et al. [21] proposed a channel attention module, which corrected
channel characteristics by modeling the relationship between channels, and improved the
representation ability of neural networks. Woo et al. [22] proposed the convolutional block
attention module (CBAM) by combining channel and space attention, which improved
performance in a variety of computer vision tasks. In the study of location pixel attention,
Wang et al. [23] proposed a non-local network, which effectively captured the dependen-
cies between various elements in sequences and considered the global characteristics of
the image; however, the module had a large number of parameters. To take the location
information into account, Hou et al. [24] proposed a new attention mechanism for the
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neural network, namely “coordinate attention”, by embedding the location information
into the channel attention, which had a good performance in target detection and semantic
segmentation. The mentioned methods above have some drawbacks. On one hand, the
above methods consider the attention mechanism of channel or spatial information, which
makes modeling remote dependency impossible and lacks global consideration of overall
information. On the other hand, the attention mechanism based on location or neuron
information ignores the modeling of correlation between position pixels, limiting algorithm
performance improvement.

To solve the above problems, we propose an advanced method, which uses the
YOLOv5 target detector, attention module, super-resolution reconstruction network, and
classifier to detect the helmet wearing problem of riders. A ladder-type multi-attention
network (LMNet) target detection algorithm is designed. First, a target detection algorithm
based on LMNet, which uses high-resolution information for full interactive fusion to
enhance feature extraction, is proposed. Second, a new attention module is developed,
which makes full use of channel information, location information, and spatial information
to enhance feature representation. Finally, a new paradigm of safety helmet wearing
detection is also designed. The main contributions of this paper are as follows:

• We propose an LMNet target detection network and combine the method of super-
resolution reconstruction to improve the network classification accuracy, bringing in a
novel solution for small target recognition in aerial situations.

• We develop a unique plug-and-play residual transformer 3D-spatial attention module
(RT3DsAM) that can significantly increase the detection accuracy of small targets in aerial
photographic settings. Furthermore, when numerous modules are employed, the detection
accuracy can be raised incrementally without the addition of too many parameters.

The following is how the article is structured: The second section discusses the pro-
posed computational flow chart; the third section illustrates the main computational model
details; the fourth section provides experimental analysis and comprehensive discussion to
validate the superiority of our method; and the last section summarizes the study.

2. Proposed Computational Flow Chart

The traffic circumstances on an urban traffic road are complex, and vehicles such as
electric cars, bicycles, motorcycles, and tricycles are frequently mixed together, challenging
helmet recognition. It is difficult for UAV to reliably determine whether motorcycle and
electric vehicle drivers wear helmets in such complex traffic conditions. In this section,
we propose a target detection network framework with combined super-resolution recon-
struction, YOLOv5 classifier, and LMNet based on the proposed joint detection framework
(shown in Figure 1). The video stream from the UAV aerial photography is first collected,
and then a ladder-type target detection network based on a multi-attention mechanism is
employed to recognize as many motorbikes or electric vehicles and their drivers as possible
in the video. Second, we use the target box detected in the first phase as an input and utilize
enhanced super-resolution generic adversary networks (ESRGAN) [25] to reconstruct it in
super-resolution, supplementing the details lost owing to aerial photography issues, and
improving the classification outcome. Finally, we construct an RT3DsAM to compensate
for the shortcomings of the visual object detection network, eliminate false detection, and
reduce missing detection.
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Figure 1. Computational flow chart of the proposed method.

3. Key Computational Models
3.1. LMNet

A hybrid model, LMNet, based on YOLOv5 and an RT3DsAM, is proposed in this
study. It can extract features from small aerial targets using high-resolution representa-
tion. The residual transformer 3D-spatial attention can establish a global long-distance
dependence and take the representation of context information into account to improve
the accuracy of small target recognition. The overall structure of LMNet is made up of the
ladder backbone network, the path aggregation network (PAN) [26] neck, and the detect-
ing head. To obtain multi-scale and high-resolution fusion features, we first employ the
ladder-type backbone network as the YOLOv5 backbone. Then, we design a ladder-type
backbone network based on the high-resolution encoder of the high-resolution network
(HRNet) [27], connect an RT3DsAM to the fourth stage’s 1/8, 1/16, and 1/32 resolution
feature map, and feed them into the PAN neck. Finally, the soft non-maximum suppression
(Soft-NMS) [28] algorithm is utilized to process the detection results in order to lower the
missing detection rate of numerous tiny targets overlapping samples. The LMNet structure
is shown in Figure 2. Each black rectangle represents a bottleneck, each blue rectangle
represents a basic block, and each yellow rectangle represents a residential transformer
3D-spatial attention module.

• YOLOv5 target detection network

YOLO [29–32] is a classical single-stage target detection algorithm. The YOLOv5
algorithm is developed based on YOLOv4 [32] and YOLOv3 [31] and turns the detection
problem into a regression problem. Unlike the two-stage detection network, it does not
extract the region of interest, but directly generates the bounding box coordinates and
probability of each class through regression, which is faster than Faster RCNN. YOLOv5
has four versions: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5s is the
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lightest version, with the least amount of parameters and the fastest detection speed. The
network structure is shown in Figure 3. The CBS block contains convolution layers, batch
normalization, and SiLU functions. The CSP1_x block contains the CBS block and x residual
connection units. The CSP2_x block contains x CBS blocks. And the SPPF mainly includes
three MaxPool layers.
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The YOLOv5 model is composed of four parts: input, backbone, neck, and head. First,
YOLOv5’s input adopts mosaic data enhancement, which enriches the data set via random
scaling, random clipping, and random layout. Random scaling, in particular, adds many
small targets, making the network more robust. Second, as can be observed in Figure 3,
the backbone network has a relatively simple structure. In terms of feature information
extraction and fusion interaction, it is not as well integrated as HRNet’s backbone network
and lacks the fusion between high and low-resolution features. Third, inspired by the
path aggregation network (PANet) [26], the neck structure of the feature pyramid network
(FPN) + PAN is designed. Finally, three prediction branches are designed. The prediction
information includes the target coordinate, category, and confidence. The post-processing
method of detecting the target object adopts weighted non-maximum suppression.

