High-Resolution Terrain Reconstruction of Slot Canyon Using Backpack Mobile Laser Scanning and UAV Photogrammetry
Abstract
:1. Introduction
- (1)
- The fine flight of UAVs based on a rough model of the large area, which can avoid collision with obstacles such as powerlines or flying into restricted areas, allowing users to perform UAV photogrammetry faster, safer, more detailed, and with higher quality.
- (2)
- This integration scheme significantly reduces data shadows in the 3D point clouds produced solely by a single mapping technique, providing a means for 3D mapping of extremely steep slopes and overhangs frequently present in rugged terrain.
- (3)
- This study can provide a high-fidelity terrain dataset with sufficient spatial detail, including a complete point cloud and its derivatives such as DEM and 3D mesh, which can be used for quantitative analysis of the morphological evolution and genesis of the slot canyons.
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. UAV Photogrammetry
2.2.2. Backpack Mobile Laser Scanning
2.3. Co-Registration and Data Fusion
2.4. Ground Points Extraction and DEM Generation
3. Result and Analysis
3.1. The Generation of Point Clouds and DEM
3.2. Error Assessment
4. Discussions
4.1. Complete Data Acquisition and Solutions
4.2. The Applicability Analysis
4.2.1. The Feasibility of the Integrated Method
4.2.2. The Capability of Data Applications
5. Conclusions
- (1)
- The integration scheme with BMLS and UAV photogrammetry applied in slot canyon systems has proven to be an effective solution for terrain reconstruction in a more accurate, complete, and realistic way. In addition, multi-scale observation and planning are necessary to ensure the safety and efficiency of collecting data. Compared with path planning based on Fixed-altitude methods and path planning based on Terrain following, the fine flight of UAVs based on a rough model of the large area can avoid collision with obstacles such as powerlines or flying into the restricted area, allowing users to perform UAV photogrammetry faster, safer, in more detail and with higher quality.
- (2)
- The registration process plays a key role in the accurate data integration of the point clouds. The accuracy of the registration by BMLS and UAV photogrammetric point clouds in this study is good with a RMSE of 0.028 m and there are no point clouds with stratification and offset. In addition, the vegetation filtering results of splitting the integrated point clouds into different slope segments used for ground point extraction are good, with all kappa coefficient values greater than 0.80.
- (3)
- The high-resolution terrain dataset achieved by data integration and includes a complete color point cloud, DEM and mesh, are starting points for generating valuable geometric parameters such as slope factor and for interpreting geologic features such as the attitude and thickness of sedimentary beddings about the slot canyon system. They provide a useful supplement for revealing the morphological evolution and genesis of slot canyons.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, K.; Carling, P. A Typology of Sculpted Forms in Open Bedrock Channels; Geological Society of America: Boulder, CO, USA, 2005. [Google Scholar]
- Sanders, D.; Wischounig, L.; Gruber, A.; Ostermann, M. Inner gorge–slot canyon system produced by repeated stream incision (eastern Alps): Significance for development of bedrock canyons. Geomorphology 2014, 214, 465–484. [Google Scholar] [CrossRef]
- Hire, P.S.; Patil, A.D.; Kale, V.S. The Sandan slot canyon in the Deccan Traps: Its morphology and mode of origin. Curr. Sci. 2019, 117, 1892–1896. [Google Scholar] [CrossRef]
- Wang, R.; Ji, S.; Lin, J. On the Definition of Danxia Landform. China Terminol. 2020, 22, 60–65. [Google Scholar]
- Young, R.; Young, A. Erosional Forms. In Sandstone Landforms; Young, R., Young, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 81–99. [Google Scholar]
