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Abstract: Lidar point clouds have been frequently used in forest inventories. The higher point density
has provided better representation of trees in forest plantations. So we developed a new approach
to fill this gap in the integrated crop-livestock-forest system, the sampling forest inventory, which
uses the principles of individual tree detection applied under different plot arrangements. We use
a UAV-lidar system (GatorEye) to scan an integrated crop-livestock-forest system with Eucalyptus
benthamii seed forest plantations. On the high density UAV-lidar point cloud (>1400 pts. m2), we
perform a comparison of two forest inventory approaches: Sampling Forest Inventory (SFI) with
circular (1380 m2 and 2300 m2) and linear (15 trees and 25 trees) plots and Individual Tree Detection
(ITD). The parametric population values came from the approach with measurements taken in the
field, called forest inventory (FI). Basal area and volume estimates were performed considering the
field heights and the heights measured in the LiDAR point clouds. We performed a comparison of
the variables number of trees, basal area, and volume per hectare. The variables by scenarios were
submitted to analysis of variance to verify if the averages are considered different or equivalent.
The RMSE (%) were calculated to explain the deviation between the measured volume (filed) and
estimated volume (LiDAR) values of these variables. Additionally, we calculated rRMSE, Standard
error, AIC, R2, Bias, and residual charts. The basal area values ranged from 7.40 m2 ha−1 (C1380) to
8.14 m2 ha−1 281 (C2300), about −5.9% less than the real value (8.65 m2 ha−1). The C2300 scenario
was the only one whose confidence interval (CI) limits included the basal area real. For the total stand
volume, the ITD scenario was the one that presented the closer values (689.29 m3) to the real total
value (683.88 m3) with the real value positioned in the CI. Our findings indicate that for the stand
conditions under study, the SFI approach (C2300) that considers an area of 2300 m2 is adequate to
generate estimates at the same level as the ITD approach. Thus, our study should be able to assist
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in the selection of an optimal plot size to generate estimates with minimized errors and gain in
processing time.

Keywords: forest inventory; estimation; individual tree attributes; LiDAR

1. Introduction

Forest plantation area is constantly increasing across the globe, and the goods and
services provided by these forests are becoming tremendously diverse [1]. In this context,
Brazilian forest plantations stand out with a prominent position, in which more than
10 million ha supply industries of pulp and paper, fuelwood, and solid wood products [2,3].
Brazilian forest industries demand millions of cubic meters of wood annually. Thus, fast
and reliable information regarding stand structure and wood availability is crucial to ensure
industrial demand [4].

Eucalypt stands are the most important source of short fiber pulp, fuelwood, and
charcoal due to their fast growth and wood properties [5]. Usually, fast-growing eucalypt
plantations are grown in monoculture. There is, however, a recent increase in crop-livestock-
forest system area [6]. Eucalyptus trees established in crop-live-stock-forest systems are
usually planted in rows, presenting lower stand density and diverse canopy structures.
Consequently, defining sampling strategies for these trees becomes a challenging endeavor,
resulting in a lack of literature-review based recommendations [7]. Forest inventories are
considered an essential source of quantitative and qualitative information for the manage-
ment of forest resources [8]. However, the traditional methods are considered complex
and laborious activities, and remote sensing methods have emerged as auxiliary tools for
attaining fast and reliable data [9]. In [10], the authors highlighted the main technologies
for remote sensing-assisted forest inventories, and Light Detection and Ranging (LiDAR)
was listed as a major player.

In particular, airborne LiDAR has emerged as one of the most promising remote
sensing technologies for estimating forest attributes due to its ability to reconstruct the
detailed 3D structure of the entire forest landscape using airplane-mounted high-frequency
laser scanners. In this way, they might potentially overtake or assist the traditional in-situ
forest inventory since they can collect more information in high resolution and accuracy in
a relatively short period [11,12]. So far, this technology has been used to predict forest struc-
tural parameters, such as forest height [13,14], canopy density [15], species diversity [16],
above-ground biomass [17] and even individual tree attributes [18].