• Ladder-type Backbone Network

U-Net [33], SegNet [34], DeconvNet [35], Hourglass [36], and other mainstream back-
bone networks typically use the method of reducing resolution first and then increasing
resolution. They typically encode the image as a low-resolution representation, convolu-
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tionally connect the high and low-resolution representations, and then restore the high-
resolution representation from the low-resolution representation. The HRNet, on the other
hand, connects high and low-resolution subnetworks in parallel and performs iterative
multi-scale fusion to obtain spatially accurate results. The proposed model in this paper
makes use of the aforementioned high-resolution network. Some researchers in the field
of small target detection have combined HRNet with small target detection and achieved
good results. Wang et al. [37] presented a small object detection method for remote sensing
images based on candidate region feature alignment. To some extent, the problem of
small targets in UAV optical remote sensing images had been addressed. When detecting
traffic signs in bad weather, Zhou et al. [38] proposed a parallel fusion attention network
in conjunction with HRNet. More information could be obtained to improve accuracy
through repeated multi-scale fusion of high and low-resolution representations.

In order to solve the problem of small-driver helmet detection in aerial photography,
we need to extract more information from the limited resolution. As a necessary conse-
quence, we design an LMNet: during the feature extraction stage, a ladder-type backbone
network is designed, which can better retain high-resolution image information, make high
and low resolution information fully interactive fusion, and is more sensitive to object loca-
tion information. Figure 4 depicts a ladder-type backbone network. To reduce redundant
parameters, we only use a bottleneck for the first stage of the network and a basic block for
the remaining stages, which significantly reduces the number of parameters and speeds
up model reasoning. In ladder-type backbone networks, multi-scale fusion is dependent
on step size convolution, up sampling, down sampling, and summation operations. We
use the resolution fusion in Stage3 to demonstrate the network’s feature fusion. Since
Stage2 outputs three different resolution representations of

{
Hi

r, r = 1, 2, 3
}

, while Stage3
outputs three corresponding resolution representations of {Ho

r , r = 1, 2, 3}; the formula is
as follows (1).

Ho
r = g1r

(
Hi

1

)
+ g2r

(
Hi

2

)
+ g3r

(
Hi

3

)
(1)

where r represents the indicator of resolution and gxr(•) represents transformation function.
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When the cross-phase fusion is performed, such as from Stage3 to Stage4, another
calculated output is shown in the following Formula (2).

Ho
4 = g14

(
Hi

1

)
+ g24

(
Hi

2

)
+ g34

(
Hi

3

)
(2)

Regarding Formulas (1) and (2), x represents the input resolution size in gxr(•), and i is
the output resolution size. If x = r, gxr(H) = H. If x > r, gxr(H) upsamples the input H and
adjusts the number of channels by a convolution of 1 × 1. If x < r, gxr(H) executes (r-s) step
convolution of input H to subsample it. By performing feature fusion between different
resolution branches, we finally include the 1/8, 1/16, and 1/32 resolution feature maps
as the output of a ladder-type backbone network, and introduce the RT3DsAM in each
branch, effectively improving the detection accuracy of small targets in aerial photography.

• RT3DsAM

In the motorcycle driver helmet detection stage, we use the motorcycle and driver as a
whole target to overcome the problem of pedestrian misunderstanding. The motorcycle
is classified as an electric motorcycle, a fuel motorcycle, and an electric bicycle; their
appearances, sizes, and postures differ greatly between cars; additionally, during the
cycling state, the appearances and postures of the tricycle, bicycle, and motorcycle are
similar, resulting in a small difference between classes. As a result, large intra-class gaps
and small inter-class gaps can lead to a large number of false positives and low detection
accuracy. To address these sample flaws, we build an RT3DsAM that uses channel global
self-attention to capture long-distance dependencies.

In general, the attention mechanism is divided into two types: responsive attention
and soft attention. The hard attention mechanism’s goal is to select the most useful part
of the input features, whereas the soft attention mechanism learns a weighting vector
to weight all of these features. Soft attention is commonly used in image classification
and object detection. For example, Wang et al. [39] used scale attention to weight the
output of convolutions with different filter sizes. A lightweight channel attention was
proposed by squeezing and stimulating channel features. Furthermore, Woo et al. [22]
created the CBAM, which could serially generate attention feature maps in two dimensions
of channel and space, and then multiplied two feature maps to produce the final feature
map, which improved object detection and image classification performance. In this paper,
we design an RT3DsAM, taking into account not only the adaptive recalibration of the input
feature maps, but also the missing correlations between the deep abstract positional pixel
information, and focusing on the adaptive selection of high-level semantic information and
the refinement of learned small target features.

Given the input feature I ∈ RH×W×C, we generate a one-dimensional channel residual
transformer attention Mct ∈ R1×1×C and a three-dimensional spatial attention Msa ∈ RH×W×C.
As shown in Figure 5, where H, W, and C indicate height, width, and channel, respectively.
The above two attention modules are used for global long-distance self-attention modeling
and self-selection of spatial information in each layer, respectively. The calculation process
of overall attention can be summarized as Formulas (3)–(5).

I′ = Mct(I)⊗ I (3)

I ′′ = Msa
(

I′
)
⊗ Isa (4)

Isa = Conv1×1
(
Cat

(
Avgpool

(
I′
)
, Maxpool

(
I′
)))

(5)

where ⊗ represents element multiplication, Cat(*) is the concatenate on the channel dimen-
sion, and Conv is a 2D convolution. Details of the attention calculation are given in the next
two paragraphs.
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• Residual Channel Transformer Attention Module (RCTAM)

The RCTAM aims to emphasize the significance of extracting information from the
global image that is useful for feature representation and final classification detection, as
well as establishing self-attention between them. To accomplish the aforementioned goal,
we must create a channel global information driver function to map the input features to
the target weight vector, which means that the target will consider not only the helmet
but also the riders and the riding type of vehicle. This can reduce the intra-class gap
while increasing the inter-class gap. The RCTAM is shown in Figure 6. To generate the
summary statistics for the target-wide xavg ∈ R4×4×C, the adaptive global average pooling
operates on each feature of the spatial dimension H ×W. The feature matrix with the nth
dimensional output height and width (H ×W) of xavg is calculated as shown in Formula (6).