- Stocker, E. Gorges and Slots in Western Carinthia: Their Development and Importance as Geomorphosites. In Landscapes and Landforms of Austria; Embleton-Hamann, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 379–392. [Google Scholar]
- Watkins, C.M.; Rogers, J.D. A New Look at Landslides of the Vermilion and Echo Cliffs, Northern Arizona. Environ. Eng. Geosci. 2022, 28, 173–192. [Google Scholar] [CrossRef]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- James, M.R.; Quinton, J.N. Ultra-rapid topographic surveying for complex environments: The hand-held mobile laser scanner (HMLS). Earth Surf. Proc. Land. 2014, 39, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Al-Mashaqbah, A.; Koch, B.; Datta, P. An evaluation of available digital elevation models (DEMs) for geomorphological feature analysis. Environ. Earth Sci. 2020, 79, 1–11. [Google Scholar] [CrossRef]
- Koukouvelas, I.K.; Zygouri, V.; Nikolakopoulos, K.; Verroios, S. Treatise on the tectonic geomorphology of active faults: The significance of using a universal digital elevation model. J. Struct. Geol. 2018, 116, 241–252. [Google Scholar] [CrossRef]
- Miřijovský, J.; Langhammer, J. Multitemporal monitoring of the morphodynamics of a mid-mountain stream using UAS photogrammetry. Remote Sens. 2015, 7, 8586–8609. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, R.; Lin, J.; Xiao, Z.; Hui, Y. A novel approach for extraction of ripple mark parameters based on SfM. Sediment. Geol. 2019, 392, 105523. [Google Scholar] [CrossRef]
- Chudá, J.; Hunčaga, M.; Tuček, J.; Mokroš, M. The handheld mobile laser scanners as a tool for accurate positioning under forest canopy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 211–218. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Fallu, D.J.; Zhang, H.; Walsh, K.; Van Oost, K.; Brown, A.G.; Tarolli, P. Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. Remote Sens. 2020, 12, 1946. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, T.; Wang, X.; Chen, X.; Pang, S.; Hu, J.; Wang, A.; Chen, L.; Shen, Z. Applying a Portable Backpack Lidar to Measure and Locate Trees in a Nature Forest Plot: Accuracy and Error Analyses. Remote Sens. 2022, 14, 1806. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Wang, R.; Lin, J.; Li, L.; Xiao, Z.; Hui, Y.; Xin, Y. A revised orientation-based correction method for SfM-MVS point clouds of outcrops using ground control planes with marks. J. Struct. Geol. 2021, 143, 104266. [Google Scholar] [CrossRef]
- Evans, A.D.; Gardner, K.H.; Greenwood, S.; Still, B. UAV and Structure-From-Motion Photogrammetry Enhance River Restoration Monitoring: A Dam Removal Study. Drones 2022, 6, 100. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Smith, M.W. Fluvial and aquatic applications of Structure from Motion photogrammetry and unmanned aerial vehicle/drone technology. Wiley Interdiscip. Rev. Water 2019, 6, e1328. [Google Scholar] [CrossRef] [Green Version]
- Moussa, W. Integration of Digital Photogrammetry and Terrestrial Laser Scanning for Cultural Heritage Data Recording. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2014. [Google Scholar]
- Hu, S.; Qiu, H.; Wang, N.; Wang, X.; Ma, S.; Yang, D.; Wei, N.; Liu, Z.; Shen, Y.; Cao, M. Movement process, geomorphological changes, and influencing factors of a reactivated loess landslide on the right bank of the middle of the Yellow River, China. Landslides 2022, 19, 1265–1295. [Google Scholar] [CrossRef]
- Bolkas, D.; O Banion, M.; Belleman, C.J. Combination of TLS and SLAM LIDAR for levee monitoring. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 3, 641–647. [Google Scholar] [CrossRef]
- Šašak, J.; Gallay, M.; Kaňuk, J.; Hofierka, J.; Minár, J. Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain. Remote Sens. 2019, 11, 2154. [Google Scholar] [CrossRef]
- Lin, A.; Rao, G.; Yan, B. Flexural fold structures and active faults in the northern–western Weihe Graben, central China. J. Asian Earth Sci. 2015, 114, 226–241. [Google Scholar] [CrossRef] [Green Version]