Even though LiDAR can acquire horizontal and vertical information on forest structure
at high spatial resolutions and vertical accuracies, it was mainly applied over small- and
moderate-scale applications, owing to the financial constraints [19]. Besides that, since it is
usually acquired by aircraft, the achievable density was typically between 1 to 10 points/m2,
depending on flight altitude and scanner configuration. Recently, LiDAR sensors have been
mounted on UAVs (Unmanned Aerial Vehicle) to combine the advantages of LiDAR and
UAV technology. UAV systems represent a low-cost, agile, and autonomous opportunity,
making them an alternative platform to satellites and aircraft for forest inventories [20–22].
Furthermore, by flying at a significantly lower altitude than traditional aircraft, UAV’s
systems offer the possibility of generating high-density clouds.

Forest attributes can be predicted by two main approaches using LiDAR data [23].
One of these methods is referred to as the area-based approach (ABA), which uses statistics
describing the vertical distribution of LiDAR returns to estimate common forest inventory
variables across a regular grid of pixels [24]. In addition, the analysis is performed in fixed
sampling areas [11,25]. In the area approach the forest inventory is conducted by applying
sampling techniques (SFI—sampling forest inventory). The other approach is individual
tree detection (ITD), which refers to the division of the point cloud into individual trees,
using a segmentation algorithm [26]. These approaches have been used primarily on forest



Drones 2022, 6, 48 3 of 18

stands with regular spacing and homogeneous crown structures, such as those composed
of conifer species [27]. Recent studies, however, have investigated the performance of UAV-
LiDAR data to perform the ITD approach for eucalypt stands [24]. Although comparative
analyses between ABA and ITD have been developed, most have low-density LiDAR data
as input. UAV-LiDAR sensors have provided high-density point clouds that can greatly
contribute to improving the estimates of individual trees [28] Additionally, few studies
have been concerned with proposing methodological approaches, even in traditional forest
inventories, for integrated crop-livestock-forest systems.

Our main motivation for the study is to provide in the integrated crop-livestock-forest
system producers with a faster and cheaper alternative for conducting forest inventories.
However, we need to be sure that the technology works accurately. This question has not
yet been properly investigated for in the integrated crop-livestock-forest system.

Through our study, we explore the following questions: can we improve/alter the
traditional approach of forest inventory with sampling techniques in plots (in this study
referred to as Forest Inventory by Sampling—SFI) to techniques that use more remote sens-
ing technology, in this case considering point clouds of LiDAR data to measure individual
tree variables as samples (in this study referred to as Individual Tree Detection—ITD) that
would be multiplied by the number of trees obtained by parametric counting in point
clouds? Could this change in approach provide better accuracy in the estimates gener-
ated? To answer these questions, several variables such as the number of trees, basal
area, and stand volume were evaluated. To support our findings, we count on a complete
census at the stand. To the best of our knowledge, this study is the first initiative to ad-
dress the performance of both SFI and ITD approaches for eucalypt trees established in a
crop-livestock-forest system.

2. Materials and Methods
2.1. Study Area Description

This study used data from eucalypt stands (Eucalyptus benthamii Maiden et Cambage)
established in a crop-livestock-forest system—iCLF (Figure 1) of age six years. These
eucalypt stands are located in a 15.79 ha research trial (at the Canguiri Site) located in the
municipality of Pinhais in the State of Paraná, southern Brazil (25°22′38′ ′ S, 49°09′05′ ′ W).
The stands were established in Haplic Cambisols, following the Brazilian System of Soil
Classification [29]. These soils correspond to Inceptisols in Soil Taxonomy—NRCS [30].
The municipality of Pinhais is encompassed by a humid subtropical climate (without dry
season and with temperate summer)—Cfb, according to Köppen Classification [31]. The
average elevation is 920 m above sea level, and annual rainfall is around 1550 mm. The
average initial spacing was 2 m × 14 m, totaling 357 trees ha−1 [32].

Figure 1. Study area location and stand characterization in the State of Paraná, southern Brazil.
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2.2. UAV-LiDAR Data

The UAV-LiDAR data were obtained in September 2019 with the GatorEye system [28,33],
this equipment presents the following components: flight platform, mission planning, base
station, and computational core [34]. The University of Florida developed the GatorEye
system with the collaboration of Phoenix LiDAR Systems and Headwall Photonics.