xavg
n,H×W = AdaptiveAvgPool

(
pH×W

n

)
(6)

where the pH×W
n is the input feature matrix of the nth channel and AdaptiveAvgPool

denotes an adaptive global average pooling operation.
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According to reference [22], which was studied in CBAM, global max pooling played
an important role as supplementary global information for global average pooling. It is
also used in this paper. The feature matrices of xmax with the nth dimension output height
and width are calculated as shown in Formula (7).

xmax
n,H×W = AdaptiveMaxPool

(
pH×W

n

)
(7)

where the AdaptiveMaxPool denotes an adaptive global max pooling operation.
To fully capture the interaction between global high-dimensional information and

establish a correlation between cross-channel position pixels and cross-object position
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awareness, respectively, a residual transformer block (RTB) with two convolution layers
around the nonlinearity and multi-head self-attention is operated on x. The RTB is shown
in Figure 7 and the multi-head self-attention (MHSA) is shown in Figure 8. The first con-
volution layer is a dimensionality-reduction layer parameterized by W1 with a reduction
ratio r and a rectified linear unit (ReLU). The second is a multi-head self-attention layer pa-
rameterized by Ṫ. The third is a multi-head dimensionality-increasing layer parameterized
by W2.

Oct = δ(g(x, W) + x) = δ
(
W2

(
Ṫ(δ(W1x))

)
+ x

)
(8)

where δ refers to the ReLU [40] function, W1 ∈ R(C/r)×C, Ṫ ∈ R(C/r)×(C/r) and W2 ∈ RC×(C/r),
reduction ratio r set to 1 in our experiment.
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To build the RTB-based channel global self-attention and reduce the loss of information,
we share the parameters {W1, TTT, W2} of RTB for the output of both global adaptive average
pooling and global adaptive max pooling. Then, the outputs of RTB Oavg

ct and Omax
ct are

concatenated together on the channel dimension calculated by a 2D convolution:

Mct = σ(Conv4×4(O
avg
ct OOmax

ct )) (9)

where σ refers to the sigmoid function and O denotes a concatenation operator. Conv4×4 is
a manipulation with a convolution of step 1, padding 0, and kernel 4 × 4.

The final output of RCTAM is obtained by rescaling the input features with the output
activation Mct:

I′c = fscale(Ic, Mct) = Mct·Ic (10)

where I′ = I′1, I′2, . . . , I′c and fscale(Ic, Mct) refer to pixel-wise multiplication between the
feature map Ic ∈ RH×W×C and the scalar Mct ∈ R1×1×C.

In Figure 8, ⊕ and ⊗ represent the element-wise sum and matrix multiplication,
respectively; while 1 × 1 is a pointwise convolution. According to the reference [41],
we use four heads in multi-head self-attention in this paper. The highlighted blue boxes
represent position encodings and the value projection, in addition to the use of multiple
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heads. Furthermore, the feature map after global adaptive pooling is sent to all2all attention
for execution, and Rh and Rw are encoded for the height and width on the input feature
map, respectively. Attention logits is the qkT + qrT , where q, k, and r represent the query,
key, value, and position encoding, respectively. Similarly, here we use the relative distance
position for encoding [42–44]. According to the studies [43–45], relative-distance-aware
position encodings are better suited for vision tasks. This is due to attention not only
taking into account the content information but also relative distances between features at
different locations, thereby being able to effectively associate information across objects
with positional awareness [41].

• 3D-spatial Attention Module (3DsAM)

3DsAM aims to further mine the spatial correlation between max and average pooling
information, enhance the spatial information of pixels with labels of the same category
in the neighborhood, and suppress pixels with different classes of labels. Therefore, the
ideal output of 3DsAM should be a feature matrix with the same height and width as the
input feature through 3D spatial attention, and which carries the information of adaptive
selection. It first obtains detailed spatial information about the intra and inter-class objects
from two channels, then establishes a spatial attention map for each input channel, and
finally forms a 3D spatial attention that adaptively adjusts the weights layer-by-layer.
Figure 9 shows the 3DsAM. As in CBAM [22], we apply the global max pooling and global
average pooling on the input across channels.

Favg
i,j =

1
c

C

∑
C=1

I′C(i, j) (11)

Fmax
i,j = max

(
I′C
)

(12)

where I′C(i, j) is the value at position (i, j) of the cth channel. Then, two outputs are
concatenated horizontally as the input of a new convolutional layer followed by a sigmoid
activation function:

Msa = σ(Conv1×1(FavgOFmax)) (13)

where Conv1×1 is a convolution with step 1, padding 0, and stride 1× 1; Msa is 3D attention
map by activating features through Conv1×1 operation with the sigmoid function.
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The final output of 3DsAM is obtained by rescaling the input features Isa with the
output activation Msa:

I ′′ = Msa ~ Isa (14)

where ~ is the spatial-wise of each channel multiplication operation between the feature
map Isa ∈ RH×W×C and 3D spatial attention map Msa ∈ RH×W×C.

3.2. ESRGAN

The ESRGAN [25] model is improved based on the image super-resolution generative
adversarial network (SRGAN) [46]. Based on SRGAN, the generator neural network
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of SRGAN, the discriminator identification object, and the loss function are adjusted
and optimized, respectively. Thus, the SRGAN algorithm’s performance is significantly
improved. The generator neural network structure of ESRGAN is shown in Figure 10.
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Unlike SRGAN, ESRGAN uses dense connection blocks to replace residual modules.
Each dense connection block is an improved residual module. It is distinguished by the
use of a multi-layer residual (residual-in-residual) structure, which employs a deeper
convolutional neural network to improve the depth learning algorithm’s performance.
To address the increased computational amount in this process, the ESRGAN algorithm
employs a similar strategy to that of the face super-resolution generative adversarial
network (FSRCNN) [47]. Simultaneously, ESRGAN points out that BN operation is easy to
generate artifacts for deep layer GAN network training, so the backbone network abandons
the use of BN operation.