- Koci, J.; Jarihani, B.; Leon, J.X.; Sidle, R.C.; Wilkinson, S.N.; Bartley, R. Assessment of UAV and ground-based structure from motion with multi-view stereo photogrammetry in a gullied savanna catchment. ISPRS Int. J. Geo-Inf. 2017, 6, 328. [Google Scholar] [CrossRef] [Green Version]
- Guisado-Pintado, E.; Jackson, D.W.; Rogers, D. 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, G.; Gao, S.; Feng, L.; Guo, Q.; Yang, H. LiDAR Reveals the Process of Vision-Mediated Predator–Prey Relationships. Remote Sens. 2022, 14, 3730. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE T. Pattern Anal. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Alicandro, M.; Di Angelo, L.; Di Stefano, P.; Dominici, D.; Guardiani, E.; Zollini, S. Fast and Accurate Registration of Terrestrial Point Clouds Using a Planar Approximation of Roof Features. Remote Sens. 2022, 14, 2986. [Google Scholar] [CrossRef]
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S. Digital elevation models: Terminology and definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110–117. [Google Scholar]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS J. Photogramm. 2016, 117, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Chen, S.; Nian, Y.; He, Z.; Che, M. Measuring the Tree Height of Picea crassifolia in Alpine Mountain Forests in Northwest China Based on UAV-LiDAR. Forests 2022, 13, 1163. [Google Scholar] [CrossRef]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson Surface Reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry, Cagliari, Italy, 26–28 June 2006; Volume 7. [Google Scholar]
- Guan, H.; Li, J.; Yu, Y.; Zhong, L.; Ji, Z. DEM generation from lidar data in wooded mountain areas by cross-section-plane analysis. Int. J. Remote Sens. 2014, 35, 927–948. [Google Scholar] [CrossRef]
- Mongus, D.; Žalik, B. Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS-J. Photogramm. 2012, 67, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; Aldana-Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Van Oost, K. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dyn. 2019, 7, 807–827. [Google Scholar] [CrossRef] [Green Version]
- Slocum, R.K.; Parrish, C.E. Simulated imagery rendering workflow for UAS-based photogrammetric 3D reconstruction accuracy assessments. Remote Sens. 2017, 9, 396. [Google Scholar] [CrossRef] [Green Version]
- Parente, L.; Chandler, J.H.; Dixon, N. Optimizing the quality of an SfM-MVS slope monitoring system using fixed cameras. Photogramm. Rec. 2019, 34, 408–427. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Li, W.; Ju, Y.; Dong, X.; Peng, D. Multitemporal UAV-based photogrammetry for landslide detection and monitoring in a large area: A case study in the Heifangtai terrace in the Loess Plateau of China. J. Mt. Sci. 2020, 17, 1826–1839. [Google Scholar] [CrossRef]
- Kozmus Trajkovski, K.; Grigillo, D.; Petrovič, D. Optimization of UAV Flight Missions in Steep Terrain. Remote Sens. 2020, 12, 1293. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, D.C.; Bretcan, P.; Peptenatu, D.; Tanislav, D.; Mailat, E. The importance of the number of points, transect location and interpolation techniques in the analysis of bathymetric measurements. J. Hydrol. 2019, 570, 774–785. [Google Scholar] [CrossRef]
- Hochschild, V.; Braun, A.; Sommer, C.; Warth, G.; Omran, A. Visualizing Landscapes by Geospatial Techniques. In Modern Approaches to the Visualization of Landscapes; Springer: Berlin/Heidelberg, Germany, 2020; pp. 47–78. [Google Scholar]
- Forlani, G.; Diotri, F.; Cella, U.M.; Roncella, R. Indirect UAV Strip Georeferencing by On-Board GNSS Data under Poor Satellite Coverage. Remote Sens. 2019, 11, 1765. [Google Scholar] [CrossRef]
- van Veen, M.; Porter, M.; Lato, M.; Mitchell, A.; Fish, C.; Van Gassen, W. Using tree stems in multi-temporal terrestrial lidar scanning data to monitor landslides on vegetated slopes. Landslides 2022, 19, 829–840. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Li, J.; Wang, C.; Wang, R.; Chapman, M.A. Mobile laser scanned point-clouds for road object detection and extraction: A review. Remote Sens. 2018, 10, 1531. [Google Scholar] [CrossRef] [Green Version]