The flight platform is a DJI Matrice 600 Pro hexacopter with a 5 km telemetry and a
set of ten batteries. The Universal Ground Control Station (UGCS) software was used for
mission planning control. Meanwhile, the base station used the online Trimble CenterPoint
RTX post-processing platform, providing <2 cm 3D uncertainty with a 2-h collection period
(and <0.25 cm in 4+ h collection). The computational core system is based on a Phoenix
Scout + core with a Novatel STIM 300 IMU tactical grade and differential GNSS system. It
includes a Velodyne VLP-32c LiDAR sensor, a Nano VNIR Hyperspectral Headwall sensor
(640 pixels × 270 spectral bands in a 100-hertz line scan approach), a 25 MP visual sensor,
and a radiometric thermal sensor. Velodyne ultra-puck sensor VLP-32c LiDAR sensor uses
32 infra-red (IR) lasers paired with IR detectors to measure objects’ distances.

The mission plan also flew slow (8 m s−1) and low (45 m above ground level), and
with flight lines tightly spaced (15 m apart), resulting in a sidelap cross-swath coverage of
93%. The final point density was 1500–2500 points m−2. Data collection and point cloud
specifications are further described in [33]. LiDAR flight lines were processed to standard
products using the GatorEye Multi-scalar Post-Processing workflow, using the software
Lastools [35] and “lidR” R package [36], which automatically merges flight lines, removes
noise, and then generates rasters products and cleaned point clouds [28].

2.3. Methodological Approach

Three methodological approaches were developed (Figure 2). The first approach
focused on forest inventory based on a complete census data from the field, called FI. This
approach was considered as the baseline in the comparison of the generated estimates. The
second and third approaches were derived from UAV-LiDAR data. The second approach
was called Individual Tree Detection (ITD) where the individual volume was calculated as
a function of the total tree height obtained from the point cloud (hLiDAR) variable and the
number of trees was obtained by counting the trees on the point cloud. The third approach
is called Sampling Forest Inventory (SFI), sample plots of different sizes and shapes were
simulated and the individual tree volume was calculated as a function of the hLiDAR
variable. Extrapolation to the hectare was performed using the sum of the plot volumes.

2.4. Forest Inventory Based on a Complete Census (FI)

The eucalyptus stands were assessed by forest inventory based on a complete census,
in which all trees were measured with respect to their diameter at 1.3 m above the ground
(dbh) and total height (ht). Tree dbh and ht were always measured using a diameter
tape and a Haglöf Vertex IV hypsometer. Additionally, all trees (N = 1869) had their
geographical position recorded using a GPS (Garmin model 62CSX) to build a geographic
information system.

Thereafter, 30 trees were selected for volume destructive sampling. Hence, all 30 trees
were felled, bucked and scaled, and measurements of stem were taken in relative heights
of the total height (5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, and 95%). The individual
tree volume (v) was obtained by computing the volume of each section by the Smalian
formula (which involves the average cross-sectional area of the large and small ends times
the log length). The individual tree volume (v) was assessed by three approaches. First,
we used the destructive sampling dataset (with 30 trees) to fit a regression equation based
on field-based (Forest inventory based on a complete census—FI) tree heights (hfield) as in
Equation (1). After investigating the relationship between the variables, it was observed
that the linear regression with the variables transformed to “ln” natural logarithm best
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expressed the relationship. For this reason, it was applied to all estimates in the paper
(Equation (1)–(3), (12) and (13)).

ln(v̂) = β0 + β1ln(h f ield)2. (1)

Figure 2. Methodological approaches tested and illustrative diagram of UAV-LiDAR point cloud
and ITD processing. (a) UAV-LiDAR point cloud pre-processing; (b) Generation of Digital Terrain
Model (DTM) and Digital Surface Model (DSM); (c) Generation of Canopy Height Model (CHM);
(d) Individual tree detection (ITD); (e) LiDAR-derived tree height (hLiDAR) using ITD data; (f) Extract
hLiDAR; (g) Clip of samples plots.

In the equation, v̂ is the predicted total tree volume (in m3); h is the total tree height
field-based data; β0 = −9.88328; β1 = 2.955584.