ESRGAN also improves the discriminator’s mode. Although the reconstructed image
is judged to be false at times in the original SRGAN algorithm, this does not imply that
the reconstructed image is not realistic enough, but the discriminator may not be able to
correctly identify the image of the content. On the other hand, if the output value of a
reconstructed image is high but the corresponding value of the original image is higher,
it indicates that the reconstruction result needs to be improved. Thus, in the SRGAN
algorithm, the method of passing the reconstructed image and original image through the
discriminator and subtracting the output is used to replace the method of identifying and
evaluating only the reconstructed image and original image. As a result, when the output
value of an image in the generator is very low but the output value of its corresponding
original image is lower, the resistance loss value is greatly reduced when compared to
SRGAN, which has little effect on the generator. On the other hand, if the output value of
the reconstructed image in the discriminator is high but the output value of the original
image is higher, the loss will still increase so that the generator can generate a more realistic
reconstructed image. These steps can be represented as follows:

F(MSR, MHR) = σ(F(MSR)− F(MHR)) (15)

F(MHR, MSR) = σ(F(MHR)− F(MSR)) (16)

LG−ESRGAN
g = E[−log(1− F(MHR, MSR))]−E[log(F(MSR, MHR))] (17)

where the reconstructed image MSR and the original image F(MHR) are input into the
discriminator network in a random order, MSR and F(MHR) are the probabilities (the
number between 0 and 1 is output) for the discriminator to judge them as true. Function
σ(•) is a simple impulse function that maps the output to a region of 0 to 1, and E[•] is
the process of finding expectations. In this process, the discriminator does not know the
input order of the image, and only calculates the probability that two images are true,
and then subtracts them. Function F(MSR, MHR) represents the pair of the input image,
the reconstructed image is in the front, the real image is in the back, and the output of
this value is close to 1 under the ideal state (the reconstructed image of generator makes
the discriminator unable to distinguish between true and false images). F(MHR, MSR)
represents that the real image is in the front and the reconstructed image is in the back. By
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subtracting two probabilities, in the ideal state, the value is close to 0 through a simple
impulse function. The LG−ESRGAN

g of Formula (18) is the mathematical expression of the
ESRGAN generator’s resistance loss function. The total loss of the ESRGAN discriminator
can be expressed as:

LD−ESRGAN
d = E[−log(1− F(MSR, MHR))]−E[log(F(MHR, MSR))] (18)

ESRGAN also includes the L-1 loss function to further improve the reconstruction
accuracy. To reconstruct more accurate underlying details, the total loss function of the
ESRGAN is defined as follows.

LGAN = LG−ESRGAN
c + θ1LG−ESRGAN

g + θ2L1 (19)

The LG−ESRGAN
c is the structural loss of ESRGAN, which is roughly the same as

that of the SRGAN. The difference is that the loss function in the visual geometry group
network [48] feature extractor removes the output activation function. In this paper, we use
the weights generated by various 2K and flick 2k (DF2K) and outdoorscene (OST) training
sets to reconstruct the original image twice as well. Figure 11 shows that the rider and
helmet have more realistic textures and sharp edges. It can add more features for future
network learning.
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3.3. YOLOv5 Classifier

In this paper, we crop out the detected riders and divide them into two types of
data sets with helmets and without helmets, and then use ESRGAN to reconstruct them
to get a clearer and more realistic target image. Finally, we adopt the YOLOv5 as the
helmet classifier. When computing, first, YOLOv5 reads two types of data as input, then
uses the backbone network to extract features, and finally, outputs the results by the
softmax function. The backbone network of the YOLOv5 classifier is the same as that of the
YOLOv5s detector, which has the least number of parameters, fast reasoning speed, and
high precision classification performance. It is very suitable for practical engineering use.
Figure 12 shows its network structure. In addition, we do not use the data enhancement
method in YOLOv5, because random cropping will lead to the loss of some features of the
target image that we have cropped, making the classification training effect worse.
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4. Experiments and Discussions
4.1. Data Source and Evaluation Indicators

• Dataset

We capture a series of aerial photographic images. The dataset is obtained through
aerial photography from DJI drones, which captures 3010 images with a resolution of
1920 × 1080, covering the case of small target, medium target motion blur and complex
lighting. Electric bikes, electric motorcycles, gasoline-powered motorcycles, and their riders
are among the ground targets. Cropping label targets based on detection data yields the
image classification dataset. There are 4555 target images with helmets and 3164 target
images without helmets. The data set is also randomly divided into training, validation,
and test sets in the following proportions: 6:2:2.

Figure 13 depicts data samples from our dataset. There are two groups of drone
aerial images: (a) represents the medium target case in the aerial image, and (b) represents
the small target case. Because the aerial height is between 10 and 15 m, it is higher than
the traffic camera monitoring support pole. Thus, there is no large target in the scene.
Figure 13c–e show helmeted riders on electric motorcycles, electric bikes, and gas-powered
motorcycles, respectively. (f)–(h) depict riders without helmets operating electric bicycles,
electric motorcycles, and gasoline motorcycles, respectively. Small targets accounts for
about 1.0~3.0% of the total pixel area, while medium targets account for 3.0%~6.0% of the
total image. Furthermore, the aerial image quality is poor due to the small target in the
aerial image, which is accompanied by various factors such as motion blur and complex
light conditions (as shown in Figure 14). Missing and false detections will be severe if the
target is directly detected from the aerial image.

• Evaluation Indicators

The primary problem in this paper is detecting riders and finding as many objects
in the aerial image as possible. The second challenge is to classify the detected objects.
In Pascal VOC [49] target detection evaluation indicators use the standard evaluation
indicator, namely the average precision (AP), the recall rate (Recall), and the mean average
precision (mAP). Top1 accuracy (Top1 ACC) is used as the classifier’s result evaluation
indicator.

More narrowly, the recall is defined by TP
TP+FN , precision is defined by TP

TP+FP , where
TP (True Positive) indicates the number of correctly detected targets, FP (False Posi-
tive) indicates the number of incorrection, and FN (False Negative) indicates the num-
ber of missed targets (the targets that should be detected are not detected). AP =

∑n
i=1 precision(i)× ∆recall(i), where n is the total number of images in the dataset, preci-

sion(i) is the precision at a cut-off point of i images, ∆recall(i) is the difference in recall
between cut-off point i-1 and the cut-off point i. The MAP is obtained by averaging the AP
of each class again. When the IoU of the detection box and the label true box is 0.5, the
sample is considered positive, and otherwise, a negative sample occurs. The TOP1 ACC is
defined by TP+TN

TP+TN+FP+FN .
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cyclists (d).