- Evans, I.S. Geomorphometry and landform mapping: What is a landform? Geomorphology 2012, 137, 94–106. [Google Scholar] [CrossRef]
- Marques Jr, A.; Horota, R.K.; de Souza, E.M.; Kupssinskü, L.; Rossa, P.; Aires, A.S.; Bachi, L.; Veronez, M.R.; Gonzaga Jr, L.; Cazarin, C.L. Virtual and digital outcrops in the petroleum industry: A systematic review. Earth-Sci. Rev. 2020, 208, 103260. [Google Scholar] [CrossRef]
- Stott, E.; Williams, R.D.; Hoey, T.B. Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry. Drones 2020, 4, 55. [Google Scholar] [CrossRef]
- Liu, X.; Lian, X.; Yang, W.; Wang, F.; Han, Y.; Zhang, Y. Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones 2022, 6, 30. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Cao, L.; Gao, S. Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas. ISPRS J. Photogramm. 2019, 147, 307–318. [Google Scholar] [CrossRef]
- Visser, F.; Woodget, A.; Skellern, A.; Forsey, J.; Warburton, J.; Johnson, R. An evaluation of a low-cost pole aerial photography (PAP) and structure from motion (SfM) approach for topographic surveying of small rivers. Int. J. Remote Sens. 2019, 40, 9321–9351. [Google Scholar] [CrossRef]
- Spotila, J.A.; Moskey, K.A.; Prince, P.S. Geologic controls on bedrock channel width in large, slowly-eroding catchments: Case study of the New River in eastern North America. Geomorphology 2015, 230, 51–63. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Gonçalves, G.R. Surveying coastal cliffs using two UAV platforms (multirotor and fixed-wing) and three different approaches for the estimation of volumetric changes. Int. J. Remote Sens. 2020, 41, 8143–8175. [Google Scholar] [CrossRef]
- Burnham, B.; Bond, C.; Flaig, P.; van der Kolk, D.; Hodgetts, D. Outcrop conservation: Promoting accessibility, inclusivity, and reproducibility through digital preservation. Sediment. Rec. 2022, 20, 5–14. [Google Scholar] [CrossRef]
- Nesbit, P.R.; Durkin, P.R.; Hugenholtz, C.H.; Hubbard, S.M.; Kucharczyk, M. 3-D stratigraphic mapping using a digital outcrop model derived from UAV images and structure-from-motion photogrammetry. Geosphere 2018, 14, 2469–2486. [Google Scholar] [CrossRef]
Slope (°) | Terrain Angle (°) | Iteration Angle (°) | Iteration Distance (m) |
---|---|---|---|
0–30 | 30 | 25 | 0.5 |
30–60 | 60 | 55 | 0.8 |
60–90 | 90 | 75 | 1.2 |
Slope (°) | Type I Error (%) | Type II Error (%) | Total Error (%) | Kappa Coefficient |
---|---|---|---|---|
0–30 | 3.34 | 1.40 | 4.74 | 0.89 |
30–60 | 5.82 | 0.60 | 6.42 | 0.82 |
60–90 | 1.77 | 7.36 | 9.13 | 0.80 |
Mission | X (cm) | Y (cm) | Z (cm) | Total (cm) | RMS Reprojection (Pixel) |
---|---|---|---|---|---|
Flight mission 1 | 0.56 | 0.54 | 1.03 | 1.29 | 0.54 |
Flight mission 2 | 0.48 | 0.50 | 1.05 | 1.27 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Wang, R.; Wang, X.; Wang, X.; Xiao, Z.; Lin, J. High-Resolution Terrain Reconstruction of Slot Canyon Using Backpack Mobile Laser Scanning and UAV Photogrammetry. Drones 2022, 6, 429. https://doi.org/10.3390/drones6120429
Xin Y, Wang R, Wang X, Wang X, Xiao Z, Lin J. High-Resolution Terrain Reconstruction of Slot Canyon Using Backpack Mobile Laser Scanning and UAV Photogrammetry. Drones. 2022; 6(12):429. https://doi.org/10.3390/drones6120429
Chicago/Turabian StyleXin, Yonghui, Ran Wang, Xi Wang, Xingwei Wang, Zhouxuan Xiao, and Jingyu Lin. 2022. "High-Resolution Terrain Reconstruction of Slot Canyon Using Backpack Mobile Laser Scanning and UAV Photogrammetry" Drones 6, no. 12: 429. https://doi.org/10.3390/drones6120429
APA StyleXin, Y., Wang, R., Wang, X., Wang, X., Xiao, Z., & Lin, J. (2022). High-Resolution Terrain Reconstruction of Slot Canyon Using Backpack Mobile Laser Scanning and UAV Photogrammetry. Drones, 6(12), 429. https://doi.org/10.3390/drones6120429