Individual Tree Detection (ITD)

LiDAR point-cloud was used for generating the normalized “.las” file, in addition to
the Digital Terrain Model (DTM) and the Canopy Height Model (CHM) (using function grid-
canopy at 0.5 m resolution). Thereafter, each tree’s position was determined by the Local
Maximum Filter (LMF) within a 3 × 3 window using the find–trees function in the LidR
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package in R [36,37]. The find–trees function uses the CHM and the normalized LiDAR
point-cloud (.las) as inputs for individual tree detection. The dalponte2016 algorithm was
used to delineate and segment each tree and assign a new identification attribute (treeID).
Finally, the crown of each tree was delineated using the delineate-crowns function, while
LiDAR-derived total tree height (hLiDAR) was derived using tree-metrics function. In this
approach the transverse area (gi) and the individual volume (vi) were estimated based on
LiDAR-derived tree heights (hLiDAR) Equations (2) and (3).

ln(ĝi) = β0 + β1ln(hLiDAR)2. (2)

In the equation, ĝi is the predicted transverse area (in m2); hLiDAR = total tree height
UAV-LiDAR data; β0 = −6.61803; β1 = 1.34301.

ln(v̂i) = β0 + β1ln(hLiDAR)2. (3)

In the equation, v̂i is the predicted total tree volume (in m3); hLiDAR = total tree height
UAV-LiDAR data; β0 = −9.88328; β1 = 2.955584.

Each segmented tree was incorporated and exported in a shapefile. This shapefile was
visually examined in ArcMap to check detection accuracy by overlaying each tree crown
with CHM raster. Subsequently, all segmented and identified trees were counted, resulting
in the approximated population density parameter (total number of trees—NITD-based).
Hence, the mean individual tree volume (predicted through Equation (3) was used to
compute stand volume by multiplying by the number of segmented trees to get the stand
volume Equation (4). A similar approach was applied to obtain the basal area of the stand
Equation (5).

Stand volume (V m3) =
n

∑
i=1

(ni) · v. (4)

Basal Area (m2 ha−1) =
N · ĝi (m2)

Area (ha)
. (5)

In the equation, V is the stand volume (in m3); ni is the ith segmented tree; v is the
mean individual tree volume (in m3).

The ITD approach for variable N is based on a complete census; this variable faithfully
represents the population. Therefore, the calculation of the confidence interval was based
on the variability that existed in the volume of individual trees. In this case, since an vmi
was used for the estimation in the field, there occurred some variability.

The total estimate was obtained by multiplying the number of trees (forest inven-
tory based on a complete census) by the average of individual tree volume Equation (6).
Equation (7) was used to calculate the variance (s2

vi), and the standard deviation (svi) was
calculated by the square root of the variance. The standard error (Svi) of sampling was
calculated with Equation (8) . The absolute error (Ea) of the forest inventory was obtained
with Equation (9). Finally, the confidence interval (CI) for the population was calculated
based on Equations (10) (lower limit) and (11) (upper limit).

Total Estimation = N · vmi. (6)

s2
vi =

∑n
i=1(vi− vmi)2

n− 1
. (7)

Svi = ± svi√
n

. (8)

Ea = ± t · Svi. (9)
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CIlower limit = N · [vmi− t · Svi]. (10)

CIupper limit = N · [vmi + t · Svi]. (11)

where: N = total number of trees; vmi = average of individual tree volume; n = number of
trees; vi = individual tree volume i; n = number of plots; t = t-Student.

2.5. Sampling Forest Inventory (SFI)

A total of four different sampling strategies were designed and evaluated, being two
scenarios based on circular plots (fixed area) and two with linear plots (fixed number of
trees). The area of the circular plots were 1380 m2 (C1380 with 35 sample units) and 2300 m2

(C2300 with 35 sample units), while the linear plots contained 15 (L15) and 25 trees (L25)
along planting rows. The central point of each plot was randomly allocated within the
LiDAR point-cloud. In this approach the transverse area (gi) and the individual volume (vi)
were estimated based on LiDAR-derived tree heights (hLiDAR) Equations (12) and (13).

ln(ĝi) = β0 + β1ln(hLiDAR)2. (12)

In the equation, ĝi is the predicted transverse area (in m2); hLiDAR total tree height
UAV-LiDAR data; β0 = −6.61803; β1 = 1.34301.

ln(v̂i) = β0 + β1ln(hLiDAR)2. (13)

In the equation, v̂i is the predicted total tree volume (in m3); hLiDAR = total tree
height UAV-LiDAR data; β0 = −9.88328; β1 = 2.955584. All trees within the plot had their
volume estimated by Equation (3) and the volume of the plot resulted from the sum of
these (Vplot m3 · plot area−1). Finally, it was multiplied by the area of the plot and the total
volume was obtained.