To evaluate the superiority of our method, the experiments are carried out on a
computer with NVIDIA 3090 GPU, I7 10700K CPU, and 32GB memory. The software
environment is based on Windows10 Professional Edition operating system and Pytorch
deep learning framework. The initial learning rate of LMNet is set to 0.01, the optimizer
uses the stochastic gradient descent (SGD) algorithm, the momentum parameter is set
to 0.937, the decay coefficient is 0.0005, and the batch size is 16. A total of 300 iterations
are conducted for the detector model training. In addition, we set the input resolution of
all network models to 704 × 704. Except for the variables mentioned, other variables are
consistent in all studies.
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4.2. Evaluation Experiments

• Performance Comparison of Detectors

To improve the fusion of high-resolution feature maps and transformer spatial atten-
tion, LMNet combines the respective advantages of YOLOv5 and HRNet, which enhances
the deep spatial information representation through information interaction. The deep
semantic information is fully utilized by transformer spatial attention, which improves the
model’s accuracy and generalization ability. To validate LMNet’s superior performance,
Table 1 shows the results of the YOLOv5s, YOLOv5m, YOLOv6s [50], RetinaNet [51], Faster
RCNN [7], and LMNet evaluation on the test set. The test results show that cyclists and
their vehicles can be directly detected on the original captured images. In Figure 13, we
combine (c–h) into a single class for detection, which is a one-class problem. In the two-class
problem, (c–e) are classified as having a helmet, whereas (f–h) are classified as not having a
helmet, and detectors distinguish between them. According to Table 1, all target detection
networks detect only one-class target.

Table 1. Evaluation results of different detectors on the one-class problem.

Item mAP Precision Recall

YOLOv5s 89.41 81.84 84.85
YOLOv5m 90.79 84.17 82.73
YOLOv6s 89.08 86.94 84.11
RetinaNet 71.21 82.95 54.28

Faster RCNN 78.88 57.10 88.67
LMNet (Ours) 91.67 84.53 87.97

As shown in Table 1, our network achieves state-of-the-art (SOTA) detection perfor-
mance, demonstrating that our network is reasonable and effective in the detection of small
aerial targets. YOLOv5s’ poor performance is due to its shallow network, which results
in insufficient feature information extraction. When compared to YOLOv5s, YOLOv5m
performs better because its network is deeper, but its backbone network lacks information
interaction, resulting in poor feature information fusion. LMNet is between YOLOv5s and
YOLOv5m in terms of parameter number, so YOLOv5x and YOLOv5l are not selected
for comparison (the number of network parameters of YOLOv5x and YOLOv5l is larger
than that of the LMNet). YOLOV6s has higher precision than our model, but its deeper
network and larger parameters result in lower mAP and Recall. Although RetinaNet has
effectively addressed the issue of sample imbalance, its backbone network continues to
employ the traditional residual structure, resulting in relatively poor detection accuracy
for small targets. The reason for Faster RCNN’s poor detection effect is that its network’s
feature map lacks multi-scale feature fusion, and the final feature resolution is usually
small, which is difficult for detecting small targets and objects with large-scale changes. As
a result, the LMNet ladder backbone network solves the problem of multi-scale feature
interaction, and the RT3DsAM resolves the difficulties of information adaptive selection,
resulting in good detection performance.

• Comparison of Detectors Performance with and without ESRGAN

As mentioned above, our detection target only accounts for 1.0~6.0% of the pixel area
in the entire aerial image. Sliding window detection is one method for improving the
accuracy of small aerial photography targets, but it is extremely time-consuming and not
suitable for practical engineering applications. Another option is to enhance the image,
which has extremely high requirements for outdoor applications. The enhanced image must
not only retain the original details and texture, but it must also be supplemented with more
realistic details. Four experiments are designed to demonstrate the importance of cropping
the detection target box before super-resolution reconstruction and classification. In the first
experiments, ESRGAN is used to reconstruct the entire original aerial image, and LMNet
is used to detect the one class and two classes of targets. Two classes of targets refer to
the simultaneous detection of riders with and without helmets. In the second experiment,
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ESRGAN is not used, and LMNet detects one class and two classes, respectively. The
corresponding results are shown in Table 2. In the third experiment, ESRGAN reconstructs
the entire original aerial image. The target image is then cropped from it. The cropped
images are divided into two groups: those with helmets and those without. They are finally
classified by YOLOv5. The fourth experiment crops the target image from the original
aerial images, then reconstructs the cropped images with ESRGAN, and finally classifies
the reconstructed cropped images using the YOLOv5. Table 3 displays the corresponding
experimental results.

Table 2. LMNet performance comparison with and without ESRGAN.

Item Test Dataset Type mAP Precision Recall

LMNet with ESRGAN
One class 89.14 85.95 83.66

Two classes 87.12 78.66 82.95

LMNet without ESRGAN
One class 91.67 84.53 87.97

Two classes 87.64 80.54 83.85

Table 3. YOLOv5 classifier performance comparison with and without ESRGAN.

Item Top1 ACC

YOLOv5 with ESRGAN after cropping 94.23
YOLOv5 without ESRGAN 91.88

Table 2 shows that in all experiments, the mAP and Recall of LMNet with ESRGAN
are almost worse than those without it, indicating that LMNet has a better detection effect
when ESRGAN is not used for the original image. The detection effect degrades when
ESRGAN is used. We believe that the network model’s input resolution is fixed, so more
details will be lost when the reconstructed image is compressed. Furthermore, not only
does the super-resolution reconstruction of large images take longer than the cropped small
target image, but the processing of large-resolution images by models results in a significant
increase in time consumption, which has a negative impact on detection speed. In other
words, we do not need to use ESRGAN for the original image of aerial photography,
just use it for the detected target box image. As a result, our proposed approach has
practical implications. When ESRGAN is not used, LMNet detects two classes with lower
mAP, Precision, and Recall than one class because riders’ structures change in two classes,
resulting in less data richness and uneven positive and negative samples (see Table 2). This
demonstrates that it is perfectly reasonable for us to combine them into a single class for
detection. The experimental results in Table 3 show that the Top1 ACC result of using
ESRGAN for classification after cropping is 2.35% higher than that of not using ESRGAN
after cropping, indicating an important feature of super-resolution reconstruction networks
such as ESRGAN: the target in the image restored from the original image has less detail
than the target image cropped from the original image and then reconstructed. We do not
assess the strategy of first reconstructing the original aerial image with ESRGAN and then
cropping it. As previously stated, one reason is that reconstructing high-resolution photos
takes longer than tiny ones. Another reason is that after cropping, the rebuilt image may
contain more information. Figure 15 shows that the helmet in (c) has more features and
sharper edges than the helmet in (a,b). Consequently, before we apply ESRGAN, we must
crop the target box, which has a significant impact on image classification. In terms of
model reasoning speed, the LMNet is about 42.7ms per image. The target box cropping
and ESRGAN reconstruction take approximately 33.22ms per image, and the classifier can
even reach 2ms per image. Because the helmet violation detection is allowed to be delayed
to some extent, our method meets the requirements of real-time detection.
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Figure 15. Image detail comparison. (a) is an original aerial photograph. (b) is the target image
extracted from (a) without using ESRGAN and the amplification image of the helmet. (c) is the figure
using ESRGAN after cropping and the amplification image of the helmet.

To make our proposed method and networks more convincing, we design two classes
of detection experiments without ESRGAN and present their results in Table 4. Table 4
demonstrates that even when the ESRGAN is not used, the mAP value of LMNet remains
the highest and has no low Precision and Recall values on two classes of detection, in-
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dicating that it has a greater generalization ability. When the experimental results of all
detectors are compared to the results in Table 1, we can see that the strategy of not directly
detecting two classes is appropriate. As a logical consequence, four stages are required:
identifying all targets, cropping their images, reconstructing them with ESRGAN, and
finally classifying them.

Table 4. Evaluation results of different detectors on the two-class problem.

Item mAP Precision Recall

YOLOv5s 86.83 79.69 82.92
YOLOv5m 87.48 83.31 80.14
YOLOv6s 86.12 84.87 83.27
RetinaNet 60.06 75.67 43.33

Faster RCNN 71.24 40.97 84.59
HRNet-32 86.75 84.55 79.36

LMNet (Ours) 87.64 83.84 80.54

• Comparison of Attention Module

In this segment, we compare the proposed attention module to existing ones to
validate our RT3DsAM’s superiority in target detection. Squeeze-and-excitation networks
(SENet) [21], CBAM [22], efficient channel attention network (ECA-Net) [52], global context
network (GCNet) [53], simple parameter-free attention module (Simam) [54], non-local
neural networks (Non-Local) [30], and Shuffle attention for deep convolutional neural
networks (Sa-Net) [55] are among the most advanced visual attention modules. In the
ladder-type backbone network, as shown in Figure 4, all attention modules are placed
behind Stage4. Table 5 displays the detection results.

Table 5. Comparison results of attention modules.

Item mAP Precision Recall

SENet 91.20 81.55 90.13
CBAM 90.91 84.53 74.43

ECA-Net 90.80 83.04 88.76
GCNet 91.37 82.95 89.39
Simam 90.98 84.52 87.30

Non-Local 90.76 83.50 89.77
Sa-Net 91.33 82.05 89.59
Ours 91.67 84.53 87.97

Table 5 shows that our module has the highest mAP and Precision values, and the
Recall value is not low in comparison to other attention modules. We attribute the improved
detection effect to two modules: RTB and 3D-spatial attention. The RTB can not only
establish the long-distance dependence of cross-channel information, but it can also model
the correlation of position pixel relationship in high-level semantic information, which
aids in the elimination of deep features for redundant information and the refinement
of feature representation of small targets. Meanwhile, unlike the spatial attention in the
reference [22], which uses a single 2D attention map to adjust the weights of all layers
adaptively, 3D-spatial attention can make adaptive weight adjustments layer-by-layer.
Otherwise, each layer’s weight tends to be homogenized. What’s more, layer-by-layer
feature adaptive weight adjustment will refine the information learned by each layer of
features, allowing for the retention of more differentiated information. The above two
modules can effectively increase the inter-class gap while decreasing the intra-class gap,
improving target detection accuracy.

• Ablation Study

In this section, we analyze the effects of the proposed algorithm’s various components
further. The remaining parameters in the ablation experiments, such as the input resolution
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and related hyperparameters, are all the same. In this experiment, we look into the attention
module as well as the role of HRNet in LMNet, and the effects of various components in
the attention module. First, we consider the distinction between LMNet when one, two,
and three attention modules are removed; second, we consider the difference between
LMNet when RT3DsAM is placed at different stages; third, we consider the difference
between HRNet-32 as the LMNet backbone and the ladder-type backbone network; finally,
we consider the impact of each parameter in RT3DsAM on the performance of the attention
mechanism. Figure 4 depicts modules 1©, 2©, 3© as well as branches I, II, II, IV.

As shown in the results in Table 6, the detection effect is the worst when the proposed
attention model is not used. As shown in the results in Table 6, the detection effect is
the worst when the proposed attention model is not used. The detection effect improves
when only one RT3DsAM is used. When two RT3DsAMs are used, the detection effect
improves even more than before. We discovered that when the RT3DsAM at branch III
is included, the detection effect is superior to those without it. This is because branch
III has fewer downsampling multiples and less information loss. It also demonstrates
that our attention module can fully utilize and filter the input information. However,
using three RT3DsAMs at the same time yields the best LMNet detection effect. HRNet-32
performs worse than LMNet when used as the LMNet backbone without the attention
module. Furthermore, when three RT3DsAMs are added to the final output of HRNet-32,
the performance improves slightly but remains inferior to ours. Because the HRNet-
32 network is too deep and the dataset is insufficient, the extracted information is too
redundant, resulting in poor detection accuracy. As shown in the last two lines of Table 6,
including RT3DsAM can effectively remove redundant information while also improving
detection accuracy. As a result, appropriate deep networks and attention modules are the
best solutions for specific applications.

Table 6. Ablation analysis results using different attention and backbone models.