The plot-level volume was computed for each SFI scenario. Measures of dispersion
(variance and standard deviation) and central tendency (mean) were assessed and summa-
rized. Subsequently, stand volume was determined by extrapolating the mean plot-level
volume to the total area (Equation (14)). In addition, the variance (Equation (15)), standard
error of the mean (Equation (16)), sampling error (Equations (17)), and the confidence
intervals (Equation (18) and (19)) were determined following the simple random sampling
(SRS) protocol [38,39].

Total Estimation = Area · x. (14)

s2
x =

∑n
i=1(X− x)2

n− 1
. (15)

sx = ± sx√
n

. (16)

Ea = ± t · Sx. (17)

CIlower limit = Area · [x− t . Sx]. (18)

CIupper limit = Area · [x + t . Sx]. (19)

where: Area = stand area (hectare); x = average of variable per hectare; X = variable per
hectare of plot i; n = number of plots; vi = individual tree volume i; n = number of trees;
t—t-Student.
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2.6. Statistical Analysis and Comparisons

The variables by scenarios were submitted to analysis of variance to verify if the
averages are considered different or equivalent. A completely randomized design (CRD)
was used, testing the following null hypothesis: H0: it is a statement that there is no
difference between a sample mean or proportion and a population mean or proportion.
In other words, the difference is equal to 0. H1: it is a claim about the population that is
contradictory to H0 and what we conclude when we reject H0. Homogeneity of variance
and normality were also tested.

The root mean square absolute and relative root mean square errors (RMSE) (%) were
calculated to explain the deviation between the measured volume (estimated from hfield)
and estimated volume (estimated from hLiDAR) values of these variables. Additionally, we
calculated Relative Root Mean Square Error (rRMSE), Standard error, Akaike information
criterion (AIC), Coefficient of Determination (R2), Bias, and residual charts [40–43]. Pear-
son’s correlation coefficient (r) was used to quantify the correlation between the observed
and the predicted values for each predictive model [44]. An r value of 1 indicates a perfect
correlation between predicted and observed values. A test of difference of means was
performed for volume, basal area, and number of trees results from the different approaches
in accordance with (Figure 3).

Figure 3. Point cloud processing diagram for the different approaches and analyses performed.
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3. Results
3.1. Exploratory Analysis at Stand-Level

Figure 4 contends the box-plot of dendrometric values for the stand. The average
diameter of the trees in the plantation was 30.78 cm with a coefficient of variation (CV)
of 16.91% and the average transverse area was 0.08 m2 with a CV of 31.43%. The average
total height was 19.81 m (CV = 13.96%) and the average individual volume was 0.3659 m3

(CV = 35.87%).

3.2. Individual Tree Volume Estimation in the Scenarios

The complete census (IF) totaled 1869 trees with an average individual volume of
0.3659 m3 (with minimum and maximum values of 0.0059 and 0.8300 m3, respectively)
according to Figure 5. In general, all scenarios performed statistically similar for individ-
ual tree volume IF (vmi = 0.3659 m3), ITD (vmi = 0.3947 m3), C2300 (vmi = 0.3791 m3),
L25 (vmi = 0.3769 m3), C1380 (vmi = 0.3833 m3) and L15 (vmi = 0.3843 m3). The data demon-
strated homogeneity of variance and normality, and these averages of individual tree
volumes showed no significant differences, so was accepted (p = 0.013). Although the
sampling scenarios (Circular plots and Linear plots) had a lower number of trees sampled
(ns = 721, 555, 392, 330) compared to the forest inventory based on a complete census
(n = 1869), they were still able to represent the individual tree volumes. The ITD scenario,
on the other hand, identifies 1746 individuals.

Figure 4. Box-plot for the variables diameter (cm), transverse area (m2), total height (m), and volume
(m3) for the stand.

The performance of observed (IF) and tested scenarios for transverse areas indicated
a Relative Root Mean Square Error (RMSE) between 0.0191 m2 as a minimum value and
0.0217 m2 as a maximum value (Table 1). Pearson’s correlation coefficient (r) varied between
0.3982 and 0.4932. Standard error of estimate in percentage (Syx%) varied between 10.5888
and 24.4946%. For the individual tree volume, the RMSE had values between 0.1016 m3 and
0.1096 m3. Pearson’s correlation coefficient (r) varied between 0.5730 and 0.6447. Standard
error of estimate in percentage (Syx%) varied between 11.9887 and 25.5509%.
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Figure 5. Box-plot for the individual tree volumes in different scenarios. Where: Black points
represent outlier values; Red points represent average values; Pink points represent the observations
in the scenarios; IF = forest inventory based on a complete census; ITD = individual tree detection;
C2300 = circular plots had areas of 2300 m2; L25 = linear plots had fixed tree numbers of 25 individuals;
C1380 = circular plots had areas of 1380 m2; L15 = linear plots had fixed tree numbers of 15 individuals.