Item 1© 2© 3© HRNet-32 mAP Precision Recall

LMNet

8 8 8 8 90.56 85.42 86.84
8 8 8 90.65 85.96 84.88

8 8 8 90.73 86.20 85.29
8 8 8 90.80 87.63 84.75

8 8 91.08 86.45 85.43
8 8 91.22 86.01 85.33
8 8 8 91.40 85.37 87.47

8 91.67 84.53 87.97
8 8 8 91.01 83.24 88.02

91.42 86.00 85.64

As shown in Figure 4, we continue to add the RT3DsAM to the output of various
stages for study. We add three, three, and two RT3DsAMs to the Stage4 (Branch I, II, III),
Stage3, and Stage2 outputs, respectively. Finally, an RT3DsAM is added to Stage1’s input
and output separately. Table 7 shows the ablation results of using RT3DsAM at each stage.

Table 7. Ablation analysis of attention on different stages in Figure 4.

Item mAP Precision Recall

Before Stage1 89.64 82.36 85.21
Stage1 89.88 83.65 86.07
Stage2 90.96 84.09 87.27
Stage3 91.26 86.68 86.43

Stage4 (Ours) 91.67 84.53 87.97

The experimental results in Table 7 show that the location of RT3DsAM in LMNet is
optimal, with the highest detection accuracy. Table 7 clearly shows that when the RT3DsAM
is located in a shallower layer of the network, its detection accuracy suffers. Because the
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shallow features are local, when RT3DsAM is placed in the shallow network, it can only
strengthen the correlation between the local features, which leads to the weakening of
the correlation between the global information of the deep features, making the network
detection effect worse. The results also show that RT3DsAM is capable of high-dimensional
global modeling.

In this paper, we also investigate the use of the RCTAM and 3D-spatial attention alone.
We design an experiment using only the RCTAM and three additional sets of experiments
using only the 3D-spatial attention. Figure 9 shows how the 3D-spatial attention expands
the max pooling and average pooling into a 3D feature vector (Ď, as shown in Figure 9). A
3D attention map (Msa) is obtained through the sigmoid function. The final output of the
3DsAM consists of Msa × Ď. When Ď degenerates into a 2D feature, however, the 3DsAM
also reduces to a 2D-spatial attention module (2DsAM, as shown in Figure 16) and Msa
becomes a 2D attention map (M2D

sa ). Here we study the effects of Msa × I (I belongs to
the input feature vector) and Msa × Ď in the 3DsAM. While degraded to the 2DsAM, the
effects of M2D

sa × I are considered. It must be noted that the RCTAM remains removed
during the study of three experiments. Table 8 displays the experimental results, which
show that the effect of RCTAM alone is excellent, indicating that the RTB is highly capable
of capturing global correlations. Likewise, in the spatial attention experiment, the 3DsAM
outperforms the 2DsAM, and the output of Msa × Ď has a greater effect on improving the
model’s detection accuracy. Because the 1 × 1 convolution expands the maximum pooling
and average pooling spatial information, all of the input feature’s important information
is mapped onto a 3D feature vector. Finally, after the Msa selects the spatial information
layer-by-layer, the output feature contains more useful information and fully suppresses
redundant information.
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Figure 16. 2D-spatial attention module.

Table 8. Ablation analysis of RCTAM and 3DsAM.

Model Item mAP Precision Recall

Spatial Attention
Msa × I 90.84 82.88 88.08
M2D

sa × I 90.49 86.02 85.21
Msa × Ď (Ours) 91.07 83.59 87.24

RCTAM Ours 91.41 84.55 88.08

To further confirm the powerful performance of 3DsAM, we also combine RCTAM
to conduct comparative experiments. The first experiment calculates Msa × Ď, the second
keeps all parameters in RCTAM unchanged and then calculates Msa × I, the third is
M2D

sa × I while all parameters in RCTAM remain equally unchanged. It must be noted that
RCTAM always exists in RT3DsAM during these experiments. The experimental results
are shown in Table 9, and it can be observed that almost all the groups with 3DsAM have
higher accuracy than the 2DsAM, indicating that Msa in 3DsAM is very effective not only
for the layer-by-layer adaptive adjustment of Ď but also for the adjustment of input feature
I. M2D

sa × I has poor effect because it loses some important target information when 3DsAM
degenerates to 2DsAM.
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Table 9. Ablation analysis of 3D-spatial attention fusion.

Item mAP Precision Recall

Msa × I 91.18 84.34 87.79
M2D

sa × I 91.15 82.91 88.59
Msa × Ď (Ours) 91.67 84.53 87.97

4.3. Discussions

The main challenges of helmet wearing and related aerial small target detection are
the large intra-class difference in small targets, as well as the small inter-class difference,
which causes a slew of issues. Small target detection will be hampered by factors such as
drone motion, target motion, camera out-of-focus, and ambient light during aerial pho-
tography. There is currently no excellent algorithm for the helmet detection of UAV aerial
photography riders due to hardware computing power limitations and the characteris-
tics of small targets [56]. To address this difficult problem, we propose a novel helmet
detection paradigm based on attention mechanisms, super-resolution reconstruction, and
classification algorithms. Our new paradigm achieves excellent results with their assistance.
Furthermore, drone aerial detection can allow people to collect relevant data without regard
to location, reduce the need for a large labor force, and effectively force riders to wear
safety helmets. Clearly, the above experimental results demonstrate that our proposed new
paradigm is robust and has excellent scene generalization capability, allowing us to provide
high-precision detection results for relevant UAV aerial photography applications.

Given the difficulty of directly improving the accuracy of multiple classes of small
objects in UAV aerial images, we convert the detection method to increase the accuracy
of one class of target detection as much as possible. As a result, we combine all classes
into one class in order to include all targets. Figure 17 depicts the actual test results, which
show that almost all of the riders can be detected with only a few missed targets. We can
decrease the confidence if abandoning the pursuit of high detection accuracy and instead
focusing on detecting all objects in the image to avoid missing detection. ESRGAN then
crops out and reconstructs the detected target boxes. We know from previous experiments
that there are more details in Figure 15, which is helpful for subsequent image classification.
As shown in Table 3, the classification results of YOLOv5 have improved from 91.88% to
94.23%, indicating that the method of first cropping the target box, then using ESRGAN,
and finally using the classifier is meaningful.
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There is no doubt that the attention mechanism can improve the robustness of neural
networks, but research and discussion on the impact of its internal parameters on model
performance are lacking. As a necessary consequence, we first investigate the impact of
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the MHSA input resolution in RCTAM on the performance of the attention model. Second,
different reduction rates are one of the factors influencing RCTAM performance. Finally,
the 3DsAM is discussed in greater detail. In RCTAM, feature maps of 4 × 4 are generated
by two global adaptive pooling. Channel attention is generated by RTB, where RTB needs
to establish global positional pixel attention across channels through the input of a 4 × 4
feature map, which can build a global long-distance dependence. In addition, input feature
maps with different resolutions, such as 5 × 5, 6 × 6, and 7 × 7 can be chosen; however, the
higher the resolution of the input feature map, the greater the computation of the model.
RTB’s minimum input resolution is only 3 × 3. Alternatively, by varying the reduction
rates r, the RTB structure can form a bottleneck layer (as shown in Figure 7). RTB always
sets r to 1 when selecting different input feature resolutions. As r is a variable, the resolution
of the input feature is fixed at 4 × 4. In these two groups of experiments, we leave 3DsAM
and its parameters alone and only discuss RCTAM’s internal parameters. Table 10 displays
the results of experiments with various input feature resolutions, while Table 11 displays
the results of experiments with various reduction rates.

Table 10. Comparison of different input feature resolutions.

Item 7 × 7 6 × 6 5 × 5 4 × 4 (Ours) 3 × 3

mAP 91.13 91.15 91.23 91.67 91.34
Precision 85.45 85.19 83.54 84.53 85.87

Recall 87.17 86.22 88.47 87.97 87.49

Table 11. Comparison of different reduction r.

Item 16 8 4 1 (Ours)

mAP 90.67 90.79 90.98 91.67
Precision 85.96 84.78 86.29 84.53

Recall 86.53 87.47 85.73 87.97

The results in Table 10 show that the RCTAM performance reaches a maximum value
when using the input resolution of 4 × 4. The LMNet performance is improved regardless
of the input resolution, as long as RT3DsAM is used. Because the number of data sets
is small and the class is only one, increasing the resolution will not improve detection
accuracy. The results of the tests in Table 11 show that the reduction rate r has a significant
impact on RCTAM’s performance. The model’s performance decreases gradually as r
increases, but it improves when compared to the situation in Table 6 when the attention
module is not used.

In this section, we study the influence of various 3DsAM parameters on the effective-
ness of the attention model. The RCTAM is left unchanged when the 3DsAM’s parameters
are altered. According to reference [22], the spatial attention module uses average and
maximum pooling to gather crucial spatial information. The spatial information from the
maximum pooling and mean pooling channels is then compressed into a 2D attention
map using the 7 × 7 convolution kernel. There are numerous options for the size of the
convolution kernel during the dimension compression process, including 1 × 1, 3 × 3,
5 × 5, and 7 × 7. But in 3DsAM, we use the 1 × 1 convolution kernel to expand the spatial
information from the max pooling and average pooling channels to a 3D feature vector.
Similar to dimension expansion, there are various options for the convolution kernel’s size.
Here, the kernels 1 × 1, 3 × 3, 5 × 5, and 7 × 7 are chosen. Table 12 shows the experimental
results using various convolution kernel parameters.

As can be seen from the experimental results in Table 12, the expansion process is
generally superior to compression in the spatial attention module, demonstrating that
the expansion process can notice more information and suppress more irrelevant infor-
mation. The attention model is not significantly affected by different convolution kernel
parameters, but it is clear that the model with a 1 × 1 convolution kernel performs the
best. The 1 × 1 convolution kernel only changes the channel count, so it barely affects
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the spatial information in the channel. Padding will be used by convolution kernels of
other sizes to process channel features, potentially increasing the amount of unnecessary
interference information.

Table 12. Different spatial attention model comparison of kernel parameters.

Item Parameter mAP Precision Recall

2DsAM

1 × 1 91.17 82.91 88.59
3 × 3 90.76 86.87 86.19
5 × 5 90.84 81.97 89.73
7 × 7 90.51 85.25 85.87

3DsAM

1 × 1 (Ours) 91.67 84.53 87.97
3 × 3 90.75 85.58 86.19
5 × 5 91.17 86.75 86.54
7 × 7 91.56 83.34 88.26

The methods used in this paper have three or more benefits. Its detection stability is
quite good, first and foremost. Since safety helmet wear detection accuracy is currently
quite unstable and low, direct detection will frequently lead to missed and false detections.
To enable the classifier to filter the target of false detection once more and super-resolution
reconstruction to reduce its false detection, we simply need to ensure that there is no or
very little missing detection in this task. Second, the proposed approach is easily accessible.
Our network is smaller and has parameters that are only two-thirds of those of HRNet
in this study, yet performance improves. The model has exceptional scene generalization
ability due to its capacity for long-range modeling and adaptive information selection in
the attention module. Third, the department is extremely scalable. The strategy of cropping
the target box of observed cyclists can be advantageous for many intelligent transportation
applications. Once it has been cropped, we can use the super-resolution reconstruction
network to recover the facial information, enabling us to precisely identify illegal bikers.
Alternatively, the character recognition network can be used to accurately identify the
license plate number if the license plate can be super-reconstructed. There are some issues
with our paradigm as well. For instance, during the super-resolution reconstruction phase,
we reconstruct our dataset using the weights learned during DF2K and OST dataset training
instead of training our super-resolution reconstruction model. If we do, the outcome of
the image restoration might be better. In the future, a super-resolution reconstruction
network for faces or license plates could be created using our paradigm in order to detect
and precisely identify illegal riders.

5. Conclusions

We offer a novel paradigm for helmet detection in UAV aerial photography in this
research. To begin, we employ a ladder-type backbone network to extract and fuse input
information features. Second, the proposed RCTAM and 3DsAM implicitly realize global
long-range modeling as well as adaptive layer-by-layer spatial information selection. Third,
ESRGAN is used to reconstruct the cropped target box in order to recover the target image’s
more detailed textures and sharp edges. Finally, the classifier is applied in order to obtain
results. A vast number of experimental findings demonstrate that our helmet detection
paradigm is extremely valuable, particularly in the field of UAV aerial photography of
small targets. Under the present hardware computing power limits, it is nearly the ideal
option. In the future, we will combine the super-resolution reconstruction network into
the classifier and use the classification results to determine the joint loss function of the
super-resolution reconstruction network and the classifier, which can be used to train a
hybrid model to improve classification accuracy even further.
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