Figure 6 shows the dispersion of the transverse area (Figure 6a–e) between the ob-
served values (IF) and the tested scenarios (ITD, C1380, C2300, L15, L25) and individual
tree volume (Figure 6f–j) between the observed values (IF) and the tested scenarios (ITD,
C1380, C2300, L15, L25). We notice a similar behavior among all scenarios in tending to
underestimate the transverse area when using the LiDAR metrics, since the Y-axis scale has
lower values.

Figure 7a–e shows the differences in basal area between each scenario evaluated (ITD,
C1380, C2300, L15, L25) in comparison with field data (FI). Figure 7f–j shows the difference
between individual tree volume and the scenarios tested (ITD, C1380, C2300, L15, L25).

Table 1. Summary of the estimation results of basal area and volume for the stand.

Variable Scenario R2 Syx Syx% RMSE RMSE% Bias Bias% r x2 AIC n

Transverse area C1380 0.2433 0.0088 11.2158 0.0191 24.4770 0.0025 3.2397 0.4932 2.1181 2722.76 392
C2300 0.2356 0.0126 16.1565 0.0202 25.9988 0.0030 3.8794 0.4854 6.1981 5103.52 721
ITD 0.1418 0.0218 28.3185 0.0225 29.2833 0.0038 4.9757 0.3766 17.2681 −2758.33 1746
l15 0.1935 0.0084 10.5888 0.0199 25.1861 0.0025 3.2069 0.4398 1.8080 2283.539 330
l25 0.1850 0.0113 14.4168 0.0208 26.4420 0.0028 3.5814 0.4301 3.3561 3835.496 555

Volume C1380 0.3614 0.0465 12.1434 0.1016 26.5015 0.0164 4.2665 0.6012 13.9608 −674.585 392
C2300 0.4156 0.0641 16.8959 0.1031 27.1886 0.0169 4.4693 0.6447 26.5454 −1224.52 721
ITD 0.3142 0.1060 29.1596 0.1096 30.1530 0.0217 5.9776 0.5605 84.9910 937.2128 1746
l15 0.3479 0.0461 11.9887 0.1096 28.5159 0.0189 4.9288 0.5899 14.5701 −516,812 330
l25 0.3390 0.0577 15.3074 0.1058 28.0754 0.0177 4.7079 0.5822 22.0331 −912.18 555
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Figure 6. Dispersion count between observed (IF) and the tested scenarios for transverse area and
individual tree volume. Where: Counts represents maps the number of cases to the hexagon fill.
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Figure 7. Differences between each scenario evaluated compared to the field data (FI).

3.3. Estimates for the Forest Stand

The ITD scenario was the closest to the field values (1869) in terms of number of trees
n = 1746 (with a difference of −6.58%), and in second order C2300 with n = 1728 (with
a difference of −7.54%). Of these trees in the field, we have 20 forked trees and 9 trees
without canopy, i.e. 1840 normal trees (forest inventory based on a complete census). Under
these conditions, the differences would be reduced to −5.1 (ITD) and −6.09% (C2300).

On the forest stand scenario, (Table 2), it was observed that the basal area values
ranged from 7.40 m2 ha−1 (C1380) to 8.14 m2 ha−1 (C2300), about −5.9% less than the real
value (8.65 m2 ha−1). It is also highlighted that all scenarios underestimated the basal area



Drones 2022, 6, 48 13 of 18

values. The C2300 scenario was the only one whose confidence interval limits included the
basal area real value (8.65 m2 ha−1) in its amplitude (7.60 to 8.68 m2 ha−1).

Likewise for the total stand volume, the ITD scenario was the one that presented the
closer values (689.29 m3) to the real total value (683.88 m3) with the real value positioned in
the range of the confidence interval (677.87 to 700.71 m3). The C2300 scenario was ranked
second with a volume of 655.23 m3 and intervals between 589.97 and 720.50 m3.

Considering the confidence intervals of the forest inventory for 95% probability
(Figure 8) the C2300 and ITD scenarios were the ones with confidence intervals that contem-
plated the parametric mean volume, both per hectare and for total area. In the case of basal
area only the c2300 approach had confidence intervals that covered the parametric value.

Table 2. Summary of the estimation results of basal area and volume for the stand.

Scenarios

Variable Statistc ITD C1380 C2300 l15 l25

* Number 113 n ha−1 x(n ha−1) 106 95 104 83 84
1869 X(n) 1746 1566 1728 1371 1383

* Basal area x (m2 ha−1) 8.13 7.40 8.14 6.54 6.57
IF 8.65 m2 ha−1 CI lower (m2 ha−1) 8.01 6.78 7.60 6.04 6.16

CI upper (m2 ha−1) 8.25 8.01 8.68 7.04 6.98

* Volume x (m3 ha−1) 41.67 36.29 39.62 31.84 31.51
IF 41.34 m3 ha−1 CI lower (m3 ha−1) 40.98 32.06 35.67 28.42 28.66

686.88 m3 CI upper (m3 ha−1) 42.36 40.52 43.56 35.27 34.36
X (m3) 689.29 600.21 655.23 526.71 521.24

CI lower (m3) 677.87 530.22 589.97 470.12 583.29
CI upper (m3) 700.71 670.21 720.50 474.10 568.38

* Reference values IF (forest inventory based on a complete census): Number of trees per ha: 113; Number total of
trees: 1869; Basal area 8.65 m2 ha−1; Volume by hectare: 41.34 m3 ha−1; Volume by stand: 683.88 mm3.

Figure 8. Means and confidence intervals for the variables basal area, volume per hectare, and total
volume. The red line represents the parametric values (based on a complete census).
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4. Discussion

The use of laser scanning sensors on UAV platforms has gained great prominence
for forest inventory [22,28]. In this study we present an approach to measure three stand
parameters (volume, number of trees, and basal area) by means of a UAV-LiDAR system
for integrated crop-livestock-forest system. To date, this is the first study that presents
an approach for UAV-LiDAR cloud sampling in ILPF systems. To do this, we created
the SFI approach, which takes into account a simple cloud sampling system and applies
the principles of the ITD approach; that is, instead of applying ITD to the entire area, we
apply it only to a set of samples (plots), and subsequently expand it to the total area. We
expect this approach to be a practical way for companies that are automating their FI data
collection processes through UAV-LiDAR systems. The reduction of field effort, especially
plot data collection, implies saving a large amount of money and faster processing with
high accuracy [45]. The results obtained from this pilot study have demonstrated potential
for application in forest inventories and forest management assistance.

Our results confirm that the estimates obtained using the SFI equates with the results
obtained in ITD under certain conditions, and that both approaches (SFI and ITD) proved
to be useful techniques showing satisfactory bias, RMSE, and Pearson’s coefficient between
observed and estimated values for modeling individual volume and cross-sectional area.
First, we estimated the mean volume (Figure 5) for each scenario, and found that all
scenarios have mean values statistically similar to the FI. Then, we expanded to the stand the
total number of individuals and noticed that only the ITD and the C2300 scenarios showed
values close to the total number of individuals in the area. In this context, we realized that
the critical point of the approach is related to the size of the plot that probably does not
present sufficiency in the number of individuals. In addition to a probable insufficiency
in the number of individuals in the plot, errors of commission and omission may have
occurred because of the ITD approach, as well as adjustment parameters, and the stand
structure itself. In recent years, several studies have highlighted the potential of using UAVs
for vegetation mapping at small and large scales [22,28,46–48]. In particular using LiDAR
data for ITD, accurate results have been found depending on forest conditions [49,50].

At the stand level, the results showed the same direction, the ITD approach and the
C2300 scenario were the best suited to faithfully represent tree number, basal area and
volume, and showed no significant differences between each other. Such a result reveals
that the accuracy of UAV-LiDAR estimates increased with plot size for ILPF stands. At
best, the transverse area was best served in the C1380 scenario (R2 = 0.24; RMSE = 24.47%),
followed by the C2300 scenario (R2 = 0.23; RMSE = 25.99%), while for Volume, the best
result was seen for C2300 (R2 = 0.41; RMSE = 27.18%), followed by the C1380 scenario
(R2 = 0.36; RMSE = 26.50%). Despite a paucity of literature on ILPF stand inventory,
our results for BA were consistent with previous work that showed the R2 ranging from
0.29–0.57 across different species types [51].

Furthermore, evaluating and discussing the accuracy of our results in relation to
established work was a complex task due to the literature for ILPF systems. However, in
comparison with studies that have evaluated the influence of sample size, we note that
our findings are quite comparable with the inferences made by other studies. In [45] was
evaluated the impact of sample size and also modeling approaches and found that model
performance was sensitive to sample size, and that an increase in R2 occurred as sample size
increased. In the case of our study, it can be seen that using an optimal number of sample
trees from the evaluation, will provide greater accuracy, appearing to be a more efficient
strategy for forest management [52,53]. It is important to comment that tree spacing in
ILPF type systems is greater than in traditional stands, and that the SFI approach that takes
into account larger plots may be more suitable for these conditions, given the tree spacing.
While in small plots, the individuals present within this type of sampling unit appear to
be insufficient to represent the stand. The total number of individuals in the area was also
best represented by ITD and SFI C2300; the other approaches were not able to represent the
count of individuals, most likely due to the same aspects presented.
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The following aspects may have affected the results of this study. First, the insufficient
number of trees contained in the plots in the SFI approach, i.e., it was possible to describe
the parameters reliably only in the circular plot condition with an area of 2300 m2. In
addition, a potential positioning error of the subjects may also have caused some deviations
in the results, the improvement of which depends on the equipment and data processing
methods. GPS errors associated with tree location estimation are a common source of
uncertainty that needs further investigation [54]. Also, the issue of ITD limitations with its
dependence on stand structure, in our case irregular branching forms of the eucalypt species
may have caused omission and commission when outlining trees, which are common errors
in ITD algorithms [55,56].

Future work perspectives could address the lack of approaches for forest inventory
under iCLFconditions with UAV-LiDAR, since most of the developed work is applied
in homogeneous plantations at traditional spacings [45]. Furthermore, in our work we
presented a perspective for forest inventory focusing on the parameters volume, number of
individuals and basal area, however, upcoming work could explore for example biomass
and carbon estimation and also the increments in carbon stocks of iCLF plantations in
multitemporal contexts. Additional tests are therefore needed to increase confidence in the
methodology and generalize it—for example, in other forest systems and also in evenly
spaced stands. Alternative modeling and sampling techniques could also be explored;
for instance, AI techniques could show better results since they deal better with the non-
normalization of the data, as well as a bootstrapping sampling system could resample the
data, generating a more robust model. Finally, we still recommend adding topographical
variables in uneven terrain situations, since the DTM can be easily obtained in processing.

Finally, the overall accuracy of this study proved the feasibility of the proposed
approach, and confirmed the use of a UAV as a promising alternative for inventory for an
integrated crop-livestock-forest system. The SFI approach can be very useful in acquiring
the stand parameters, as well as being a strategic means for processing high-density LiDAR
clouds. Thus, future work with UAV-LiDAR data can benefit in acquiring forest volume at
regional scales at relatively low cost.

5. Conclusions

This work compares two approaches—Sampling Forest Inventory and Forest Inventory
based on a complete Census—to predict the individual mean volume and the basal area
of an eucalyptus stand in a crop-livestock-forest system by using UAV-LiDAR data. Both
methods allowed us to address an important barrier: tree counting and attribute estimation
(volume and basal area) on wide-spaced stands.

The findings of our study indicate that for conditions prevalent in an integrated crop-
livestock-forest system, the SFI approach (C2300) that considers an area of 2300 m2 is
suitable to generate estimates at the same level as the ITD approach.

It was found that plot sampling techniques need to have a large area to be appropriate
in an integrated crop-livestock-forest system. This was the situation for the 2300 m2 circular
plots. Since the individual mean values were statistically equal for all approaches, the
difference was caused by the number of trees captured by the plots.

Individual tree detection (ITD) approaches also proved to be suitable for generating
the volume, with the values being very close to the actual values. This approach was the
one that most closely matched the number of trees in the stand.

The authors recommend that future work should test the performance of applying
high-density UAV-Lidar to forest inventories in traditional commercial plantations.
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